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Frequency-offset separated oscillatory fields
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A frequency-offset separated-oscillatory-field technique is presented. The technique is a modification of the
Ramsey method of separated oscillatory fields [Phys. Rev. 76, 996 (1949)], in which the frequencies of the two
separated oscillatory fields are slightly offset from each other, so that the relative phase of the two fields varies
continuously with time. With this technique, the detection signal oscillates in time at the offset frequency, and
the resonance frequency is obtained by using a simple straight-line fit of the phase of this signal. The technique
has the advantages of being insensitive to the frequency response of the experimental system, of being sensitive
only to noise at the offset frequency, and of allowing systematic effects to be more cleanly resolved due to the
simple lineshape.
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I. INTRODUCTION

The Ramsey technique [1,2] of separated oscillatory fields
(SOFs) has been widely used for performing precision mea-
surements (see, e.g., Refs. [3–15]). When using this method, an
atom (or other system) with resonant frequency f0 is exposed
to two pulses of oscillating field with frequency f separated
by a time T , as shown in Fig. 1. The technique leads to SOF
signals with a lineshape [16]

SSOF(f ) = Sni(f ) + Si(f ) cos [2π (f − f0)T + �φ], (1)

where the cosine term, with its envelope function Si(f ), comes
from interference between quantum-mechanical amplitudes
driven by the two separated fields, and Sni(f ) does not involve
interference. Both Si(f ) and Sni(f ) are similar to the lineshape
that would result if only one pulse were used. Examples of SOF
lineshapes are shown in Fig. 2 for a transition from a stable
state to another stable state [Fig. 2(a)], and a transition from
a stable state to a state with radiative decay [Fig. 2(b)]. In the
latter case, the linewidth of 1

2T
is less than the natural width.

We present a modified SOF technique in which the
frequencies of the two separated fields are slightly offset from
each other. In this work we show that this frequency-offset
separated-oscillatory-field (FOSOF) technique allows us to
determine the resonant line center by using a straight-line fit
and discuss the advantages of using the FOSOF technique.
Primary among these advantages is that the technique is
insensitive to the frequency response of the experimental
system (for example, the carrier-frequency dependence of the
intensity of the electromagnetic wave). A second advantage is
the possibility of a better signal-to-noise ratio, since the signal
obtained with this technique is only sensitive to noise at the
offset frequency, and this offset can be set to a frequency where
the noise spectral density is low. The simple FOSOF lineshape
also allows systematic effects to be more cleanly resolved than
they can be with the SOF lineshape.
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II. FREQUENCY-OFFSET
SEPARATED-OSCILLATORY-FIELD TECHNIQUE

The FOSOF driving fields are given by

F =

⎧⎪⎨
⎪⎩

F1 cos
[
2π

(
f − δf

2

)
t + φ1

]
if 0 < t < D

F2 cos
[
2π

(
f + δf

2

)
t + φ2

]
if T < t < T +D

0 otherwise,

(2)

as shown in Fig. 1(a). The frequencies of the two sepa-
rated fields differ by the small offset frequency δf (δf �
1/T ,1/D), and this offset causes the relative phases of the two
fields [�φ of Eq. (1)] to vary linearly in time as

�φ = φ21 + 2πδf t, (3)

where φ21 is the phase difference φ2 − φ1.
The effect of this time-dependent phase is that the two fields

continuously cycle between being in phase and out of phase,
and the observed FOSOF signal [Eq. (1)] varies sinusoidally
in time at the small offset frequency δf as

SFOSOF(f,t)=Sni(f )+Si(f ) cos[2πδf t+φ21+2π (f −f0)T ].

(4)

This FOSOF signal is shown as a function of time t in Fig. 3
for three of the frequencies of Fig. 2(b). The amplitude of the
sinusoid is the range indicated by the gray lines in Fig. 2(b),
and Sni(f ) is the central value of this range at each value of
f . The phase of the sinusoid varies with f , as shown by the
three curves of Fig. 3. Also shown in Fig. 3 is a reference
signal, which determines the relative phase φ21 of the two
fields. This reference can be derived, for example, by mixing
the two frequency-offset fields, and it oscillates between zero
(when the two fields are out of phase by π ) and a maximum
(when the two fields are in phase). The f = f0 FOSOF signal
is in phase with this reference but is shifted in phase by �θ

for f �= f0, as shown in Fig. 3. This �θ can be determined
experimentally by recording both the FOSOF and reference
signals versus time (the solid and dashed lines in the figure),
with their phase difference determined by using least-squares
fits of these signals to sinusoidal functions.

From Eq. (4), the phase shift is �θ = 2πT (f − f0), which
is illustrated by the straight lines in Fig. 4. In the FOSOF
technique, the resonance frequency f0 is experimentally
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FIG. 1. (Color online) (a) Timing and (b) energy-level diagram
for SOF and FOSOF experiments, along with the frequencies and
phases of the two separated fields.

determined by fitting the measured phase shifts, �θ (measured
at a set of frequencies), to this linear relationship.

III. CANCELLATION OF PHASE IMPERFECTIONS

For both the SOF and FOSOF techniques, precise knowl-
edge of the relative phase of the two separated fields is critical.
To determine the line center to one part in N of the 1

2T
linewidth

of Fig. 2, it is necessary to know the relative phase to an
accuracy of π/N .

Very precise relative-phase determinations can often be
difficult to achieve because of the different phase response,

FIG. 2. (Color online) Typical SOF lineshapes, with D = T/7
[Fig. 1(a)]. The dotted and dashed curves give the population in a state
|B〉 for atoms starting in a stable state |A〉 [Fig. 1(b)] for the cases
of the two pulses having relative phases and 0 and π , respectively.
For panel (a), |B〉 is also stable, and for panel (b) it has a lifetime of
τ = T/7. The width of the SOF interference is 1

2T
in both cases.

FIG. 3. (Color online) Fraction of population in the excited state
for the FOSOF technique for the three values of f indicated by
arrows in Fig. 2(b). The population varies sinusoidally in time (at the
small offset frequency δf ), and the phase of this sinusoid differs for
different values of f . The relative phase of the two separated fields,
φ21, is obtained from a reference signal, which can, e.g., be generated
by a mixer. The phase of the sinusoidally varying population agrees
with the phase of this reference signal for f = f0, but differs by the
values of �θ shown for f �= f0.

electrical length, and interfering reflected waves that might be
present in the networks that produce the two separated fields.
Thus, in general, φ21 = φ2 − φ1 of Fig. 1(a) and Eq. (4) will
depend on frequency. Furthermore, the finite bandwidths of
detectors and other electrical filters in the apparatus can add
phase shifts to the measured sinusoidal atomic signal.

We denote the measured FOSOF atomic signal as

Smeas(f,t) = Sni(f ) + Si(f ) cos[2πδf t + φ21(f )

+ 2π (f − f0)T + ψ(f )], (5)

where the frequency dependence of φ12 has been included, and
ψ(f ) is the phase shift added by the instrumental response of
the detection system.

π

π

π

π

π

π
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FIG. 4. (Color online) Phase shifts �θ of the FOSOF signal
versus f for for both positive (lines with positive slope), and negative
(lines with negative slopes) offset frequencies δf . The solid line
corresponds to a separation time T = 7D, as in Figs. 2(b) and 3. The
dash-dot, dotted, and dashed lines correspond to T = 3D, 10D, and
14D, respectively. The FOSOF technique can determine the resonant
frequency f0 from the intercept of any one of these lines.
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The FOSOF measurement also requires a reference signal
oscillating at the offset frequency (for example, from a mixer,
as in Fig. 3). The reference signal can also acquire a frequency-
dependent phase shift due to electrical length mismatches or
multiple reflections in the reference-generation system.

We denote the reference signal as

Rref(f,t) = R0 cos [2π δf t + φ21(f ) + ξ (f )], (6)

where ξ (f ) is the phase shift added by imperfections in the
reference-generation system.

The measured phase difference between the atomic and
reference signals is

�
 = 2π (f − f0)T + ψ(f ) − ξ (f ), (7)

which differs from the ideal �θ = 2π (f − f0)T due to the
ψ(f ) and ξ (f ) phase errors.

We note that repeating measurements with positive and
negative values of δf (as in Fig. 4) does not lead to a
cancellation of these phase errors. This is evident from Eq. (7),
in which δf does not appear, or by considering the phase
difference between the signals of Eqs. (5) and (6) with
δf → −δf .

These phase errors can be canceled by using a second
measurement in which the atoms encounter the separated
oscillatory fields in the reversed order, keeping the same
sign of δf . The measured atomic signal for an order-reversed
configuration [with φ21(f ) unchanged by the reversal] is

S̃meas(f,t) = Sni(f ) + Si(f ) cos[−2πδf t − φ21(f )

+ 2π (f − f0)T − ψ(f )]. (8)

If this is accomplished without perturbing the reference
signal as well, then the phase difference between atomic and
reference signals in the order-reversed configuration is

�
̃ = −2π (f − f0)T + ψ(f ) − ξ (f ). (9)

The true atomic phase is extracted from the difference

�
 − �
̃ = 4π (f − f0)T . (10)

An extreme example of such a phase error, ψ(f ) − ξ (f ), is
shown as a dash-dot curve in Fig. 5. The phase error shifts the
�θ determination for both the regular and the order-reversed
configuration, as shown by the dotted curves in Fig. 5.
However, the difference of these two dotted curves perfectly
cancels the phase errors and recovers the atomic signal, which
is shown by the straight-line solid curve. The intercept of this
solid line exactly matches the resonant frequency f0.

Keeping φ21 unchanged when reversing the order in which
the atoms encounter the separated oscillatory fields is not
trivial, since the phases φ1 and φ2 of Eq. (2) could easily change
when performing this reversal. However, we have developed
two methods which leave these phases unchanged.

For a precision microwave FOSOF measurement of the
n = 2 Lamb shift of hydrogen, we use a beam of metastable
hydrogen atoms passing through spatially separated oscillatory
field regions. We perform the order reversal by physically
rotating the entire rigidly connected microwave system (field
regions, microwave components, and microwave generators)
by 180 degrees, so that the atomic beam encounters the two
regions in the reverse order. Since the microwave system is

π

π

π

π

π

π

FIG. 5. (Color online) Phase �
 of the observed FOSOF signal
versus f for for both perfect phase measurements (dashed lines)
and for measurements with imperfect phase determinations (dotted
curves). For illustration purposes, a large phase imperfection, ψ(f ) −
ξ (f ), is used (dot-dash curve). The solid line, which has twice the
slope of the dashed lines, is the difference, �
 − �
̃ of Eq. (10),
between the positive-slope dashed line and the negative-slope dashed
line. The difference between the dotted lines also exactly equals the
solid line, showing that phase errors exactly cancel by taking the
�
 − �
̃ difference.

unchanged under this rotation, the phases φ1 and φ2 remain
unaffected.

For a precision FOSOF measurement of the helium n = 2
triplet P fine structure, we use microwave pulses to generate
temporally separated fields. We create a train of microwave
pulses, with the frequency of consecutive pulses alternating
between f − δf

2 and f + δf

2 . Each FOSOF measurement
selects two of these pulses by exciting the atoms up to the
23P state before one of the pulses and detecting the number
of atoms that undergo the microwave transition after the
next pulse. For this measurement, the reversal is achieved
by changing the timing of the laser excitation and detection
(without changing the microwave pulse train). For obtaining
�
, the excitation to 23P occurs before an f − δf

2 microwave
pulse and the detection occurs after the following pulse, which
has a frequency of f + δf

2 . For obtaining �
̃, the excitation
occurs before an f + δf

2 pulse, and the detection occurs after
the next pulse, which has a frequency of f − δf

2 . Again,
the microwave system is left untouched by the reversal and
therefore φ1 and φ2 are unaffected.

IV. ADVANTAGES OF FREQUENCY-OFFSET
SEPARATED-OSCILLATORY-FIELD TECHNIQUE

A. Insensitivity to experimental frequency response

For SOF measurements, the variation of the intensity of
the driving fields as a function of frequency can be a major
concern. Such variations can be caused by the frequency
response of the frequency generator, or of components used
to deliver the power to the atoms. They can also be caused by
interference between reflected waves, and by buildup cavities,
if these are used. The frequency-dependent variations cause F1
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FIG. 6. (Color online) (a) The SOF lineshape is distorted if the
intensity of the field driving it varies with frequency, as shown in
panel (b). Here the central lobe of Fig. 2(a) is shown for constant
intensity (solid lines), for a linearly varying intensity (dotted lines),
and for a quadratically varying intensity (such as may be caused
by a buildup cavity, dashed lines). The vertical lines in panel (a)
indicate the resonance center, as determined from the half-maximum
points, and these show that for precision measurements using SOF
lineshapes, significant shifts of the line center can be caused by
intensity variations.

and F2 of Eq. (2) to vary with frequency, and this distorts the
SOF lineshape, as shown, for example, in Fig. 6. In precision
measurements, the resulting shift of the lineshape is often a
limiting factor for determining the line center.

The SOF technique is influenced by variations of intensity
versus frequency because the measured quantity is a product
[Eq. (1)] of an interference envelope (which depends on field
intensity) and an interference cosine (which depends on the
phases of the fields). Therefore, field intensity variations can
mimic phase variations in the SOF signal.

The FOSOF technique is immune to intensity changes
versus frequency since it measures the phase rather than the
amplitude of the interference signal. This immunity to intensity
variations is the key strength of the FOSOF technique. The
FOSOF technique measures the phase of the interference
cosine directly and therefore focuses on the essential quantity
of interest for SOF measurements.

B. Insensitivity to low-frequency noise

The statistical uncertainty in the line-center determination
is similar for the SOF and FOSOF techniques. That is, a SOF
measurement that maps out the lineshape (such as that of
Fig. 2) and a FOSOF measurement that uses the same data-
collection time to map out the linear phase variation (such as in
Fig. 4) lead to similar statistical uncertainties in the determined
line centers.

However, a second advantage of the FOSOF technique is
insensitivity to ubiquitous low-frequency drifts and noise in the
experimental measurement. Only noise at the offset frequency

δf contributes to the uncertainty in the extracted phase shift
�θ . The offset frequency can be chosen to be in a quiet region
of the noise spectrum, thus allowing for a better signal-to-noise
ratio when using the FOSOF technique.

C. Simple lineshape for resolving systematic effects

A major advantage of the FOSOF technique is its simple
straight-line lineshape. For precision measurements, examin-
ing the deviation from the ideal lineshape is often an important
tool for measuring or eliminating a systematic effect. For
SOF measurements, such a deviation can be very difficult
to observe. This difficulty arises because the SOF lineshape
is often fit to several parameters [usually including at least
a width, center, and amplitude parameter for the envelope
function Si(f ), and a phase and oscillation rate for the
interference cosine, as well as possible parameters for the non-
interference term Sni(f )]. Adjustment of such a large number
of parameters can absorb the lineshape deviation, making the
precise form of the original deviation inextricable from the
residuals of the fit. Also, any imperfections in the execution
of the SOF measurement could lead to additional distortions
of the lineshape, which would mask the deviation caused
by the systematic effect. These imperfections could include
variation of field intensities versus frequency, atoms that do
not experience the full SOF sequence, and averaging over
unknown velocity distributions of the atoms.

The straight-line lineshape of FOSOF requires only a
two-parameter fit, which can often be further constrained by
knowledge of T . As described in Sec. IV A, distortions which
result from variation of the intensity of the driving fields are
also eliminated. Remaining distortions (for example distor-
tions due to overlap or interference [17] from a neighboring
resonance) are much more easily identifiable as deviations
from the expected straight line.

V. RELATIONSHIP TO OTHER WORK

The FOSOF method builds upon the phase-variation tech-
nique described by Klein et al. [18]. For the phase-variation
technique, the relative phase between the oscillatory field
regions is stepped by discrete amounts (using, e.g., phase
shifters or added electrical lengths), which could introduce
correlated field-intensity variations. In contrast, the FOSOF
method uses a continuous phase variation generated by the
offset frequency δf , which changes the phase smoothly from
0 to 2π without field-intensity variations. The FOSOF varies
the phase on a timescale of 1/δf , which can easily be set to a
much shorter time than would be possible for variation by using
phase shifters or electrical length, thus avoiding experimental
drifts of signals and low-frequency noise.

Traditionally, high-precision SOF experiments, especially
experiments with decaying states, where the interference
signals are small compared with the noninterference back-
ground Sni(f ) [as in Fig. 2(b)], have used a phase-switching
technique to extract the interference signal. The relative phase
of the separated fields is switched between 0 and π , and the
difference between the 0 and π signals [in the ideal case, twice
the interference signal: 2Si(f ) cos[2π (f − f0)T ]] is obtained.

This technique is even more susceptible to systematics due
to frequency-dependent field-intensity variation effects such
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as in Sec. IV A. Introducing an accurate π relative phase
shift between the oscillatory field regions, without correlated
frequency-dependent intensity changes, is difficult in practice.
Thus, the 0 and π signals [such as, for example, those
in Fig. 2(b)] will be distorted differently by field intensity
variations, and the distortions will show up prominently in the
much smaller difference between the two signals.

The phase-switching technique can, in principle, switch
rapidly to get around slow drifts and improve signal-to-noise
ratios. However, the systematics due to correlated intensity
changes often become worse with rapid switching. In compar-
ison, smooth and rapid changes of relative phase are automati-
cally achieved with the frequency offset in the FOSOF method.

A two-frequency SOF technique (2FSOF) was described
by Jarvis et al. [19] and Garvey et al. [20], where the offset
frequency essentially averages continuously over the Ramsey
fringes, and the envelope of the oscillations Si(f ) is measured.
This allows spectroscopic measurements to be made without
the need to accurately determine phase offsets, albeit with a
loss of resolution. This 2FSOF technique is still susceptible to
line-center shifts resulting from distortions of the interference
signal envelope, caused by intensity-variation effects of the
sort that are discussed in Sec. IV A. In comparison, the phase
shifts measured in the FOSOF method are independent of
field-intensity variations, while retaining the full resolution of
the Ramsey SOF method.

VI. CONCLUSIONS

We have described a FOSOF technique for high-precision
spectroscopic measurements, which obtains the resonance
line centers by using information contained in the phase of
the atomic signal. The FOSOF technique is unaffected by
systematic effects due to frequency-dependent field-intensity
variations of the separated oscillatory fields. The freedom to
place the offset frequency in a low-noise spectral neighborhood
improves the signal-to-noise ratio of measurements, and the
simple straight-line lineshape allows any remaining systematic
effects to be more cleanly resolved.

We expect that this technique can be beneficially used to
improve the precision and accuracy of separated-oscillatory-
fields measurements. We are presently using the FOSOF
technique for precision measurements of n = 2 hydrogen and
helium fine structure in our laboratory.
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