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Off-diagonal long-range order (ODLRO) in the two-electron reduced density matrix (2-RDM) has long been
recognized as a mathematical characteristic of conventional superconductors. The large eigenvalue of the 2-RDM
has been shown to be a useful measure of this long-range order. The 2-RDM can be represented as the sum of a
connected (cumulant) piece and an unconnected piece. In this work, we show that the cumulant 2-RDM also has
a large eigenvalue in the limit of ODLRO. The largest eigenvalue of the cumulant 2-RDM, we prove, is bounded
from above by N . In the limit of extreme pairing, such as Cooper pairing, the largest eigenvalue and the trace of
the cumulant 2-RDM approach their extreme values of N and −N , respectively. While the trace of the cumulant
2-RDM, which is computable from only a knowledge of the 1-RDM, can reflect ODLRO, it alone does not appear
to be a sufficient criterion. The large eigenvalue of the cumulant 2-RDM, we show, implies the large eigenvalue
of the 2-RDM and, hence, is a natural measure of ODLRO that vanishes in the mean-field limit.
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I. INTRODUCTION

Superconductivity is an important phenomenon in
condensed-matter physics arising from a pairing of the
electrons that exhibits long-range order [1–3]. Both Yang [4]
and Sasaki [5,6] showed that this long-range order, called
off-diagonal long-range order (ODLRO) by Yang, is associated
with a large eigenvalue in the two-electron reduced density
matrix (2-RDM). Unlike bosonic long-range order, which
is characterized by a large eigenvalue in the one-electron
reduced density matrix (1-RDM), fermionic ODLRO has no
classical analog, since the off-diagonal elements of the 2-RDM
are nonzero only in the quantum description. Coleman [7,8]
showed that the large eigenvalue of the 2-RDM occurs
for finite N -electron systems in the context of N -projected
Bardeen-Cooper-Schrieffer (BCS) or antisymmetric geminal
power (AGP) wave functions. As a result, the magnitude of the
large eigenvalue of the 2-RDM can be used as an indicator of
phenomena with ODLRO including superconductivity [9–11].

Because electrons are indistinguishable with pairwise
interactions, the total energy of any molecule or material
is a linear functional of the 2-RDM [8,12]. In general, the
2-RDM provides information concerning pair properties of a
fermionic system. Diagonal elements give information about
the populations of fermion pairs, while off-diagonal elements
give information about the correlations between fermion pairs.
By unitary transformation, we can obtain the pair probabilities
with respect to different sets of orbitals including points
in coordinate space. Furthermore, the 2-RDM contains the
probability distributions for not only two fermion particles but
also one fermion particle and one fermion hole as well as
two fermion holes [8,12,13]. Recent work [14] has proposed
that the many-body correlations contained in the 2-RDM
are accessible by ultrafast pump-probe experiments, as the
probability of a system remaining in the ground state when
perturbed in this manner is expressible in terms of the 2-RDM
or its connected (cumulant) part.
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Cumulants, which were first discussed by Thiele [15] in
the 1800s and connected across different areas of physics by
Kubo in the 1960s [16], are widely applied in both quantum
field theory [17–19] and quantum chemistry [12,20,21]. The
cumulant expansions of reduced density matrices (RDMs)
have been particularly useful in electronic structure where they
have been used to remove the indeterminacy of the contracted
Schrödinger equation [22–27]. The cumulant 2-RDM has
been previously studied as a quantifier of electron correlation
and entanglement in both time-independent [14,28–31] and
time-dependent systems [32]. In this paper we examine the
cumulant part of the 2-RDM as a measure of ODLRO, which is
a special type of correlation and entanglement. While the full
2-RDM scales quadratically with system size, the cumulant
2-RDM scales linearly with system size, making it more
appropriate for the study of the extent of ODLRO in finite
systems. We show that like the 2-RDM the cumulant part
of the 2-RDM also exhibits a large positive eigenvalue in the
presence of long-range order. Furthermore, in the limit that the
size (rank) of the one-electron basis set approaches infinity, we
also find that the largest eigenvalue of the cumulant 2-RDM
shares with the largest eigenvalue of the 2-RDM the same
upper bound of N . We also find that the trace of the cumulant
2-RDM can reach its extreme value of −N in the presence of
ODLRO even though this limiting behavior does not appear to
be exclusively associated with ODLRO [33,34].

II. THEORY

The ensemble N -particle density matrix
D(123 . . . N ; 1̄2̄3̄ . . . N̄ ) can be expressed in terms of
a set of N -particle wave functions {�i(123 . . . N)} and
non-negative weights {wi}:

D(123 . . . N ; 1̄2̄3̄ . . . N̄ )

=
∑

i

wi�i(123 . . . N )�∗
i (1̄2̄3̄ . . . N̄ ), (1)

where the roman numbers represent the spatial and spin
coordinates of each particle. Integrating the N -particle density
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matrix over all particles save two yields the 2-RDM

2D(1,2; 1̄,2̄) =
∫

D(123 . . . N ; 1̄2̄3 . . . N)d3 . . . dN. (2)

Importantly, the coordinates of the 2-RDM can be expanded in
terms of a set of one-particle functions (spin orbitals) {φi(1)}:

2D(12; 1̄2̄) =
∑
i,j,k,l

2D
ij

klφi(1)φj (2)φ∗
k (1̄)φ∗

l (2̄), (3)

where 2D
ij

kl are the elements of the 2-RDM. Consider the
cumulant expansion of the 2-RDM,

2D
ij

kl = 2 1Di
k ∧ 1D

j

l + 2�
ij

kl, (4)

where the Grassmann wedge product [20,35,36] is an antisym-
metric tensor product,

2 1Di
k ∧ 1D

j

l = 1Di
k

1D
j

l − 1Di
l

1D
j

k . (5)

The cumulant (or connected) part of the 2-RDM cannot be
written as a wedge product of lower RDMs. We normalize the
2-RDM to have a trace of N (N − 1). With these definitions
we consider three theorems and two corollaries regarding the
large eigenvalue and the trace of the cumulant 2-RDM.

Both Yang [4] and Sasaki [5] showed that the 2-RDM can
have an eigenvalue (geminal occupation number) as large as
the number N of electrons in the system which is a signature of
ODLRO. This maximum occupation occurs for ODLRO in a
one-electron basis set of infinite size. Yang and Sasaki’s result
can be extended to show that the cumulant 2-RDM can have a
large eigenvalue, also bounded by N .

Theorem 1. The largest eigenvalue of the cumulant 2-RDM
is bounded by N .

Proof. Consider the eigenvector v associated with the
largest eigenvalue of the 2-RDM where the number of one-
electron basis functions, also known as the rank of the basis
set, equals r . Yang [4] and Sasaki [5] showed that

λD = v† 2D v � N. (6)

It can be shown that the cumulant 2-RDM has the following
eigenvalue bound:

λ� = v† 2�v, (7)

= v† (2D − 2 1D ∧ 1D) v (8)

= v† 2D v − 2v†(1D ∧ 1D)v (9)

= λD − 2v†(1D ∧ 1D)v (10)

� λD (11)

� N, (12)

where we have employed the positive semidefiniteness of 1D ∧
1D, that is,

v†(1D ∧ 1D)v � 0, (13)

for all v.
Pairing wave functions, known as extreme AGP [6–8] or

projected BCS wave functions, that exhibit a large eigenvalue
in the 2-RDM also exhibit a large eigenvalue in the cumulant
part of the 2-RDM that is indicative of long-range order.

Theorem 2. For the extreme AGP wave function, the
eigenvalue λD of the 2-RDM and the eigenvalue λ� of its
cumulant are related as follows:

λ� = λD − N2

r2
.

Proof. When the 2-RDM and its cumulant are from an
extreme AGP wave function, the 1-RDM is a scalar multiple
of the identity matrix with a scalar factor equal to the number
of electrons divided by the rank N/r:

1D = N

r

1I. (14)

Therefore, for the extreme AGP wave function, we have

λ� = λD − 2
N2

r2
v†(1I ∧ 1I )v, (15)

λ� = λD − N2

r2
. (16)

Corollary 1. In the limit that the size of the one-electron
basis set approaches infinity, the 2-RDM and the cumulant
2-RDM from an extreme AGP wave function share the same
large eigenvalue equal to N .

Proof. The corollary follows immediately from Theorem
2 and Yang and Sasaki’s [4,5] theorem. The contribution of
the unconnected part of the 2-RDM to the large eigenvalue of
either the 2-RDM or its cumulant part vanishes in the limit that
the rank r (or size) of the one-electron basis set approaches
infinity.

The large eigenvalue in the cumulant (connected) 2-RDM
occurs if the order of the system extends over N electrons,
which we refer to as long-range order. Because the cumulant
part of the 2-RDM is connected, it scales linearly with the size
of the system, and hence its largest eigenvalue cannot scale
faster than linear in the number of N electrons.

Even though the trace of the cumulant 2-RDM is com-
putable from only a knowledge of the 1-RDM (in fact, just the
1-RDM’s eigenvalues), it can reflect the emergence of ODLRO
in the 2-RDM.

Theorem 3. The trace of the cumulant 2-RDM becomes
increasingly negative with the emergence of long-range order.
The trace of the cumulant 2-RDM is always nonpositive with
a lower bound of −N ,

−N � Tr(2�) � 0;

in the mean-field limit the trace of the cumulant 2-RDM is 0,

Tr(2�mf) = 0;

and in the extreme-AGP limit the trace of the cumulant 2-RDM
is

Tr(2�ext) = −N

(
1 − N

r

)
.

Proof. In general,

Tr(2�) = Tr
(

2D
ij

kl

) − 2 Tr
(

1Di
k ∧ 1D

j

l

)
, (17)

Tr(2�) = Tr(1D2) − N. (18)
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Because the eigenvalues of the 1-RDM lie between 0 and 1,
we have

0 � Tr[1D(1 − 1D)], (19)

Tr(1D2) � Tr(1D), (20)

Tr(1D2) � N. (21)

Furthermore, the trace of the 1-RDM squared is non-negative:

Tr(1D2) � 0. (22)

Combining Eq. (18) with Eqs. (21) and (22) proves that the
trace of the cumulant 2-RDM has a lower bound of −N and
an upper bound of 0. Because the trace of the 1-RDM squared
can be written as the sum of the 1-RDM’s eigenvalues, the
trace of the cumulant 2-RDM can also be expressed in terms
of the 1-RDM’s eigenvalues ni :

Tr(2�) =
∑

i

n2
i − N. (23)

In the mean-field limit the trace of the cumulant 2-RDM
is 0 because the cumulant 2-RDM itself vanishes since the
electrons (orbitals) are not correlated; that is, they are not
statistically dependent. For the extreme AGP wave function,
the trace of the cumulant is given by

Tr(2�ext) = N (N − 1) − 2
N2

r2
Tr

(
1I i

k ∧ 1I
j

l

)
, (24)

Tr(2�ext) = N (N − 1) − N2

r2
r(r − 1), (25)

Tr(2�ext) = −N

(
1 − N

r

)
. (26)

Corollary 2. In the limit that the size of the one-electron
basis set approaches infinity, the trace of the cumulant 2-RDM
from an extreme AGP wave function approaches −N

Proof. In the limit that the rank r approaches infinity,
it follows from Theorem 3 that the trace of the cumulant
approaches −N .

III. APPLICATIONS

We explore the large eigenvalue in the cumulant part
of the 2-RDM by considering the family of Hamiltonian
operators [8],

Ĥ = N − (N − 2)
∑

i

ηi(a
†
iαaiα + a

†
iβaiβ)

−
∑
ij

ξiξ
∗
j a

†
iαa

†
iβajβajα, (27)

where the ηi are defined in terms of the ξi ,

ηi = |ξi |2, (28)

and the ξi are the expansion coefficients in the two-electron
function (geminal) g(12),

g(12) = 2
∑

i

ξiφiα(1) ∧ φiβ(2). (29)

For even N each Hamiltonian in the family has a unique N -
electron ground-state AGP wave function,

�(123 . . . N) = g(12) ∧ g(34) ∧ . . . ∧ g[(N − 1)N ], (30)

that is generated from wedge products of the geminal g(12).
When all of the ηi equal 1, the ground-state solution is an
extreme AGP wave function with maximum ODLRO.

Varying the geminal’s expansion coefficients in the above
Hamiltonian allows us to examine the onset of pairing and
long-range order in a quantum system through the large
eigenvalues of both the 2-RDM and its cumulant part. We
approximate the mean-field case using a geminal in which
N/2 of the ηi,mf values approach 1 and N/2 approach 0. The
extreme case has all of the ηi,ext equal to 1. We tune between
the mean-field case and the extreme case using an expression
for ηi of the form

ηi = αηi,ext+(1 − α)ηi,mf, (31)

where α is a real value between 0 and 1. When α is set to 0, we
create a pure mean-field geminal, while setting it to 1 creates
an extreme AGP wave function, allowing us to show how the
large eigenvalue detects long-range order by tuning α between
these two values.

The maximum possible eigenvalue λ� (=N ) of the cumu-
lant 2-RDM occurs when the rank r of the one-electron basis
set approaches infinity. In a finite basis set with rank r the
maximum λ�, strictly less than N , occurs at half filling when
N = r/2. When N < r/2, there are not enough particles to
support the ODLRO at half filling, and when N > r/2, there
are not enough holes to support the ODLRO at half filling.
In the following examples, to make comparisons of the large
eigenvalues and traces of the 2-RDM and its cumulant part in
a finite basis set, we use half filling to maximize the possible
ODLRO.

As a general quantum system of 50 electrons in 100 orbitals
is modulated between a mean-field geminal and an extreme
AGP wave function, the large eigenvalue λ� of both the
2-RDM and its cumulant increase sharply with the initial
onset of long-range order and begin to plateau when α is
approximately 0.3. While only the large eigenvalue λ� of the
cumulant is shown in Fig. 1, the large eigenvalue λD of the full
2-RDM follows essentially the same curve, its values slightly
above those of λ�. As α approaches 1, the large eigenvalues
gradually approach their maximum. The largest eigenvalue λ�

can detect even a small amount of long-range order and thereby
measure the difference between an extreme AGP system and a
nonextreme AGP system, even a nonextreme AGP system with
some degree of long-range order. As the system is tuned from
a mean-field case to an extreme AGP system, the difference
between the large eigenvalue of the 2-RDM and its cumulant
is reduced from a relatively large value to a smaller, limiting
value. For an extreme AGP system where N = r/2, the large
eigenvalue of the cumulant part λ� is exactly less than the
large eigenvalue λD of the 2-RDM by 1/4:

λ� = λD − 1
4 . (32)

In addition to the large eigenvalues λD and λ�, the increases
of this difference λ� − λD can also be a useful measure of
ODLRO with the difference being −1 in the mean-field limit
in the absence of ODLRO.
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FIG. 1. (Color online) The largest eigenvalue of the cumulant
part of the 2-RDM is given as a function of α, the tuning parameter, for
a general 50-electron, 100-orbital quantum system. As α increases,
the eigenvalue captures the emergence of ODLRO.

In addition to the large eigenvalue of the cumulant 2-RDM,
we show in Table I, for a general quantum system of 50
electrons, that the trace of the cumulant can also reflect the
presence of long-range order. Unlike the trace of the 2-RDM,
which is constant for a given system of N electrons, the trace
of the cumulant decreases with the onset of long-range order,
as the geminal is tuned between a mean-field case and an
extreme AGP wave function, reaching a minimum value when
α is equal to 1. For an extreme AGP wave function when
N = r/2, the trace of the cumulant part is equal to

Tr(2�) = 1
2 − λD. (33)

The absolute value of the trace follows the same trend as the
large eigenvalue of the 2-RDM and the large eigenvalue of the
cumulant.

IV. DISCUSSION AND CONCLUSIONS

The largest eigenvalue of the cumulant 2-RDM was shown
to provide effective measures of ODLRO in quantum many-
fermion systems. While Yang [4] and Sasaki [5] previously

TABLE I. Relationships among the large eigenvalue λD of the
2-RDM, the large eigenvalue λ� of the cumulant 2-RDM, and the
trace of the cumulant 2-RDM are shown as functions of the tuning
parameter α for a 50-electron, 100-orbital quantum system. As α

increases, all three quantities capture the emergence of ODLRO. The
cumulant-derived quantities also vanish in the mean-field limit in the
absence of ODLRO.

α λD λ� Tr(1D) Tr(2D) Tr(2�)

0.0 1.00 0.00 50 4950 0.00
0.1 18.69 18.37 50 4950 −18.12
0.2 21.82 21.53 50 4950 −21.28
0.5 24.76 24.50 50 4950 −24.25
1.0 25.50 25.25 50 4950 −25.00

proved that the largest eigenvalue of the 2-RDM approaches
an upper bound of N in the limit of maximum ODLRO, we
proved that the largest eigenvalue of the cumulant 2-RDM (i)
implies the large eigenvalue of the 2-RDM and (ii) approaches
the same upper bound of N . Unlike the largest eigenvalue
of the 2-RDM, the largest eigenvalue of the cumulant 2-RDM
vanishes in the absence of ODLRO in the mean-field limit [37].
Furthermore, while the 2-RDM has a fixed trace for any system
with a fixed number of particles, the variable trace of the
cumulant 2-RDM can also reflect the emergence of long-range
order. For an extreme AGP wave function in the infinite
basis-set limit, the trace of the cumulant 2-RDM reaches its
lower bound of −N and thereby reveals maximum ODLRO.
While the large eigenvalue of the cumulant 2-RDM implies
the large eigenvalue of the 2-RDM, it is also important to
note that the trace of the cumulant 2-RDM can also reach its
extreme −N value in cases that are not typically associated
with ODLRO (see, for example, recent calculations on pairing
Hamiltonians [11] and the harmonium model [38,39]).

Since the development of density functional theory [40],
there has been significant interest in how much information is
contained within the 1-RDM. The 1-RDM contains significant
information about a quantum system’s correlation, entangle-
ment, and openness. Recently, a formally complete set of pure
N -representability conditions for the 1-RDM, also known
as generalized Pauli conditions, have been derived [41,42]
and studied computationally in atoms and molecules [43–47].
The proximity of the 1-RDM to the boundary of its pure
N -representable set, or its quasipinning to the boundary, is
conjectured to place significant restrictions on the correlation
and complexity of the wave function. Chakraborty and one
of the authors (D.A.M.) [48] have also recently shown that
the violation of these conditions by the 1-RDM provides a
sufficient condition for the openness of an N -fermion quantum
system. In this paper we found that through the trace of the
cumulant 2-RDM, which depends quadratically upon the 1-
RDM, the 1-RDM contains an imprint of ODLRO. This result
may be useful in improving 1-RDM-based (or geminal-based)
energy functionals in electronic structure theory [49–52]. As
recent work [53] has experimentally determined the 1-RDM
for ultracold fermionic atoms in a double-well potential, the
examination of the 1-RDM with respect to ODLRO has the
potential to be applied to experimental systems.

Molecules and materials have a plethora of possible ener-
gies and properties from the arrangement of atoms in chemical
bonds. Special arrangements such as copper-oxide planes
have been shown to exhibit extraordinary properties such as
high-temperature superconductivity [54]. Recent work [55]
suggests that ODLRO arises in cuprate and iron-based
high-temperature superconductors as a result of short-range
Coulomb repulsion and long-range attraction between electron
pairs in alternating lattice structures. Pairing phenomena
in ultracold fermi gases [56], especially in the BCS–BEC
(Bose-Einstein condensate) limit, are of experimental interest
[57–60] as a method of explaining high-temperature super-
conductivity. The large eigenvalue of the cumulant 2-RDM
provides a useful quantity for both quantifying and understand-
ing the presence of ODLRO in quantum molecular systems.
While the present results are directly applicable to theoretical
and computational studies of long-range order in phenomena
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like superconductivity, they are also applicable to the study of
more general materials with long-range order behavior. Copper
oxide compounds, for example, have a high-temperature state
referred to as a pseudogap metal which has both simple
metallic character and long-range quantum entanglement [61].
The model Hamiltonians studied in this paper show that a
continuous curve of largest cumulant 2-RDM eigenvalues can
be generated in the range from 0 to N , with 0 being the
mean-field limit and N being the extreme AGP (supercon-
ducting) limit. Similarly, materials can have large cumulant
2-RDM eigenvalues that indicate a degree of long-range order

between that of a typical insulating material and that of a
superconductor. The indicators for ODLRO, developed here,
provide tools for exploring more fully the spectrum of quantum
long-range order in molecular systems and materials.
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