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High-precision measurements of the 87Rb D-line tune-out wavelength
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We report an experimental measurement of a light wavelength at which the ac electric polarizability equals
zero for 87Rb atoms in the F = 2 ground hyperfine state. The experiment uses a condensate interferometer
both to find this “tune-out” wavelength and to accurately determine the light polarization for it. The wavelength
lies between the D1 and D2 spectral lines at 790.032388(32) nm. The measurement is sensitive to the tensor
contribution to the polarizability, which has been removed so that the reported value is the zero of the scalar
polarizability. The precision is 50 times better than previous tune-out wavelength measurements. Our result can
be used to determine the ratio of matrix elements |〈5P3/2||d||5S1/2〉/〈5P1/2||d||5S1/2〉|2 = 1.99221(3), a 100-fold
improvement over previous experimental values. New theoretical calculations for the tune-out wavelength and
matrix element ratio are presented. The results are consistent with the experiment, with uncertainty estimates for
the theory about an order of magnitude larger than the experimental precision.
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I. INTRODUCTION

The energy shift experienced by an atom in an off-resonant
optical field has found numerous applications in atom trap-
ping, manipulation, and measurement. The light shift can be
characterized by a frequency-dependent polarizability, which
itself depends in detail on the wave function of the electrons
in the atom. Accurate measurements of the polarizability
can therefore be used to test atomic theory calculations, or
as phenomenological inputs to improve those calculations.
Polarizability measurements have a long history of improving
our knowledge of atoms in this way [1,2].

Precise measurements of the polarizability at optical
frequencies are technically difficult, because the light shift
depends also on the optical intensity and it is hard to accurately
determine the intensity in situ. However, it is possible to instead
measure a light wavelength at which the polarizability equals
zero [3–5]. Since these tune-out wavelengths are independent
of the intensity, they can be accurately measured by various
methods [5–9].

Tune-out wavelengths can be useful for applications in-
volving species-specific optical manipulation [3,4,6,10] and
optical Feshbach resonances [9]. In addition, it was recently
shown that tune-out wavelengths can be used with an atom
interferometer for sensitive detection of rotations and acceler-
ations [11]. Improved knowledge of tune-out wavelengths can
lead to better performance in all these applications.

In this paper we report measurement of the tune-out
wavelength for 87Rb near 790 nm, with an accuracy of about 30
fm. This can be compared to the 1500- to 2000-fm precision
of previously reported values for this [6] or other tune-out
wavelengths [5,7,8]. Our result determines the ratio of the
D-line dipole matrix elements to an accuracy of 15 ppm,
about a factor of 100 better than previously known [12–14].
At our precision the measurement is sensitive to many new
effects including hyperfine interactions [15], QED effects
[16], the Breit interaction [17], and the details of the atomic
core and core-valence interactions [4]. The theoretical tools
required to handle these challenges are closely related to those

needed for interpreting results such as atomic parity violation
and electric dipole measurements in terms of fundamental
particle properties [18]. Related calculations are also useful
for constraining black-body radiation shifts in atomic clocks
[19]. Our measurement can thus serve as a useful test for
theories, or could be taken as a phenomenological input value
for improved results.

II. EXPERIMENTAL METHOD

For an alkali-metal atom in state i, the polarizability can be
expressed as

αi(ω) = 1

�

∑
f

2ωif

ω2
if − ω2

|dif |2 + αc + αcv, (1)

where the sum is over all excited states f of the valence
electron. The transition frequency between i and f is ωif

and dif = 〈f |d · ε̂|i〉 is the dipole matrix element between i

and f for light with polarization vector ε̂. The αc term is the
polarizability contribution from the core electrons while αcv

expresses the effect of core-valence interactions [4]. At most
frequencies, αc and αcv are small compared to the valence
contribution. However, tune-out wavelengths occur between
pairs of states where the valence contributions largely cancel.
Figure 1(a) shows the tune-out wavelength between the D1
and D2 lines of Rb.

Our measurement uses a Bose condensate atom interferom-
eter, similar to that previously described in [20]. A condensate
of about 104 87Rb atoms is produced and loaded into a weak
magnetic trap with harmonic oscillation frequencies of 5.1,
1.1, and 3.2 Hz along the x, y, and z directions, respectively.
The trap uses a time-orbiting potential, with a bias field of
20.0 G rotating in the xz plane at 12-kHz frequency. Oscillating
magnetic gradients provide support against gravity as well as
trap confinement.

The atom interferometer is implemented using an off-
resonant standing-wave laser propagating along the y axis,
having wave number k. Via Bragg scattering, a short pulse from
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FIG. 1. Schematic of measurement. (a) Theoretical plot of the
polarizability α for 87Rb near the D1 and D2 transitions. The
polarizability crosses zero at the tune-out wavelength λ0. (b) Optical
schematic for the experiment. The two Bragg laser beams form a
standing wave that is used to split and recombine a Bose condensate
to form an atom interferometer. The Stark laser beam illuminates one
of the wave packets in the interferometer to produce a phase shift.
(c) Composite image of the atomic wave packets (dark) and the Stark
beam (white). Here the wave packet centers are 130 μm apart after
5 ms of propagation. In (b) and (c), the coordinate axes x, y, and z

are illustrated.

this beam can split the atoms into two wave packets traveling
with momentum ±2�k [21]. After 10 ms, the wave packets
are reflected using another pulse of the Bragg laser, now
adjusted to drive the |+2�k〉 ↔ |−2�k〉 transition. After 20 ms
a second reflection pulse is applied, and after another 10 ms,
a recombination pulse is applied. By using this symmetric
trajectory, both packets traverse identical paths in the trap,
which reduces phase shifts and fidelity loss from the trapping
potential [20].

The recombination pulse brings a fraction N0/N of the
atoms back to rest in the center of the trap. We obtain
N0/N = [1 + V cos(φ + φr )]/2, where φ is the phase dif-
ference developed by the atoms during their separation, φr

is the phase shift of the recombination pulse relative to the
initial splitting pulse, and V ≈ 0.7 is the visibility. We here
set φr = π/2 to maximize the sensitivity to φ. We measure
N0/N by allowing the three output wave packets to separate
for 40 ms and then observing them via absorption imaging.

To obtain the polarizability α, we focus another laser beam,
traveling along z, onto one arm of the interferometer. This Stark
beam is applied for 20 ms at the start of the interferometer, so
that one packet passes through it twice. Figure 1(b) shows the
orientation of the beams involved, and Fig. 1(c) is a composite
image of the atoms and Stark beam together.

The energy shift U due to the Stark beam is

U = −1

2
α〈E2〉 = − αI

2ε0c
, (2)

where E is the electric field of the beam, I is the intensity, and c

is the speed of light. The brackets denote time averaging of the
optical field. The light shift induces a phase φ = −(1/�)

∫
Udt

proportional to the integrated intensity experienced by the
atoms. We use an approximately Gaussian beam with waist
w ≈ 30 μm. For a Stark beam power of P , this yields
φ/(αP ) ≈ 66 rad/W for α in atomic units.
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FIG. 2. Sample data. The two inset graphs show interferometric
measurements of the phase shift φ induced by the Stark beam with
power P . The triangles show individual measurements, which are fit
to a line to determine the slope. The large graph shows how the slope
varies as a function of the Stark laser wavelength, with the inset graphs
corresponding to the indicated points. The vertical error bars are the
linear regression errors from the slope fits. The horizontal error bars
are the standard deviation of several wavelength measurements made
over the course of the slope measurement. The line in the large graph
is another linear fit, and the intercept is taken as our measurement
result for the tune-out wavelength λ0. Here λ0 = 790.03232 nm, with
a regression error of 50 fm.

The Stark power can be varied from zero to 15 mW using
an acousto-optic modulator. The basic experimental procedure
is to set the Stark laser to a given wavelength λ and run the
interferometer for different beam powers. The resulting phase
is fit to a line to determine the slope, as shown in the Fig. 2
insets. By performing the experiment at different wavelengths,
we plot the slope as a function of λ. A second linear fit yields
the wavelength λ0 at which the slope and thus α equals zero.

III. LIGHT POLARIZATION EFFECTS

A major complication is that α depends strongly on the
optical polarization of the Stark beam and the orientation of
the atomic spin. In general the energy shift can be expressed
as [15]

U = −〈E2〉
2

{
α(0) − V cos χ

mF

2F
α(1)

+
[

3 cos2 ξ − 1

2

]
3m2

F − F (F + 1)

F (2F − 1)
α(2)

}
, (3)

where the α(i) are irreducible components of the polarizability,
namely the scalar (i = 0), vector (i = 1), and tensor (i = 2)
parts. The atom is assumed to be in a particular hyperfine
state |F,mF 〉 relative to the trap magnetic field direction
b̂ = B/B. Here we have F = mF = 2. The angle between
the Stark beam wave vector and the magnetic field is χ , so
cos χ = k̂ · b̂. Similarly, cos ξ = ε̂ · b̂ is the projection of the
light polarization vector ε̂ onto the magnetic field. Finally V
is the fourth Stokes parameter for the light, characterizing the
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degree of circular polarization and expressible as V cos χ =
i(ε̂∗ × ε̂) · b̂.

We are primarily interested in the scalar polarizability α(0).
The tensor contribution is small but measurable, and will be
discussed below. However, the vector contribution can be quite
large. For instance, for σ+ polarized light (V = −1 and χ = 0)
the vector term completely eliminates the tune-out wavelength
between the D1 and D2 transitions, since the light does not
couple our ground state to any states in the D1 manifold. To
measure the tune-out wavelength of the scalar term with the
desired accuracy, it is necessary to keep |V cos χ | < 10−5. This
is challenging since it is comparable to the performance of the
best linear polarizers, and much below the level of polarization
that can typically be maintained when a laser beam passes
through a vacuum chamber window.

We use two methods to control the vector shift. First, the
rotating bias field of the TOP trap causes cos χ in Eq. (3) to
alternate sign, with a time average close to zero. We verified
that the measurement results did not depend on the phase of
the TOP field at the start of the interferometer.

Second, we linearized the light polarization using the
interferometer itself. Prior to taking a data set such as in
Fig. 2, we ran the experiment with the Stark beam pulsed
on and off synchronously with the TOP field. In this way the
cos χ term could be made close to +1 or −1. We adjusted the
light polarization so that the measured phase shifts for those
two cases were equal. The polarization was established with a
calcite polarizer, a zero-order half wave plate, and a zero-order
quarter wave plate. The wave plates could be set to an accuracy
of about 0.1◦, corresponding to V ≈ 2 × 10−3.

After taking the data set, the polarization check was
repeated and any difference between the cos χ = ±1 phases
was used to estimate the polarization drift that occurred during
the run. This was converted to a wavelength error using an
empirical calibration, and the polarization error was added in
quadrature to the regression error calculated as in Fig. 2.

The tensor term in (3) gives rise to a dependence on the
angle of the linear light polarization with respect to the trap
field, which can be seen in Fig. 3. The polarization was adjusted
using the half wave plate in the Stark beam. For our geometry,
the polarization angle θ is related to ξ in (3) via 〈cos2 ξ 〉 =
0.5 cos2 θ , where the brackets denote a time average for the
magnetic field.

Near the tune-out wavelength, α and α(0) can be accu-
rately approximated as linear functions (dα/dλ)(λ − λ0) and
(dα(0)/dλ)(λ − λ(0)), respectively. Here λ0 is the measured
value shown in Fig. 3 and λ(0) is the desired zero of the scalar
term. The tensor contribution to dα/dλ is negligible, so the
two derivatives are nearly equal. If we use this and set (3) to
zero, we obtain

λ0(θ ) = λ(0) − α(2)

dα(0)/dλ

(
3

4
cos2 θ − 1

2

)
, (4)

in the case of V〈cos χ〉 = 0. Fitting to this form, we
obtain λ(0) = 790.032439(35) nm and α(2)/(dα(0)/dλ) =
390(120) fm. This fit is shown as the solid curve in Fig. 3.

Alternatively, α(2) and dα(0)/dλ are almost entirely due to
contributions from the 5P manifold, and can be calculated
relatively precisely. The derivative term can be determined
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FIG. 3. Effect of tensor polarizability. Data points show tune-
out wavelengths λ0, as a function of the angle θ between the linear
polarization of the Stark beam and the x axis of the trap. Each point
is an average of several measurements performed as in Fig. 2. For
each measurement i the linear fit error is combined with the estimated
polarization error described in the text. The error bars shown are then
calculated as σ 2 = 1/

∑
i σ

−2
i . The solid curve is a sinusoidal fit with

a variable offset and amplitude. The dashed curve is a fit with the
amplitude constrained to the expected value.

from [15]

α
(0)
5P = 10

�
√

15

∑
J ′,F ′

|dJ ′ |2ω′

ω′2 − ω2
(−1)1+F ′

(2F ′ + 1)

×
{

2 1 F ′
1 2 0

}{
F ′ 3/2 J ′
1/2 1 2

}2

, (5)

for the F = 2 ground state. Here the sum is over the angular
momentum quantum numbers of the 5P states, ω′ is the transi-
tion frequency to the |J ′,F ′〉 state, and dJ ′ = 〈5PJ ′ ||d||5S1/2〉
is the reduced dipole matrix element. The dJ ′ are known to
about 500-ppm precision from lifetime and photoassociation
measurements [12–14].

Similarly, the tensor term is given by [15]

α
(2)
5P = 20

�
√

21

∑
J ′,F ′

|dJ ′ |2ω′

ω′2 − ω2
(−1)F

′
(2F ′ + 1)

×
{

2 1 F ′
1 2 2

}{
F ′ 3/2 J ′
1/2 1 2

}2

. (6)

Evaluating the ratio gives α(2)/(dα/dλ) = 538.5(4) fm, which
is larger than the value determined from our fit by about
1.3σ . If we constrain the fit to use the calculated value for
α(2)/(dα/dλ), we obtain λ(0) = 790.032388(29) nm, about 1σ

different from the unconstrained result. The constrained fit
gives a χ2 per degree of freedom of 1.2, compared to 0.5 for
the unconstrained fit, both of which are reasonable. Since the
calculated value for α(2)/(dα/dλ) is expected to be accurate,
we report the value obtained from the constrained fit.

IV. ERROR ESTIMATION

As noted, each run of the experiment yields a statistical
error derived from the linear fits of φ vs intensity, and a
polarization error based on the measured polarization drift
between the start and end of the run. Each run takes several
hours, so we are not confident that the polarization change is
linear, or even monotonic, throughout the run. We therefore
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use the full value of the polarization drift as an error estimate.
The polarization drift is in fact the largest error source in the
measurement. The average polarization drift error is 126 fm,
compared to the average statistical error of 60 fm. Averaging
over the 21 measurements used would reduce these values by√

20. However, both errors vary considerably from run to run,
so for the analysis we combine the two errors for each data
point in Fig. 3. The resulting fits have the uncertainties cited
above.

Another error contribution is the calibration uncertainty in
our wavelength measurement. We used a Bristol Instruments
model 621A wave meter that displayed digits to 1 fm, with
results repeatable to about 10 fm. We tested the meter by
measuring four known saturated absorption lines in K, Rb, and
Cs. The results indicated a calibration correction of −40(5) fm
at a wavelength of 790 nm. This correction was applied to
the data reported here. The full wavelength calibration was
performed both at the start and end of data collection, and
the two Rb lines were checked periodically throughout the
experiment. No significant differences were observed.

A significant source of error is asymmetry in the Stark laser
spectrum [5,8]. The laser diode source produces broadband
ASE light [22]. This could be observed through its effect on
the spontaneous emission rate of the atoms, and indicated
a background spectral density near an atomic resonance of
S ≈ P × 10−17 Hz−1, in terms of the total Stark power P .
This is large enough to shift λ0, depending on the spectral
distribution. We controlled the effect by spectrally filtering the
beam using a diffraction grating and pinhole. Using a 0.4-nm
≈200-GHz filter bandwidth, and assuming a 10% variation
of the spectrum across that bandwidth, the estimated spectral
density would produce a shift of about 0.1 fm. However, it
is possible that the spectral density near 790 nm is larger
than that at the atomic resonance. Such low spectral power
levels are difficult to measure directly, so we quantified the
effect by comparing our λ0 results obtained with 0.2-nm and
0.4-nm filter bandwidths. About half our data was taken in
each configuration. No measurable difference was observed,
within our 30-fm precision. The expected error would scale as
the bandwidth squared, indicating that the error for the smaller
bandwidth configuration was less than 10 fm. We use this as
the uncertainty from the effect, although we expect it is an
overestimate. Asymmetry in the tails of the laser line itself
could similarly shift the measurement, but this could be ruled
out at the 1-fm level using an optical spectrum analyzer.

Uncertainty in the trap magnetic field can affect our result
by changing the value of 〈cos2 ξ 〉 in the tensor term. The most
significant effect is if the magnitude of the bias field varies as it
rotates. We were able to place a limit of 2% on such variations
by measuring the Zeeman linewidth of the trapped atoms
using rf spectroscopy. In the worst case, this would induce
a 5-fm shift on the value of λ(0). Other effects are smaller,
including distortions from a dc background field of less than 1
G, and angular misalignment of less than 3 degrees between the
Stark beam polarization measurement and the plane of the bias
field.

The hyperpolarizability of the atoms characterizes the
nonlinear Stark effect. We estimate the effect by treating the
P1/2 and P3/2 transitions as two-level systems in the rotating
wave approximation, and summing the resulting energy shifts.

TABLE I. Estimated error contributions to λ(0). The entries for
statistical error and polarization drift report the average errors for each
type, divided by the square root of the number of measurements. In
the analysis, both errors were combined at each data point to give the
reported combined error in the result.

Source Error (fm)

Statistical 13
Polarization drift 28

Statistical and polarization combined 29
Broadband spectrum 10
Wave-meter calibration 5
Trap field variation 5
dc background field 2
Hyperpolarizability 1

Total 32

At the tune-out wavelength, we obtain a net shift,

δU ≈ −|d1/2|4E4

32�3
3
, (7)

where 
 is the detuning from the P1/2 transition and E is the
Stark field amplitude. At the maximum intensity used, this
changes λ(0) by only about 1 fm.

The effect of interatomic interactions is negligible, as the
chemical potential of the condensate is only about 2π� ×
10 Hz. The Zeeman shift from the trap field, however, is not
small. By summing the contributions of the individual Zeeman
transitions, we calculate that it shifts the measured tune-out
wavelength blue by 36 fm, so we have added this amount
to our reported values to give the estimated zero-field result.
From rf spectroscopy we know the bias field magnitude of
20.0(2) G very accurately, so we estimate the error in this shift
to be less than 1 fm.

Our error analysis results are summarized in Table I. We
sum the errors in quadrature to give our final reported one-
sigma uncertainty of 32 fm.

V. COMPARISON TO THEORY

One other experimental measurement of this tune-out wave-
length exists, by Lamporesi et al. who obtained 790.018(2) nm
[6]. Our result is in considerable (7σ ) disagreement, but those
authors did not report any special effort to control the light
polarization. We expect therefore that their result is for the
particular combination of scalar and vector polarizabilities that
was relevant to their experiment.

We can, however, make a useful comparison to theory.
We first describe how the theoretical result was obtained. In
the decomposition of Eq. (1), the core terms αc and αvc are
approximately static and are calculated in the random-phase
approximation [23]. The valence term for the 5S state can be
expressed in atomic units as

αv(ω) = 1

3

∑
k

〈k‖d‖5S〉2(Ek − E5S)

(Ek − E5S)2 − ω2
, (8)

where k = nP1/2 and nP3/2. Up to n = 12 we evaluate discrete
terms in this sum using experimental values for the state
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TABLE II. Breakdown of the contributions to the 5S polariz-
ability in Rb at λ = 790.02568 nm. Reduced matrix elements d and
polarizability contributions are given in atomic units. Experimental
matrix elements from Ref. [7] are used for the 5S-6P transitions;
remaining matrix elements are from the all-order calculations [7,23].
Uncertainties are given in parenthesis. Experimental energies 
E are
measured from the ground state and given in cm−1 [25].

Contr. 
E d α0

5P1/2 12578.951 4.2199 −8233.6
6P1/2 23715.081 0.3235(9) 0.451(3)
7P1/2 27835.05 0.115(3) 0.044(2)
8P1/2 29834.96 0.060(2) 0.011(1)
9P1/2 30958.91 0.037(3) 0.004(1)
10P1/2 31653.85 0.026(2) 0.002
11P1/2 32113.55 0.020(1) 0.001
12P1/2 32433.50 0.016(1) 0.001
(n > 12)P1/2 0.022(22)

5P3/2 12816.54939 5.9550 8222.9
6P3/2 23792.591 0.5230(8) 1.173(4)
7P3/2 27870.14 0.202(4) 0.135(6)
8P3/2 29853.82 0.111(3) 0.037(2)
9P3/2 30970.19 0.073(5) 0.015(2)
10P3/2 31661.16 0.053(4) 0.008(1)
11P3/2 32118.52 0.040(3) 0.004(1)
12P3/2 32437.04 0.033(2) 0.003
(n > 12)P3/2 0.075(75)
Core + vc 8.709(93)

Total 0.001

energies E. Experimental matrix elements from Ref. [12]
are used for the 5S-6P transitions while all other matrix
elements use the all-order calculations of [23]. The details
of the methods are discussed in [24]. While experimental
values are available for the 5S-5P matrix elements [12], the
theoretical values are estimated to have a more accurate ratio,
which is most important here. For n > 12, the remaining
“tail” contributions are calculated in the Dirac-Hartree-Fock
approximation. The state energies and matrix elements are
listed in Table II. Using these values, the tune-out wavelength
is predicted to lie at λ(0) = 790.02568 nm as indicated.

The uncertainty in the theoretical value is dominated by
uncertainty in the 5P matrix elements. In Table III we compare
the matrix elements obtained using various approximations
[23]. All of the methods are intrinsically relativistic. The
calculations in Table III of the tune-out wavelength differ only

in the values of these two matrix elements, with all other values
taken from Table II.

The most accurate methods are expected to be the four all-
order calculations SD, SDpT, SDsc, and SDpTsc. We take the
average of these as the final theoretical values, and use them to
calculate λ(0) = 790.0261(7) nm. The uncertainty is estimated
from the spread in the four values. While the scaling (SDsc,
and SDpTsc) technique is supposed to account for a class of
missing correlation effects, the scaling affects only about half
of the correlation correction in this transition. Therefore we
use the full spread of the values as our error estimate to allow
for the effects missed by scaling. We note that this uncertainty
estimation is approximate since we are attempting to account
for unknown correlation effects due to triple, quadruple, and
higher excitations.

The estimated uncertainty in α from all of the non-5P
contributions is about 0.12 au. Via the derivative dλ/dα =
−397 fm/au, this leads to a wavelength error of 50 fm, about
10 times smaller than the uncertainty from the 5P levels. The
net value of the non-5P contributions does give a significant
shift of −4.2 pm, mainly from the core polarizability.

The wavelength value determined above does not include
the effects of hyperfine structure. This can be incorporated
using Eq. (5) for the 5P levels, using the theoretical estimate
for the dipole matrix elements. The effect of hyperfine
structure from all other levels is negligible. This yields
λ(0) = 790.0312(7) nm, in reasonable agreement with the
experimental value of 790.032388(32) nm. The values differ
by 1.7σ , with the theoretical uncertainty about 20 times larger
than that of the experiment.

As noted, the 5P matrix elements themselves contribute
primarily through their ratio,

R = |〈5P3/2||d||5S〉|2
|〈5P1/2||d||5S〉|2 . (9)

This is useful, because the theoretical accuracy of the ratio is
better than that of the individual matrix elements since a large
fraction of the correlation corrections cancel. This can be seen
in the calculations in Table III. Using the same error estimation
procedure as above, we obtain a ratio R = 1.9917(5).

None of the matrix element values in Table III include
Breit or QED corrections. We evaluate the importance of these
effects in the lowest-order DF approximation and summarize
the resulting values in Table IV. First, we carry out the DF
calculation with the Breit interaction included on the same
footing with the Coulomb interaction (see, for example,

TABLE III. Reduced electric-dipole matrix elements for the 5S-5PJ transitions [23], values of the tune-out wavelength λ(0), the matrix
element ratio R. (Theoretical methods) DF is the lowest-order Dirac-Hartree-Fock, II and III are second- and third-order many-body perturbation
theory values, SD and SDpT are ab initio all-order values calculated in the single-double approximation and with inclusion of the partial
triple contributions, and SDsc, SDpTsc are corresponding scaled all-order values. Experimental values are averages of several experimental
measurements [12–14].

DF II III SD SDsc SDpT SDpTsc Expt.

5S-5P1/2 4.8189 4.5981 4.1855 4.2199 4.2535 4.2652 4.2498 4.233(2)
5S-5P3/2 6.8017 6.4952 5.9047 5.955 6.0031 6.0196 5.9976 5.978(4)
λ(0)(nm) 790.02603 790.03155 790.02380 790.02568 790.02636 790.02632 790.02607 790.031(6)
R 1.9922 1.9954 1.9902 1.9914 1.9919 1.9918 1.9917 1.995(3)
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TABLE IV. Reduced electric-dipole matrix elements for the
5S-5PJ transitions and the corresponding line strength ratio R.

DF DF+Breit DF+QED

5S-5P1/2 4.8189 4.8192 4.82038
5S-5P3/2 6.8017 6.8023 6.80384
R 1.9922 1.9923 1.9923

Ref. [17]). The resulting values are listed in the column labeled
“DF+Breit.” Then, we carry out the DF calculation with the
inclusion of the QED model potential, constructed as described
in Ref. [16]. The Breit interaction is excluded in this calculation
to separate the two effects. We find that both Breit and QED
corrections are five times smaller than our uncertainty in the
correlation contribution to the ratio. However, we include the
shifts in our estimate R = 1.9919(5).

An experimental determination of the matrix element ratio
requires some theoretical input [5]. The scalar polarizability
can be expressed as

α(0) = A + |d1/2|2(K1/2 + K3/2R), (10)

where A includes αc, αcv, and contributions from valence
states above 5P . Using the values from Table II gives A =
10.70(12) au. The experimental value for d1/2 is 4.233(2) au
[12–14]. The coefficients KJ ′ ≡ α

(0)
5PJ ′ /|dJ ′ |2 can be obtained

from Eq. (5) and our result for λ(0). Setting α(0) = 0 and solving
for R yields 1.99221(3). This differs from our theory result by
0.6σ , and is about 20 times more accurate. Both values are
consistent with the ratio of the previous experimental matrix
elements, R = 1.995(3).

VI. CONCLUSIONS

Our measurement of the 87Rb 790 nm tune-out wavelength
illustrates that tune-out wavelength spectroscopy can provide
high-precision information about atomic matrix elements.
As one immediate application, our measurement of the
matrix element ratio provides a moderate improvement to
the absolute values of the 5P1/2 and 5P3/2 matrix elements.
Each of these elements has been determined with about 0.1%
precision in three previous investigations [12–14]. Our 15-ppm
determination of the ratio allows all six measurements to be
combined, reducing the total estimated error in each element
by about a factor of

√
2, as seen in Fig. 4. The resulting best

values are d1/2 = 4.2339(16) and d3/2 = 5.9760(23). Precise
knowledge of R may permit yet further improvements using
the technique of Ref. [26].

Our results have several important conclusions in regards
to the atomic theory calculations. First, the good agreement
between the measured and calculated values of λ(0) provides
confirmation of the theoretical accuracy. Prior to our measure-
ment, the theory result was about five times more accurate
than the best experimental estimate, making the theoretical
prediction difficult to check. In particular, our result validates
the procedure used to estimate the theoretical error, since the
error accurately reflects the disagreement with experiment.
This type of error validation is valuable since theoretical error
estimates are both challenging and important to obtain.
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FIG. 4. Matrix element values. The points show various deter-
minations of the dJ = 〈5PJ ||d||5S1/2〉 matrix elements, for J =
1/2 (squares) and J = 3/2 (circles). The first three points are
measurements by Volz et al. [12], Simsarian et al. [13], and Gutterres
et al. [14]. The fourth point is the error-weighted average from the
three groups. The fifth point (hollow) is the error-weighted average of
all six measurements, with the constraint d2

3/2/d
2
1/2 = R = 1.99219

obtained in the present work.

Second, we demonstrate that the ratio of matrix elements
can be a useful measure of the accuracy of theoretical
approaches to include electron correlations. Note that the
second-order and third-order values in Table III are outside of
the theory uncertainty estimate, and disagree significantly with
the experimental result. These methods are thus confirmed to
be less accurate than the all-order techniques.

Third, the accuracy of the experimental ratio value is
sufficient to test the Breit and QED effects if a more accurate
treatment of correlations is carried out. It may be possible to
achieve this in the full triple coupled-cluster approach used to
treat Cs parity violation [27]. If successful, this would help
support the theoretical methods and thus clarify the parity
violation results [16,17].

The method we have demonstrated can readily be applied
to other tune-out wavelengths in Rb, which we hope to
pursue in future work. We hope in this way that the Rb
atom can be established as a well-known reference atom
for testing theoretical techniques. The significant advance in
experimental precision should provide a useful benchmark for
some time to come.

More generally our method can be applied to any Bose-
condensed atomic species, which includes many species used
in precision measurement applications. We hope that the
improved knowledge of matrix elements made possible will
prove valuable.
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