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Quantum union bounds for sequential projective measurements
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We present two quantum union bounds for sequential projective measurements. These bounds estimate the
disturbance accumulation and probability of outcomes when the measurements are performed sequentially. These
results are based on a trigonometric representation of quantum states and should have wide application in quantum
information theory for information-processing tasks such as communication and state discrimination, and perhaps
even in the analysis of quantum algorithms.
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In order to acquire information from a quantum system,
we must perform a quantum measurement on it. According
to quantum theory, a von Neumann measurement yields an
eigenvalue of the measured observable with a probability given
by the Born rule, and simultaneously this measurement could
disturb the measured system. However, by weakly coupling the
measuring device to the system, it is possible to read out certain
information while limiting the disturbance to the system [1].

In some cases, one can perform a sequence of measurements
in order to acquire the desired information, but the situation
becomes more complex as the number of measurements
increases. Although a single measurement does not necessarily
disturb the system in some cases, the disturbance could
potentially accumulate gradually when the measurements are
performed in a sequential fashion. So some natural questions
for sequential measurements are as follows: Can we bound the
accumulated disturbance in a meaningful way or, related to
this, understand how many measurements can be performed
until the final state is no longer close to the initial state?
Moreover, performing a larger number of measurements
results in a variety of possible sequences. Then how can
we estimate the probability of occurrence of the resulting
sequences?

Having sharp answers to these questions would be very
helpful in analyzing many situations, such as quantum property
testing [2], quantum sequential decoding [3–6], sequential
state discrimination [7,8], quantum tomography [9], or any
other task which requires a large number of measurements. In
former work, Aaronson presented a union bound for general
measurements [10]. Thereafter, Sen proposed a significantly
improved bound for projective measurements [5], his bound
now being known as the “noncommutative union bound.”
Wilde then generalized Sen’s bound to apply to general
measurements and analyzed classical communication over a
single instance of a quantum channel with this approach [6].

In this paper, we present some useful bounds for sequential
projective measurements which can be used to estimate the
disturbance and the probability of occurrence separately. Our
results given here strengthen previously known results from
Refs. [5] and [6], and we establish them by employing a
trigonometric representation of quantum states. As an example
of the application, we provide general formulas for the
sequential decoding strategy [3–5].
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We begin by clarifying what we mean by a sequential
measurement. Suppose that the initial state of a quantum
system is given by the density operator ρ. Now we perform
a sequence of measurements on the system. Specifically,
we first perform a two-outcome measurement M1 on ρ

and obtain a postmeasurement state ρ1. Then we perform
another two-outcome measurement M2 on ρ1 and obtain
the postmeasurement state ρ2. Next, we perform a third
two-outcome measurement M3 on ρ2 and obtain ρ3. And
so it carries on, with each measurement being performed on
the state resulting from the previous measurement. After N

measurements, we obtain the state ρN . It should be emphasized
that the final state ρN can take many forms because each step
has several possible results. Without loss of generality, we
suppose that each measurement is given byMi = {Pi,I − Pi}
for i = 1, . . . ,N , where Pi are projectors. (The generality of
this approach follows from [6, Lemma 3.1].) Now, suppose
we are only interested in the case in which each measurement
gives the outcome corresponding to Pi rather than I − Pi . In
other words, the desired postmeasurement state sequence is as
follows:

ρ1 = P1ρP1

tr (P1ρ)
,

ρ2 = P2P1ρP1P2

tr (P2P1ρP1P2)
,

...

ρN = PN · · ·P2P1ρP1P2 · · ·PN

tr (PN · · · P2P1ρP1P2 · · · PN )
.

We can now present our main result. The disturbance and
the probability of ρN can be estimated as stated in the following
theorem:

Theorem 1. Given a density operator ρ and projectors
P1,P2, . . . ,PN such that

tr (Piρ) = 1 − εi, i = 1,2, . . . ,N,

then we have the following bounds:
1-a The trace distance between ρ and ρN obeys

D(ρ,ρN ) � 2

√∑
εi,

where D(ρ,ρN ) = tr
√

(ρ − ρN )(ρ − ρN )†.
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1-b The probability of the occurrence of ρN obeys

tr (PN · · · P2P1ρP1P2 · · · PN ) � 1 − 4
∑

εi .

The equality holds if and only if all εi are equal to 0.
The bound (1-a) reveals how the disturbance increases

when the measurements are sequentially performed. In prior
work, Wilde proposed a method [6] to guarantee that the
postmeasurement state is close to the original one. He showed
that one can perform the projectors P1 through Pm and
then perform them again in the opposite order. The distance
between the postmeasurement state and the original one can
be upper-bounded by (

∑
εi)1/4. The bound (1-a) improves

Wilde’s result and reveals that the measurements in opposite
order are not necessary.

The bound (1-a) implies that the probability of occurrence
of possible results may change by as much as O((

∑
εi)1/2).

However, the bound (1-b) provides an even better estimate
and controls the change to O(

∑
εi). It can be thought as

a noncommutative analog of union bound from classical
probability theory:

Pr{A1 ∩ · · · ∩ AN } = Pr{A1 ∪ · · · ∪ AN } �
N∑

i=1

Pr{Ai},

where A1, . . . ,AN are events. If we think of P1 · · · PN · · · P1

as the intersection of Pis, then the best analogous bound for
projector logic would be

1 − tr (P1 · · · PN · · · P1ρ) �
N∑

i=1

tr [(I − Pi)ρ],

although the above bound only holds if the projectors are
commuting. For the noncommutative case, the bound (1-b)
turns out to be the next best thing.

The bound (1-b) can be further generalized as follows:
Corollary 1. For projectors P1,P2, . . . ,PN , let P i = I − Pi ,

then we have

P1 · · · PN · · · P1 � I − 4
N∑

i=1

P i.

Proof. This corollary is equivalent to the following: for any
vector |ν〉, it holds that

〈ν|P1 · · · PN · · ·P1|ν〉 � 〈ν|ν〉 − 4
N∑

i=1

〈ν|P i |ν〉.

Let ρ = |ν〉〈ν|
〈ν|ν〉 ; then ρ is a density operator. Applying the bound

(1-b), the above inequality follows. �
Remark 1. In prior work, Sen [5] proved that, for any

positive operator ρ such that tr ρ � 1, it holds that

tr (PN · · · P2P1ρP1P2 · · · PN ) � tr ρ − 2

√∑
tr(P iρ).

Corollary 1 shows that the above inequality can be enhanced
to the following version:

tr (PN · · · P2P1ρP1P2 · · · PN ) � tr ρ − 4
∑

tr(P iρ).

The new bound improves Sen’s result, particularly in the
“Zeno” regime where each measurement succeeds with high
probability.

In the following, we detail the proof of Theorem 1. It will
be first shown that the bounds hold if ρ is a pure state, and
then extended to the mixed state. Our proof is based on the
trigonometric representation of quantum states.

Suppose that ρ = |ψ〉〈ψ | is a pure state and the final state
is ρN = |ψN 〉〈ψN |, then we have

|ψ1〉 = P1|ψ〉√〈ψ |P1|ψ〉 ,

|ψ2〉 = P2|ψ1〉√〈ψ1|P2|ψ1〉
,

...

|ψN 〉 = PN |ψN−1〉√〈ψN−1|PN |ψN−1〉
.

Consider the ith measurement,

|ψi〉 = Pi |ψi−1〉√〈ψi−1|Pi |ψi−1〉
.

If we let

|ψ⊥
i 〉 = (I − Pi)|ψi−1〉√〈ψi−1|I − P |ψi−1〉

,

we can write |ψi−1〉 in terms of |ψi〉 and |ψ⊥
i 〉 as follows:

|ψi−1〉 = cos θi |ψi〉 + sin θi |ψ⊥
i 〉, (1)

where θi = arccos |〈ψi |ψi−1〉|. θi can be regarded as the angle
between |ψi−1〉 and |ψi〉. The advantage of this representation
is that the trace distance and probability can be expressed in a
simple form [11,12]:

D(ψi−1,ψi) = 2 sin θi, (2)

tr (Pi |ψi−1〉〈ψi−1|) = |〈ψi |ψi−1〉|2 = cos2 θi . (3)

If we perform the measurement {Pi,I − Pi} on ρ directly, then
the resulting state would be

|ψ ′
i 〉 = Pi |ψ〉√〈ψ |Pi |ψ〉

or

|ψ ′⊥
i 〉 = (I − Pi)|ψ〉√〈ψ |I − Pi |ψ〉 .

Likewise, |ψ〉 can be written as

|ψ〉 = cos αi |ψ ′
i 〉 + sin αi |ψ ′⊥

i 〉, (4)

where αi = arccos |〈ψ ′
i |ψ〉|. αi is the angle between |ψ〉 and

|ψ ′
i 〉, and it holds that

D(ψ,ψ ′
i ) = 2 sin αi, (5)

tr (Pi |ψ〉〈ψ |) = cos2 αi = 1 − εi . (6)

Thus, we have

sin2 αi = εi . (7)
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FIG. 1. The relationship between the states in the ith
measurement.

We can also write |ψ〉 in terms of |ψi〉 and its orthogonal
complement |ψc

i 〉,
|ψ〉 = cos βi |ψi〉 + sin βi |ψc

i 〉,
where βi = arccos |〈ψi |ψ〉|. βi is the angle between |ψ〉 and
|ψi〉, and it holds that

D(ψ,ψi) = 2 sin βi. (8)

Likewise, let γi be the angle between |ψi〉 and |ψ ′
i 〉, then

γi = arccos |〈ψi |ψ ′
i 〉|.

For convenience, the states and angles are shown in Fig. 1.
Every vertex in the figure represents a state and the edges
indicate the angles.

From the trigonometric representation of the states, we can
get two important points. First, from the definition of βi ,

cos βi = |〈ψi |ψ〉|
= | cos αi〈ψi |ψ ′

i 〉 + sin αi〈ψi |ψ ′⊥
i 〉|

= cos αi |〈ψi |ψ ′
i 〉|

= cos αi cos γi. (9)

The equality uses the fact that Pi(I − Pi) = 0.
Second, by Eqs. (1) and (4) we have

cos βi−1 = |〈ψi−1|ψ〉|
= | cos θi cos αi〈ψi |ψ ′

i 〉 + sin θi sin αi〈ψ⊥
i |ψ ′⊥

i 〉|
� cos θi cos αi |〈ψi |ψ ′

i 〉| + sin θi sin αi

= cos θi cos αi cos γi + sin θi sin αi. (10)

Equations (9) and (10) are crucial for our proof of the bounds.
We will use them repeatedly in the following.

We now prove the following lemma which allows us to
lower bound the disturbance in a simple way.

Lemma 1. For the ith measurement, we have

D2(ψ,ψi) � D2(ψ,ψi−1) + D2(ψ,ψ ′
i ).

Proof. From the trigonometric representation of the trace
distance, this lemma can be equivalently stated as

sin2 βi � sin2 βi−1 + sin2 αi.

Furthermore, by Eq. (9), it is easy to find that

sin2 βi = cos2 αi sin2 γi + sin2 αi.

Therefore, to prove the lemma, we only need to show that
sin2 βi−1 � cos2 αi sin2 γi .

Squaring Eq. (10), we have

sin2 βi−1 � 1 − (cos θi cos αi cos γi + sin θi sin αi)
2

= (sin θi cos αi cos γi + cos θi sin αi)
2

+ cos2 αi sin2 γi

� cos2 αi sin2 γi.

This completes the proof. �
Applying Lemma 1, we can obtain that

D2(ψ,ψN ) � D2(ψ,ψN−1) + D2(ψ,ψ ′
N )

� D2(ψ,ψN−2) + D2(ψ,ψ ′
N−1) + D2(ψ,ψ ′

N )

...

�
N∑

i=1

D2(ψ,ψ ′
i ) = 4

N∑
i=1

εi .

Thus, the bound (1-a) is true for a pure state.
Now let us consider the case for which ρ is a mixed state.

Suppose that |ψ〉RA and |ψN 〉RA are purifications of ρ and
ρN , where R denotes the reference system. Let Qi = IR ⊗ Pi ,
then the state |ψN 〉RA is generated by performing the projective
measurements {Qi,I − Qi} sequentially on |ψ〉RA. Moreover,
the probability of each step obeys

tr(Qi |ψ〉〈ψ |RA) = tr (Piρ) = 1 − εi .

Applying the bound for the pure state and the monotonicity of
trace distance [11,12], we can obtain

D(ρ,ρN ) � D
(
ψRA,ψRA

N

)
� 2

√∑
εi .

This completes the proof of the bound (1-a).
The bound (1-b) obviously holds if

∑
εi > 1

2 because the
right side would be negative. In the following, we show that it
still holds if

∑
εi � 1

2 .
For the pure states, the condition

∑
εi � 1

2 implies that

0 � αi, βi � π

4
, i = 1, . . . ,N. (11)

The probability that |ψN 〉 occurs is

tr (PN · · · P1|ψ〉〈ψ |P1 · · · PN )

= tr (P1|ψ〉〈ψ |) · · · tr (PN |ψN−1〉〈ψN−1|)
= cos2 θ1 cos2 θ2 · · · cos2 θN . (12)

From Eq. (10), we can see that

cos βN−1 � cos θN cos αN + sin θN sin αN

= cos (θN − αN ),

so it holds that θN � βN−1 + αN . Then we have

cos θ1 · · · cos θN � cos θ1 · · · cos θN−1 cos (βN−1 + αN ).

(13)

To continue, we need the following lemma:
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Lemma 2. Define {ak} by

ak =
cos αN cos βk −

√∑N
i=k+1 sin2 αi

√
sin2 βk + ∑N−1

i=k+1 sin2 αi

1 + ∑N−1
i=k+1 sin2 αi

.

Then we have

(cos θk)ak � ak−1

The proof is given in Appendix A.
Note that cos(βN−1 + αN ) = aN−1. Applying Lemma 2

repeatedly, we can get

cos θ1 · · · cos θN−2 cos θN−1 cos (βN−1 + αN )

= cos θ1 · · · cos θN−2 cos θN−1(aN−1)

� cos θ1 · · · cos θN−2(aN−2)

...

� a0. (14)

Continuing, from the fact that β0 = 0, we have

a0 =
cos αN −

√∑N
i=1 sin2 αi

∑N−1
i=1 sin2 αi

1 + ∑N−1
i=1 sin2 αi

� 1 − ∑N
i=1 sin2 αi

1 + ∑N
i=1 sin2 αi

(15)

= 1 − ∑
εi

1 + ∑
εi

� 1 − 2
∑

εi . (16)

The inequality (15) is proven in Appendix B.
Combining Eqs. (12)–(14) and (16), we get

tr (PN · · ·P1|ψ〉〈ψ |P1 · · ·PN ) � 1 − 4
∑

εi .

Thus, the bound (1-b) is true for the pure states.
If ρ is a mixed state, then

tr (PN · · · P1ρP1 · · · PN )

= tr(QN · · · Q1|ψ〉〈ψ |RAQ1 · · · QN )

� 1 − 4
∑

εi

This completes the proof of bound (1-b). �
Theorem 1 reveals how the disturbance accumulates when

the measurements are performed sequentially. The generality
and simplicity of the bounds imply that they should be
nice tools for analyzing many situations. As an example,
we show how to achieve the Holevo bound via a sequential
decoding strategy. The sequential decoding scheme was first
proposed by Lloyd, Giovannetti, and Maccone (LGM)[3,4].
They showed that it is possible to achieve the Holevo bound
by performing sequential measurements. After the work of
LGM, Sen presented a simplification of the error analysis by
establishing the noncommutative bound [5]. The new bounds
presented in this paper provide more general formulas for the
sequential decoding strategy.

The basic sets of this problem are as follows: {j} is a set
of possible inputs to the quantum channel and {σj } are the
corresponding outputs. Let {pj } be a probability distribution
over the indices {j} and σ ≡ ∑

pjσj . Alice wants to send
a message chosen from the set {1, . . . ,2nR} to Bob by using
the quantum channel n times. The Holevo bound sets a limit
on the rate R that can be achieved when the messages are
transferred. We are going to outline a proof that there exists
an error-correcting code that accomplishes this task with low
probability of error in the limit of large n and provided
R < S(σ ) − ∑

j pjS(σj ). This proof is based on the random
coding and sequential decoding scheme. The transmission of
messages can be decomposed into three stages: the encoding,
the transmission, and the decoding. In the encoding stage, we
adopt the standard random coding scheme. Alice associates
with the ith message a codeword �ci = c1c2 · · · cn, where
c1,c2, · · · cn are chosen from the index set {j} according to
the distribution {pj }. She repeats this procedure for 2nR times,
creating a codebook C of 2nR entries. The corresponding output
of the channel is denoted by σ�ci

. When Bob receives a particular
state σ�cm

he tries to determine what the message was. To do this,
he has two tools: the projector P onto the δ-typical subspace of
σ⊗n and the projectors {P�ci

} onto the δ-typical subspace of the
corresponding σ�ci

. They have the following properties [12]:
for any ε > 0 and sufficiently large n,

tr
(
Pσ⊗n

)
� 1 − ε, (17)

tr
(
P�ci

σ�ci

)
� 1 − ε, (18)

tr
(
P�ci

)
� 2n[

∑
pj S(σj )+δ], (19)

Pσ⊗nP � 2−n[S(σ )−δ]I. (20)

To decode the message, Bob first performs the measurement
{P,I − P } to detect whether the received state is in the typical
subspace of σ⊗n. If yes, he then asks in sequential order “Is
the received codeword �ci?” by performing the measurements
{P�ci

,I − P�ci
}.

The probability of detecting �cm correctly under this sequen-
tial decoding scheme is

pc = tr
(
P�cm

P �cm−1 · · · P �c1Pσ�cm
PP �c1 · · ·P �cm−1P�cm

)
.

Consider the expectation of pc over all possible codes C,

EC{pc} = EC
{

tr
(
P�cm

P �cm−1 · · · P �c1Pσ�cm
PP �c1 · · · P �cm−1P�cm

)}
� EC

{
tr

(
Pσ�cm

) − 4 tr
(
P �cm

Pσ�cm
P

)

− 4
m−1∑
i=1

tr
(
P�ci

P σ�cm
P

)}
.

The inequality follows from Corollary 1.
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For the first term of the right side,

EC
{

tr
(
Pσ�cm

)} = tr
(
PEC

{
σ�cm

}) = tr(Pσ⊗n) � 1 − ε.

The second equality is due to the fact that EC{σ�cm
} = σ⊗n. The

inequality follows from Eq. (17).
For the second term, we have

EC
{

tr
(
P �cm

Pσ�cm
P

)} = EC
{

tr
(
Pσ�cm

) − tr
(
P�cm

Pσ�cm
P

)}
� 1 − EC

{
tr

(
P�cm

Pσ�cm
P

)}
� 4EC

{
tr

(
Pσ�cm

) + tr
(
P �cm

σ�cm

)}
� 8ε.

The first inequality uses the fact tr(Pσ�cm
) � 1. The second

inequality is due to the bound (1-b). The last inequality follows
from Eqs. (17) and (18).

For the third term, we have

EC

{
m−1∑
i=1

tr
(
P�ci

P σ�cm
P

)}
� EC

⎧⎨
⎩

∑
i �=m

tr
(
P�ci

P σ�cm
P

)⎫⎬⎭
=

∑
i �=m

tr
(
EC

{
P�ci

}
Pσ⊗nP

)

� 2−n[S(σ )−δ]
∑
i �=m

EC
{
tr
(
P�ci

)}

� 2−n[S(σ )−δ](2nR − 1)2n[
∑

piS(σi )+δ]

< 2n[R−(χ−2δ)],

where χ = S(σ ) − ∑
pjS(σj ) is the Holevo quality. The first

inequality follows from summing all of the codewords not
equal to �cm(this sum can only be larger). The second inequality
is due to Eq. (20). The third inequality follows from Eq. (19).

Thus, the average probability to get the correct result turns
to be

EC{pc} > 1 − 33ε − 4 × 2n[R−(χ−2δ)].

The error probability pe = 1 − pc, so

EC{pe} < 33ε + 4 × 2n[R−(χ−2δ)],

which means that there exists at least one code such that

pe < 33ε + 4 × 2n[R−(χ−2δ)].

ε and δ can be arbitrary small, so for any R such that R < χ ,
pe → 0 when n → ∞. This completes our proof. �

Remark 2. Sen also provided a similar decoding procedure
in Ref. [5]. In his proof, the expected error probability is

pe < 2
√

4 × 2n[R−(χ−2δ)] + 13
√

ε. (21)

We can see that the error analysis that we have shown above
is significantly better than Sen’s result.

Remark 3. It would be interesting to compare Corollary
1 with the Hayashi–Nagaoka inequality [13] which plays the
key role in the “pretty good measurement.” In the pretty good
measurement, the detecting operator of �cm is defined by

�p
m =

(∑
i

PP�ci
P

)− 1
2

PP�cm
P

(∑
i

PP�ci
P

)− 1
2

. (22)

The error probability can be bounded by applying the Hayashi–
Nagaoka inequality

(S + T )−
1
2 S(S + T )−

1
2 � I − 2(I − S) − 4T . (23)

Let S = PP�cm
P, T = ∑

i �=mPP�ci
P , then

�p
m � P − 2PP �cm

P − 4
∑
i �=m

PP�ci
P . (24)

In our sequential decoding scheme, the detecting operator of
�cm is

�s
m = PP �c1 · · · P �cm−1P�cm

P �cm−1 · · · P �c1P. (25)

Applying Corollary 1, we have

�s
m � P − 4PP �cm

P − 4
m−1∑
i=1

PP�ci
P . (26)

We see that Corollary 1 actually plays a similar role as the
Hayashi–Nagaoka inequality plays in pretty good measure-
ment, and they give a very similar error analysis.

Conclusion. With the aid of the trigonometric represen-
tation of quantum states, we find two union bounds for
estimating the disturbance and probability of the sequential
projective measurements. Our result provides a powerful tool
for analyzing many situations. As an example, we provide
a new proof of achieving the Holevo bound via sequential
measurements.

It is not clear to us whether the bounds still hold for sequen-
tial positive-operator-value measures (POVMs), or stronger,
for sequential general measurements. It would be an interesting
open problem for further study. What we have known so far is
that the bound (1-b) holds when we perform the same POVM
repeatedly, i.e., if tr(Eρ) = 1 − ε, then tr(Emρ) > 1 − mε.
This is a simple consequence of the quantum Jensen inequality.
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APPENDIX A

In this appendix, the proof of Lemma 2 is specified. From
Eqs. (9)–(11), we have

cos βk cos θk � cos βk−1 − sin θk sin αk � 0.
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Let x = sin θk , then from the definition of ak , we have

cos θk(ak) =
cos αN cos βk cos θk −

√∑N
i=k+1 sin2 αi

√
cos2 θk − cos2 βk cos2 θk + cos2 θk

∑N−1
i=k+1 sin2 αi

1 + ∑N−1
i=k+1 sin2 αi

�
cos αN (cos βk−1 − sin θk sin αk) −

√∑N
i=k+1 sin2 αi

√
cos2 θk − (cos βk−1 − sin θk sin αk)2 + cos2 θk

∑N−1
i=k+1 sin2 αi

1 + ∑N−1
i=k+1 sin2 αi

=
cos αN cos βk−1 − x cos αN sin αk −

√∑N
i=k+1 sin2 αi

√
−(

1 + ∑N−1
i=k sin2 αi

)
x2 + 2x cos βk−1 sin αk + ∑N−1

i=k+1 sin2 αi + sin2 βk−1

1 + ∑N−1
i=k+1 sin2 αi

.

Denote the right side by g(x). From g′(x) = 0, we can obtain the minimum value of g(x). It can be verified that gmin(x) = ak−1

if and only if

x =
cos βk−1 sin αk

(∑N
i=k sin2 αi

) + sin αk cos αN

√∑N
i=k sin2 αi

√(
sin2 βk−1 + ∑N−1

i=k sin2 αi

)
(
1 + ∑N−1

i=k sin2 αi

)(∑N
i=k sin2 αi

) .

APPENDIX B

To prove the inequality (15), we first define W by

W = cos αN −
√√√√ N∑

i=1

sin2 αi

N−1∑
i=1

sin2 αi −
(

1 −
N∑

i=1

sin2 αi

)
.

Clearly, if W � 0, then the inequality holds. It can be verified that

W = sin2 αN

1 +
√

1 − sin2 αN∑
sin2 αi

− sin2 αN

1 +
√

1 − sin2 αN

.

Since
∑

sin2 αi = ∑
εi � 1

2 , we have W � 0. �
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