
PHYSICAL REVIEW A 92, 052330 (2015)

Distributed quantum dense coding with two receivers in noisy environments
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We investigate the effect of noisy channels in a classical information transfer through a multipartite state which
acts as a substrate for the distributed quantum dense coding protocol between several senders and two receivers.
The situation is qualitatively different from the case with one or more senders and a single receiver. We obtain
an upper bound on the multipartite capacity which is tightened in the case of the covariant noisy channel. We
also establish a relation between the genuine multipartite entanglement of the shared state and the capacity of
distributed dense coding using that state, both in the noiseless and the noisy scenarios. Specifically, we find that,
in the case of multiple senders and two receivers, the corresponding generalized Greenberger-Horne-Zeilinger
states possess higher dense coding capacities as compared to a significant fraction of pure states having the same
multipartite entanglement.
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I. INTRODUCTION

Quantum entanglement is one of the essential ingredients
in quantum information processing tasks which include su-
perdense coding [1], teleportation [2], quantum error correc-
tion [3], quantum secret sharing [4,5], and one way quantum
computation [6]. It was shown that such protocols can provide
an advantage over the corresponding classical protocols [7].
Moreover, classical information as well as quantum state
transfer via quantum channels have been successfully realized
in the laboratory over reasonably large distances [8,9].

Any communication protocol involves three major steps—
(1) encoding of the information in a physical system, (2)
sending the physical system through a physical channel, and
(3) decoding the information. In this paper, we are interested
in the communication scheme which deals with the transfer
of classical information encoded in a quantum state shared
between distant parties, and is known as quantum dense coding
(DC) [1,10]. Capacity of the dense coding protocol has been
evaluated in several scenarios involving a single receiver.
These include the cases of a single sender as well as multiple
senders and in both noiseless and noisy scenarios [1,10–13].
An important tool here is the Holevo bound on the accessible
information for ensembles of quantum states [14,15]. The
situations when there are multiple senders and/or multiple
receivers are involved have been termed as distributed quantum
dense coding [11,12]. The capacity in the noiseless case for two
receivers has been estimated in [11,12], where the Holevo-like
upper bound on locally accessible information for ensembles
of quantum states of bipartite systems was used [16].

In this paper, we estimate the capacity of distributed
quantum dense coding for two receivers in the noisy case. The
receivers are allowed to perform local (quantum) operations
and classical communication (LOCC), and we term the
communication protocol as the LOCC-DC protocol and the
corresponding capacity as the LOCC-DC capacity. We begin
by finding an upper bound on the capacity for arbitrary noisy
channels between the senders and the receivers. A tighter
bound in closed form is obtained for the case of covariant
channels [17]. When the shared state is a Greenberger-Horne-
Zeilinger (GHZ) state [18] and when the noisy channels are
among the amplitude damping, phase damping, or the Pauli

channels, the upper bounds on the LOCC-DC capacities are
explicitly evaluated. Furthermore, we relate the LOCC-DC
capacity with the multiparty entanglement in the shared state,
in both noiseless and noisy cases. We had recently observed in
the case of several senders and a single receiver that noise in the
channel inverts relative capability of information transfer in
dense coding between generic multiparty pure quantum states
and the corresponding generalized GHZ (gGHZ) states [19].
Here we find that such inversion does not take place in the
case of two receivers (and several senders): the gGHZ state
provides better classical information-carrying capacity for
both noiseless and noisy cases in comparison to a significantly
high fraction of pure states in the corresponding Hilbert space.

The paper is organized as follows. In Sec. II, we discuss
the multiparty DC capacity for more than one receiver, with
the decoding operations being restricted to LOCC. In the
case of multiple senders and two receivers, we establish an
upper bound on the DC capacity for noisy quantum channels.
A tighter upper bound on the LOCC-DC capacity in the
presence of covariant noise is obtained in Sec. II A 1. In
Sec. III, we evaluate closed forms of LOCC-DC capacity for
some specific noisy quantum channels, when a four-qubit
GHZ state is shared. In Sec. IV, we briefly introduce the
generalized geometric measure (GGM), a genuine multiparty
entanglement measure. We establish connections between the
entanglement measure with the upper bound on information
transfer in Sec. V. Finally, we present a conclusion in Sec VI.

II. QUANTUM DENSE CODING FOR MORE THAN
ONE RECEIVER

We consider the quantum dense coding protocol with an
arbitrary number of senders and two receivers. Let an (N +
2)-party quantum state, ρS1S2...SN R1R2 , be shared between N

senders, S1,S2, . . . ,SN , and two receivers, R1 and R2. And
among them, some of the senders send their encoded quantum
state to the first receiver while the rest will send to the second
receiver, through noiseless or noisy quantum channels.

The amount of classical information that the senders can
send to the receivers depends on four factors—(1) encoding
procedures used by the senders, (2) the probability of the
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sampling rate of different encodings, (3) properties of channels
by which the encoded states have to be sent, and (4) the
measurement strategies used by the receivers to decode the
message. Let us first concentrate on the case when the decoding
procedures which the receivers are allowed to make are
global operations. The capacity of dense coding, in this case,
reduces to optimization of the Holevo quantity over unitary
encodings (for different encodings, see [20]) and probabilities.
The multiparty DC capacity for an arbitrary multiparty state
ρS1...SN R1R2 , with N senders, S1,S2, . . . , and SN , and two
receivers, R1 and R2, who are in this case together and denoted
by R = R1R2, is given by [10–12]

CG = log dS1S2...SN
+ S(ρR) − S(ρS1S2...SN R),

where dS1S2...SN
is the dimension of the Hilbert space of all the

senders, and S(σ ) = −tr(σ log σ ) is the von Neumann entropy
of the density matrix, σ . In this paper all logarithms will be
with base 2, and thereby all capacities will be measured in bits.
Such a situation can arise, e.g., if R1 teleports his [21] quantum
systems to R2 after obtaining the postencoded systems from
the senders.

The case when the receivers are at distant locations and
when teleportation or global operations are not allowed has a
further two possibilities. (i) When the receivers are not allowed
to communicate between themselves, the corresponding DC
capacity is additive with respect to the receivers, and is known
as the LO-DC protocol [11,12]. (ii) When the receivers are
allowed to perform LOCC for decoding, the protocol is called
LOCC-DC. It is the second case which is considered in this pa-
per, and we will now describe it in some detail. Consider again
a multiparty state, ρS1...SNR1R2 , shared between N senders and
two receivers, R1 and R2. To send the classical information, {i},
which occurs with probability p{i} = pi1 . . . pir pir+1 . . . piN ,
some of the senders, say, S1,S2, . . . ,Sr , perform either local or
global unitary operations, denoted by U

S1...Sr

i1...ir
with probabilities

pi1...ir on their parts of the shared state and send it to the receiver
R1.

The rest of the senders, Sr+1,Sr+2, . . . ,SN , also
perform unitary operations, U

Sr+1...SN

ir+1...iN
, with probabili-

ties pir+1...iN on their parts and send it to R2 (see
Fig. 1). Finally, the receivers, R1 and R2 possess
an ensemble of state {p{i},ρ

S1...SN R1R2
{i} }, where p{i} =

pi1...ir × pir+1...iN , and ρ
S1...SN R1R2
{i} = U

S1...Sr

i1...ir
⊗ U

Sr+1...SN

ir+1...iN
⊗

IR1 ⊗ IR2ρ
S1...SN R1R2U

S1...Sr†
i1...ir

⊗ U
Sr+1...SN †
ir+1...iN

⊗ IR1 ⊗ IR2 , with IR1

and IR2 being the identity operators in the receiver Hilbert
spaces. The receivers, R1 and R2, now apply an LOCC protocol
in the S1 . . . SrR1 : Sr+1 . . . SNR2 bipartition to decode the
information that the senders have sent.

The LOCC-DC protocol can be considered for the noiseless
channel [11,12], or when the channels from the senders and
the receivers are noisy. We first deal with the general noisy
channel and then consider the covariant channel.

A. Capacity of dense coding for many senders and two
receivers—noisy channels

In this section, our aim is to estimate the capacity when
multiple senders send their encoded parts of the shared quan-
tum state to the two receivers by using a general noisy quantum

FIG. 1. (Color online) Schematic diagram of the DC protocol
considered. An (N + 2)-party quantum state, ρS1S2 ...SN R1R2 , is shared
between N senders, S1,S2, . . . ,SN , and two receivers, R1 and R2. We
assume that after unitary encoding, the senders S1,S2, . . . ,Sr send
their part to the receiver R1, while the rest send their parts to the
receiver R2.

channel. In a realistic situation, the transmission channel
cannot be kept completely isolated from the environment,
and hence noise almost certainly acts on the encoded parts of
the senders’ side while sending their parts through the shared
channels.

Mathematically, noise in the transmission channel is a
completely positive trace preserving map (CPTP), �, acting
on the state space of the senders’ part of the transmitted state.
Therefore, the receivers, R1 and R2, after the transmission,
possess the distorted ensemble, {p{i},�S1...SN

(ρS1...SN R1R2
{i} )},

in the S1 . . . SrR1 : Sr+1 . . . SNR2 bipartition, where
�S1...SN

(ρS1...SN R1R2
{i} ) = �S1...SN

(US1...Sr

i1...ir
⊗ U

Sr+1...SN

ir+1...iN
⊗ IR1 ⊗

IR2ρ
S1...SN R1R2U

S1...Sr†
i1...ir

⊗ U
Sr+1...SN †
ir+1...iN

⊗ IR1 ⊗ IR2 ). To estimate
the capacity, the (N + 2)-party quantum state, ρS1...SN R1R2 ,
can be expanded as

ρS1...SNR1R2 =
∑
{i,j}

λ{i,j}|i1〉〈j1|S1...SN ⊗ |i2〉〈j2|R1 ⊗ |i3〉〈j3|R2 ,

(1)

where {|i1〉}dS1 ...SN
−1

i1=0 , {|i2〉}dR1 −1
i2=0 , and {|i3〉}dR2 −1

i3=0 are respec-
tively bases in the Hilbert space HS1...SN , of all the senders,
and HR1 (HR2 ) of the receiver R1 (R2).

After the action of the CPTP map, �, on the encoded state,
we get

�S1...SN

(
ρ

S1...SNR1R2
{i}

) =
∑
{i,j}

λ{i,j},

�S1...SN

(
U

S1...Sr

i1...ir
⊗ U

Sr+1...SN

ir+1...iN
|i1〉〈j1|S1...SN U

S1...Sr†
i1...ir

⊗ U
Sr+1...SN †
ir+1...iN

) ⊗ |i2〉〈j2|R1 ⊗ |i3〉〈j3|R2 , (2)
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where �S1...SN
is collectively or individually acting only on the

senders’ subsystems.
The amount of classical information that can be extracted

from the ensemble, {p{i},�S1...SN
(ρS1...SN R1R2

{i} )}, by LOCC, is
given by [16]

ILOCC
acc � S(ξ 1) + S(ξ 2) − max

x∈1,2

∑
{i}

p{i}S
(
ξx
{i}

)
, (3)

where ξ 1
{i} = trSr+1...SN R2�(ρS1...SNR1R2

{i} ), ξ 2
{i} = trS1...SrR1

�(ρS1...SNR1R2
{i} ), and ξ 1,2 = ∑

{i} p{i}ξ
1,2
{i} . The Holevo

bound [14] on accessible information is asymptotically
achievable [15]. However, for two receivers [16], such
asymptotic achievability has not yet been proven. Therefore,
unlike the cases when a single receiver is involved [1,10–13],
the LOCC-DC capacity can only be estimated with an upper
bound [11,12].

To obtain the capacity of LOCC-DC in the noiseless
scenario, one has to maximize the right-hand side (RHS) of
inequality (3) over unitary encodings and probabilities with
� = I and we obtain [11,12]

CLOCC � log dS1...SN
+ S(ρR1 ) + S(ρR2 ) − max

x=1,2
S(ρx)

≡ BLOCC, (4)

where ρRi = trS1...SN Rj
ρS1...SN R1R2 with i,j = 1,2, i �= j , and

ρ1 = trSr+1...SN R2ρ
S1...SNR1R2 , ρ2 = trS1...SrR1ρ

S1...SN R1R2 .
Like in the noiseless case, to obtain the capacity of LOCC-

DC in a noisy scenario, one has to maximize the RHS of (3)
over unitaries and probabilities. The ensemble in the noisy
scenario involves the CPTP map �:

CLOCC
noisy � χLOCC

noisy

= max

[
S(ξ 1) + S(ξ 2) − max

x∈1,2

∑
{i}

p{i}S
(
ξx
{i}

)]
(5)

If we apply the subadditivity of von Neumann entropy in the
S1 . . . Sr : R1 and Sr+1 . . . SN : R2 bipartitions for the first two
terms, we have

S(ξk) � S(ξk′
) + S(ξk′′

) � log dR̄k
+ S(ρRk ), k = 1,2,

(6)
where ξk′ = trRk

ξ k and ξk′′ = trR̄k
ξ k = ρRk , with R̄1 =

S1 . . . Sr , R̄2 = Sr+1 . . . SN . The second inequality is due
to the fact that the maximum von Neumann entropy of a
d-dimensional quantum state is log d.

To deal with the third term in the RHS of (5), let
us assume that US1...Sr

min and U
Sr+1...SN
min are two unitary op-

erators acting on subsystems S1 . . . Sr and Sr+1 . . . SN of
ρS1...SN R1R2 , respectively. Let us suppose that after pass-
ing through the noisy transmission channel �S1...SN

, those
unitaries give the minimum von Neumann entropy among
all the von Neumann entropies of ξk

{i},k = 1,2, of the en-

semble. Consider ρ̃S1...SN R1R2 = US1...Sr
min ⊗ U

Sr+1...SN
min ⊗ IR1 ⊗

IR2ρS1...SN R1R2U
S1...Sr†
min ⊗ U

Sr+1...SN †
min ⊗ IR1 ⊗ IR2 , and the corre-

sponding reduced density matrices,

ζ 1 = trSr+1...SN R2�S1...SN R1R2 (ρ̃S1...SN R1R2 ), (7)

ζ 2 = trS1...SrR1�S1...SN R1R2 (ρ̃S1...SNR1R2 ). (8)

Since entropy is concave, one should expect that the set,
{S(ξx

{i})}, of real numbers, which depend on the unitary

operators U
S1...Sr

i1...ir
or U

Sr+1...SN

ir+1...iN
, must have a minimum value,

denoted by S(ζ x), which can be achieved by the unitary
operators US1...Sr

min and U
Sr+1...SN
min . Hence we have

S
(
ξx
{i}

)
� S(ζ x) ∀i, (9)

which implies∑
{i}

p{i}S
(
ξx
{i}

)
�

∑
{i}

p{i}S(ζ x) = S(ζ x). (10)

One should note here that US1...Sr
min and U

Sr+1...SN
min indepen-

dently minimize S(ζ 1) and S(ζ 2), respectively. For example,
to minimize the von Neumann entropy, of ξ 1

{i}, we already

traced out the other partition of ρS1...SN R1R2 and U
Sr+1...SN
min and

hence the minimization procedure in
∑

i p{i}ξ 1
{i} depends only

on US1...Sr
min . Similar argument holds for

∑
i p{i}ξ 2

{i} also. Thus
we have the following theorem.

Theorem 1. For arbitrary noisy channels between multiple
senders and the two receivers, the LOCC dense coding
capacity, involving two receivers, is bounded above by the
quantity

BLOCC
noisy ≡ log dS1...SN

+ S(ρR1 ) + S(ρR2 ) − max
x∈1,2

S(ζ x). (11)

Here ζ 1 and ζ 2 are respectively given in Eqs. (7) and (8). The
question remains whether there exists any noisy channel for
which the upper bound can be made tighter than the one given
in Eq. (11). We will address the question below.

1. Covariant noisy channel

We will now deal with a class of noisy channels called
the covariant channels. For an arbitrary quantum state ρ in
d dimensions, the CPTP map, �C , is said to be covariant, if
one can find a complete set of orthogonal unitary operators,
{Wi}d2−1

i=0 , acting on the state space of ρ, such that

�C(WiρW
†
i ) = Wi�

C(ρ)W †
i , ∀i, (12)

{Wi} satisfies the orthogonality condition, given by

1

d
tr(WiW

†
j ) = δij , (13)

and the completeness relation

1

d

∑
i

Wi
W
†
i = Id tr
, (14)

where 
 is any operator in the same Hilbert space as ρ. After
encoding at the senders’ side, we assume that the senders’
parts are sent through the noisy covariant channel, �C

S1...SN
.

After passing through the channel, the resulting state is given
by

�C
S1...SN

(
ρ

S1...SNR1R2
{i}

)
=

∑
{i,j}

λ{i,j}�C
S1...SN

(
U

S1...Sr

i1...ir
⊗ U

Sr+1...SN

ir+1...iN
|i1〉〈j1|S1...SN U

S1...Sr†
i1...ir

⊗U
Sr+1...SN †
ir+1...iN

) ⊗ |i2〉〈j2|R1 ⊗ |i3〉〈j3|R2 , (15)
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where we use the form of an arbitrary (N + 2)-party quantum
state given in Eq. (1), and �C

S1...SN
is a covariant noise acting

on the state space of S1 . . . SN , satisfying Eq. (12), with the
complete set of orthogonal unitary operators belonging to the
linear operator space L(HS1...SN ). We are going to show that, in
this case, the maximization involved in the upper bound on the
capacity depends on the fixed unitary operator and the Kraus
operator of the channel �C

S1...SN
.

Let {V S1...Sr

j }d
2
S1 ...Sr

−1

j=0 , with probabilities pj = 1
d2

S1 ...Sr

, and

{V Sr+1...SN

j ′ }d
2
Sr+1 ...SN

−1

j ′=0 with probabilities pj ′ = 1
d2

Sr+1 ...SN

, be two

complete sets of orthogonal unitary operators satisfying
Eq. (13), respectively acting on the Hilbert spaces of the
senders S1 . . . Sr , and Sr+1 . . . SN . Without loss of generality,
we assume that the first bunch of senders send their encoded
parts to the receiver R1, while the rest sends to the receiver R2.
Let

ρ
S1...SN R1R2
j,j ′ = (

V
S1...Sr

j ⊗ V
Sr+1...SN

j ′ ⊗ IR1 ⊗ IR2

)
ρS1...SN R1R2

× (
V

S1...Sr†
j ⊗ V

Sr+1...SN †
j ′ ⊗ IR1 ⊗ IR2

)
. (16)

One can always write V
S1...Sr

j = W
S1...Sr

j U
S1...Sr

1 and

V
Sr+1...SN

j ′ = W
Sr+1...SN

j ′ U
Sr+1...SN

2 , where W
S1...Sr

j ⊗ W
Sr+1...SN

j ′
acting on the sender’s state space, satisfying Eqs. (13) and (14),
commutes with the covariant map, �C

S1...SN
, while U

S1...Sr

1

and U
Sr+1...SN

2 are fixed unitary operators. Therefore, after
the encodings and passing through the covariant channel, the
ensemble states of the DC protocol are

�C
S1...SN

(
ρ

S1...SN R1R2
j,j ′

)
= W

S1...Sr

j ⊗ W
Sr+1...SN

j ′ ⊗ IR1 ⊗ IR2�C
S1...SN

× (U1 ⊗ U2 ⊗ IR1 ⊗ IR2ρS1...SN R1R2U
†
1 ⊗ U

†
2

⊗ IR1 ⊗ IR2 )WS1...Sr†
j ⊗ W

Sr+1...SN †
j ′ ⊗ IR1 ⊗ IR2 , (17)

where we have used the covariant condition, given in
Eq. (12), on �C

S1...SN
. Let us denote �C

S1...SN
(U1 ⊗ U2 ⊗

IR1 ⊗ IR2ρS1...SN R1R2U
†
1 ⊗ U

†
2 ⊗ IR1 ⊗ IR2 ) as ρC . The reduced

density matrix shared between S1 . . . Sr and R1 is given by

ξ 1
j = trSr+1...SN R2�

C
S1...SN R1R2

(
ρ

S1...SNR1R2
j,j ′

)
= (

W
S1...Sr

j ⊗ IR1
)
trSr+1...SN R2 (ρC)

(
W

S1...Sr†
j ⊗ IR1

)
, (18)

where we have used the fact that any bipartite state, ρAB ,
satisfies

trA((UA ⊗ UB)ρAB(U †
A ⊗ U

†
B)) = UB trA(ρAB)U †

B. (19)

The Hilbert-Schmidt decomposition of ρ1 = trSr+1...SN R2 (ρC)
on HS1...SrR1 in the S1 . . . Sr : R1 bipartition is given by

ρ1 = IS1...Sr

dS1...Sr

⊗ ρ1
R1

+
d2

S1 ...Sr
−1∑

k=0

rkμ
S1...Sr

k ⊗ IR1

+
d2

S1 ...Sr
−1∑

k=0

d2
R1

−1∑
l=0

tklμ
S1...Sr

k ⊗ η
R1
l , (20)

where trS1...Sr
ρ1 = ρ1

R1
, μk , and ηl , respectively, are the gener-

ators of SU (dS1...Sr
) and SU (dR1 ), and where tr μk = tr ηl = 0

and rk , tkl are real numbers. Using this form, the reduced
density matrix of the output state is given by

ξ 1 = 1

d2
S1...Sr

∑
j

ξ 1
j = IS1...Sr

dS1...Sr

⊗ ρ1
R1

, (21)

where the second equality comes from the fact that∑
j Wjμ

S1...Sr

k W
†
j = dS1...Sr

(trμS1...Sr

k )I = 0. Since neither the
CPTP map nor the unitary operators are acting on the part of
the shared state in the receiver’s side, R1, we have ρ1

R1
= ρR1 .

Finally, we have

S(ξ 1) = log dS1...Sr
+ S(ρR1 ), (22)

and similarly

S(ξ 2) = log dSr+1...SN
+ S(ρR2 ). (23)

Note that in the case of arbitrary noise, the above equalities
were inequalities as given in (6).

Let us now consider the third term in the RHS of (5). For
example, if x = 1, we have∑

j

pjS
(
ξ 1
j

) = S(ρ1), (24)

where we use Eq. (18) and the fact that unitary operations do
not change the spectrum of any density matrix.

Interestingly, S(ρ1) does not depend on W
S1...Sr

j and

W
Sr+1...SN

j ′ . It only depends on the fixed unitary operators U
S1 ...Sr

1

and the covariant channel, �C
S1...SN R1R2

. The remaining task

is to minimize S(ρ1), by varying the U
S1...Sr

1 ’s. Note that
we have already shown that the first two terms in the RHS
of (5) are independent of maximizations. We now suppose
that the minimum value of S(ρ1) is S(ζ 1), which will be
achieved by setting U 1

min = US1...Sr
min . Similarly, for x = 2, we

have that the optimal
∑

j ′ pj ′S(ξ 2
j ′ ) is S(ζ 2), for the optimal

unitary U 2
min = U

Sr+1...SN
min . Both the above inequalities can be

achieved by using orthogonal unitary operators applied with
equal probabilities. We have therefore proved the following
proposition.

Proposition 1. For any covariant noisy channel between an
arbitrary number of senders and two receivers in a multiparty
DC protocol, the capacity of LOCC-DC is bounded above by

χLOCC
noisy = log dS1...SN

+ S(ρR1 ) + S(ρR2 ) − max
x∈1,2

S(ζ x),

(25)

where ζ x are given by

ζ 1 = trSr+1...SN R2�
C
S1...SNR1R2

(
ρC

min

)
(26)

and

ζ 2 = trS1...SrR1�
C
S1...SN R1R2

(
ρC

min

)
. (27)

Here ρC
min = �C

S1...SN
(U 1

min ⊗ U 2
min ⊗ IR1 ⊗ IR2ρS1...SN R1R2

U
1†
min ⊗ U

2†
min ⊗ IR1 ⊗ IR2 ).

Depending on the specific covariant channels, the minimum
unitaries, U 1

min and U 2
min, can be obtained. We find minimum

unitaries for certain specific channels in the next section,
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where both covariant as well as noncovariant channels will be
considered. In Theorem 1, we proved that for an arbitrary noisy
channel, the upper bound on the LOCC-DC capacity as given
in inequality (5) is further bounded above by the expression
given in Eq. (11). Proposition 1 shows that for covariant noisy
channels, the two upper bounds are equal.

III. SOME EXAMPLES OF NOISY QUANTUM CHANNELS

In this section, we consider the shared state as the four-qubit
GHZ state [18], and consider different types of noisy channels.
Undoubtedly, the GHZ state is one of the most important multi-
party states, having maximal multiparty entanglement [22,23]
as well as maximal violations of certain Bell inequalities [24].
Moreover, it has been successfully realized in laboratories
by using several physical systems, including photons and
ions [25]. Our aim is to find the minimum unitary operators
Umin involved in ζ 1 and ζ 2 for different channels for this state,
when the latter is used for LOCC-DC.

A four-qubit GHZ state shared between two senders, S1,S2

and two receivers, R1,R2 is given by

|GHZ〉S1S2R1R2 = 1√
2

(|00〉S1S2 |00〉R1R2 + |11〉S1S2 |11〉R1R2

)
.

(28)

We are now going to find out the US1
min ⊗ US2

min that minimizes
maxx∈1,2 S(ζ x), where

ζ 1 = trS2R2�S1S2 (ρ̃S1S2R1R2 ) (29)

and

ζ 2 = trS1R1�S1S2 (ρ̃S1S2R1R2 ). (30)

Here ρ̃S1S2R1R2=US1
min⊗US2

min⊗IR1 ⊗ IR2 |GHZ〉〈GHZ|S1S2R1R2

U
S1†
min ⊗ U

S2†
min ⊗ IR1 ⊗ IR2 . Note that �S1S2 acts only on the

senders’ subsystems. We also denote |GHZ〉〈GHZ| as ρGHZ.
To find the form of US1

min and US2
min, let us consider an

arbitrary 2 × 2 unitary matrix, acting on a sender’s subsystem,
given by

USi =
⎛
⎝ aie

iθ1
i

√
1 − a2

i e
−iθ2

i

−
√

1 − a2
i e

iθ2
i aie

−iθ1
i

⎞
⎠, (31)

for i = 1,2, where 0 � ai � 1 and 0 � θ1
i ,θ2

i � π
2 . To find

ζ 1, we require only to manipulate the US1 , since US2 is not
involved in ζ 1. A similar statement is true for ζ 2.

Let us now consider three classes of noisy channels, viz.,
(1) the amplitude damping, (2) phase damping, and (3) Pauli
channels.

Note that only the Pauli channel is a covariant one. In
all the examples considered in this section, we consider that
there are local channels which act on the individual channels
running from the two senders to the two receivers. Note that
from the perspective of the actual realizations, this is the more
reasonable scenario.

These channels play important roles in the problem of de-
coherence [26]. The amplitude damping channel has been used
to model the spontaneous decay of a photon from an excited
atomic state to its ground state, while the phase damping one
can correspond to scattering events. Pauli channels include a

reasonably large class of quantum channels like the bit flip,
and depolarizing channels, and also play an important role in
the problem of decoherence. Pauli channels have been used to
study the Pauli cloning machine [27], and they comprise a huge
class of noisy channels. The fully correlated Pauli channel was
considered in [13,19], for calculating the DC capacity in the
case of a single receiver. A quantitative study for the general
Pauli channel is given in Sec. III C.

A. Amplitude damping channel

A qubit in the state ρ, after passing through the amplitude
damping channel, is given by

ρ → Aγ (ρ) = M0ρM
†
0 + M1ρM

†
1, (32)

where the Kraus operators, Mi , i = 0,1, are given by

M0 =
(

1 0

0
√

1 − γ

)
, M1 =

(
0

√
γ

0 0

)
,

satisfying the condition

M
†
0M0 + M

†
1M1 = 1, (33)

with 0 � γ � 1.
In the dense coding scenario, the senders, S1 and S2, send

their parts of the four-qubit GHZ state through local amplitude
damping channels, after encoding, and the corresponding
output state is given by

�ADC
(
ρ

S1S2R1R2
GHZ

)
= 1

2

{
Aγ1 (|0〉〈0|) ⊗ Aγ2 (|0〉〈0|) ⊗ |00〉〈00| + Aγ1 (|0〉〈1|)

⊗Aγ2 (|0〉〈1|) ⊗ |00〉〈11| + Aγ1 (|1〉〈0|) ⊗ Aγ2 (|1〉〈0|)
⊗ |11〉〈00| + Aγ1 (|1〉〈1|) ⊗ Aγ2 (|1〉〈1|) ⊗ |11〉〈11|}.

(34)

Here, γ1 and γ2 are the damping parameters for the two
independent amplitude damping channels corresponding to the
two channels from the senders to their corresponding receivers.
Due to the symmetry of the GHZ state, it can be seen that S(ζ 2)
takes the same functional form like S(ζ 1), when γ1 and γ2 are
interchanged.

By using the unitary operator given in Eq. (31), one can
find that the eigenvalues of ζ 1 are

λ1 = 1
4 (1 −

√
f (a1)), (35)

λ2 = 1
4 (1 +

√
f (a1)), (36)

λ3 = 1
4 (1 −

√
g(a1)), (37)

λ4 = 1
4 (1 +

√
g(a1)), (38)

where f (a) = 1 − 4γ1(1 − γ1)a4 and g(a) = 1 − 4γ1(1 −
γ1)(1 − a2)2. Note that the λi’s are independent of the θ

j

1 .
The minimization of S(ζ 1) = −∑

i λi log λi ≡ F (a1), say,
is obtained by calculating

dF (a1)

da1
= 0, (39)
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FIG. 2. (Color online) Plots of the quantities
a2

1√
f (a1)

log 1−√
f (a1)

1+√
f (a1)

and
1−a2

1√
g(a1)

log 1−√
g(a1)

1+√
g(a1)

, which are respectively the left-hand and right-
hand sides of Eq. (40), against a1 and γ . The green (gray in print)
surface represents the first, while the purple (dark in print) one is for
the second expression. The intersection line (white line) is a1 = 1√

2
,

for all γ . The base axes are dimensionless, while the vertical axis is
in bits.

which lead to the relation given by

a2
1√

f (a1)
log

1 − √
f (a1)

1 + √
f (a1)

= 1 − a2
1√

g(a1)
log

1 − √
g(a1)

1 + √
g(a1)

. (40)

Solutions of the above equation give the extrema. In Fig. 2, we
plot the LHS (left-hand side, green surface) and RHS (purple
surface) of Eq. (40). The intersection line, a1 = 1√

2
, of these

two surfaces gives the solution of Eq. (40).
To check whether it is minimum or not, we find

d2F (a1)

da2
1

∣∣∣∣
a1= 1√

2

= − γ (1 − γ )√
(1 − γ + γ 2)3

[
log

(
1 −

√
1 − γ + γ 2

1 −
√

1 + γ + γ 2

)

× (4 − 2γ (1 − γ )) + 8
√

1 − γ + γ 2

]
, (41)

which is non-negative for all γ , at a1 = 1√
2
, confirming the

minimum. Therefore, the minimum of S(ζ 1) is obtained at
a1 = 1√

2
and is given by 1 + H ( 1

2 (1 −
√

1 − γ1 + γ 2
1 )), where

H (x) = −x log x − (1 − x) log(1 − x) is the Shannon binary
entropy of x ∈ [0,1]. Similarly, one can obtain the minimum
of S(ζ 2). Note that there is a single extremal point obtained
and the corresponding function is continuous, which implies
that the local minimum obtained here is actually the global
minimum. Therefore, for the amplitude damping channel, if
the input state is the GHZ state, then the LOCC-DC capacity
is given by

CLOCC
ADC � 3 − max

x∈1,2
H

( 1
2

(
1 −

√
1 − γx + γ 2

x

))
. (42)

Note that it is known that CLOCC = 3, for the four-qubit
GHZ state, with two receivers, in the case of noiseless

channel [11,12], and hence the capacity decreases in the
presence of noise.

B. Phase damping channel

In the case of the phase damping channel, �PD , the qubit
in state ρ changes as

�PD(ρ) = M0ρM
†
0 + M1ρM

†
1 + M2ρM

†
2, (43)

where the Mi’s are

M0 =
(√

1 − p 0

0
√

1 − p

)
,

M1 =
(√

p 0

0 0

)
, M2 =

(
0 0

0
√

p

)
,

with 0 � p � 1. Here we again assume that the noise is local
on the senders’ parts. In this case, the eigenvalues of ζ 1 are
given by

λ1 = λ2 = 1
4 (1 −

√
fP (a1)), (44)

λ3 = λ4 = 1
4 (1 +

√
fP (a1)), (45)

where fP (a) = 1 − 4a2(1 − a2)p(2 − p). Like in the case of
the amplitude damping channel, the minimization does not
depend on the θi’s. It is also clear from the concavity of the
von Neumann entropy that maximizing fP (a1) is enough to
minimize S(ζ 1). Note that when fP (a1) increases, λ1 and
λ2 go close to zero, while λ3 and λ4 tend to 0.5, which in
turn minimizes S(ζ 1). The second term in fP (a1) is a positive
quantity, the maximum value of fP (a1) is 1, when a = 0 or
1, and hence we have S(ζ 1) = 1. Therefore, for the phase
damping channel, we get

CLOCC
FP � 3, (46)

which is independent of the parameters of the channel.

C. Pauli noise: A covariant channel

Pauli noise is an example of a covariant noise, which
satisfies the covariant condition, given in Eq. (12). When an
arbitrary qubit state is passed through the channel with Pauli
noise [17,28], the state is transformed as

�P (ρ) =
1∑

m,n=0

q̃mnWmnρW †
mn, (47)

where {Wmn} are the well-known Pauli spin matrices and the
identity operator, i.e.,

W01 = σ1 =
(

0 1
1 0

)
, W11 = σ2 =

(
0 −i

i 0

)
,

W10 = σ3 =
(

1 0
0 −1

)
, W00 = σ0 =

(
1 0
0 1

)
.

Consider a four-qubit state, ρS1S2R1R2 , shared between two
senders and two receivers. After passing through the Pauli
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channel, it transforms as

�P
S1S2R1R2

(ρS1S2R1R2 ) =
3∑

m,n=0

qmn

(
σS1

m ⊗ σS2
n ⊗ IR1 ⊗ IR2

)
× ρS1S2R1R2

(
σS1

m ⊗ σS2
n ⊗ IR1 ⊗ IR2

)
,

(48)

where
∑

mn qmn = 1. Depending on the choice of qmn, the
channel can be correlated or uncorrelated. We deal with
the fully correlated Pauli channel, i.e., when qmn = qmδmn.
Equation (48) in this case reduces to

�
f P

S1S2R1R2
(ρS1S2R1R2 ) =

3∑
m=0

qm

(
σS1

m ⊗ σS2
m ⊗ IR1 ⊗ IR2

)
× ρS1S2R1R2

(
σS1

m ⊗ σS2
m ⊗ IR1 ⊗ IR2

)
.

(49)

Let us find out the Umin for the four-qubit GHZ state shared
between two senders and two receivers, in the presence of the
fully correlated Pauli noise as in Eq. (49). From the symmetry
of the GHZ state, we have S(ζ 1) = S(ζ 2). The eigenvalues of
ζ 1 are given by

λ1 = λ2 = 1
4

(
1 −

√
g
(
a1,θ

1
1 ,θ2

1

))
, (50)

λ3 = λ4 = 1
4

(
1 +

√
g
(
a1,θ

1
1 ,θ2

1

))
, (51)

where

g̃(a,θ ) ≡ g(a,θ1,θ2) = (q0 − q1 − q2 + q3)2

+ f1(a)[8q1q2 + 8q0q3 − 4(q0 + q3)(q1 + q2)

− 4(q1 − q2)(q0 − q3) cos (2(θ1 + θ2))] (52)

and f1(a) = 2a2(−1 + a2). Arguing in the same way as in
other cases, it is enough to maximize g̃(a,θ ), with θ = θ1 + θ2,
in order to minimize S(ζ 1). To find the extremum of g̃(a,θ ),
we have to solve

∂g̃(a,θ )

∂a
= 0 (53)

and
∂g̃(a,θ )

∂θ
= 0, (54)

which give the extremum value at a = a0 ≡ 0 or 1√
2
, and

θ = θ0 ≡ nπ
2 , where n ∈ Z. g̃(a,θ ) is a function of the noise

parameters {qm}, and to find the extremum, without loss of
generality, we assume an ordering of those parameters, i.e.,
we assume

q0 � q2 � q1 � q3. (55)

And g̃(a,θ ) is maximum, when

∂2g̃(a,θ )

∂a2

∣∣∣∣
a0,θ0

,
∂2g̃(a,θ )

∂θ2

∣∣∣∣
a0,θ0

< 0, (56)

(
∂2g̃

∂a∂θ

)2∣∣∣∣
a0,θ0

<
∂2g̃

∂a2

∂2g̃

∂θ2

∣∣∣∣
a0,θ0

(57)

are satisfied simultaneously. For the above choice of qm, the
maximum value of

√
g̃(a,θ ) is |q0 − q1 + q2 − q3|, which will

be achieved, when a = 1√
2

and θ is an odd multiple of π
2 ,

S(ζ 1) = H (q0 + q2) + 1, and US1
min is given by

US1
min = 1√

2

(
eiθ1

1 −ieiθ1
1

−ie−iθ1
1 e−iθ1

1

)
.

If we take another ordering of {qm}, e.g., q1 � q2 � q0 � q3,
we have S(ζ 1) = H (q1 + q2) + 1, and the unitary operator, in
this case, is given by

US1
min =

(
0 eiθ1

1

e−iθ1
1 0

)
.

The above two cases indicate that the minimum entropy
depends on the ordering of qm, involved in the channel with
Pauli noise. In general, when the shared state is the GHZ
state, the capacity is bounded above by 3 − H (b1 + b2), where
{bm}4

m=1 is an arrangement of {qm} in descending order.
Instead of fully correlated Pauli noise, if we now assume

that the qmn is arbitrary, the strategy of fully correlated Pauli
noise can also be applied in this case. Suppose pm = ∑

n qmn

and rn = ∑
m qmn. Then the capacity is bounded above as

CLOCC
Pauli � 3 − max{H (b1 + b2),H (c1 + c2)}, (58)

where {bm}4
m=1 and {cn}4

n=1 are the sets {pm} and {rn} in
descending order.

IV. GENERALIZED GEOMETRIC MEASURE

We now define a genuine multipartite entanglement mea-
sure called the generalized geometric measure [23] (cf. [22]).
An N -party pure state is said to be genuinely multiparty
entangled if it is nonseparable under all bipartitions. For such
states, one can define a multipartite entanglement measure
based on the distance from the set of all multiparty states that
are not genuinely multiparty entangled.

The GGM of an N -party pure quantum state, |φN 〉, is
defined as

E(|φN 〉) = 1 − �2
max(|φN 〉), (59)

where �max(|φN 〉) = max |〈χ |φN 〉|, with the maximization
being over all pure states |χ〉 that are not genuinely N -party
entangled. It reduces to [23]

E(|φN 〉) = 1 − max
{
λ2
A:B|A ∪ B = {1,2, . . . ,N},

A ∩ B = ∅}
, (60)

where λA:B is the maximal Schmidt coefficient in the A : B
bipartite split of |φN 〉.

V. MULTIPARTITE ENTANGLEMENT AND DENSE
CODING FOR MORE THAN ONE RECEIVER

In this section, we establish a relation between the capacities
of LOCC-DC of four-qubit pure states with two senders and
two receivers and their generalized geometric measure (E).
The protocol considered here is due to collective involvement
or contribution of all the parties involved, i.e., senders and
receivers. This led us to try to establish a connection between
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the capacity of such dense coding protocol to a genuine
multiparty entanglement present in the system. Specifically,
we will estimate the ordering of the GGMs between the
generalized GHZ state and an arbitrary four-qubit pure state,
when both of them have equal LOCC dense coding capacities.
Such estimation will shed light on the bridge between multi-
party entanglement as quantified by the generalized geometric
measure and multiport capacity as quantified by the LOCC-DC
capacity.

Note that although the exact capacity of dense coding by
LOCC for arbitrary multiparty pure state is not known, it was
shown [11,12] that the exact capacity is 3 for the four-qubit
GHZ state, given by |GHZ〉 = 1√

2
(|0000〉 + |1111〉). In case

of the gGHZ state, which is given by |gGHZ〉 = α|0000〉 +√
1 − α2eiφ|1111〉, the capacity of LOCC-DC is bounded

above by

BLOCC(|gGHZ〉) = 2 + H (α). (61)

From the intuition obtained from bipartite nonmaximally
entangled states, we conjecture here that the capacity of
LOCC-DC for the gGHZ state saturates the upper bound,
BLOCC. With this assumption, we have the following result.

Result 2. Consider a multiparty DC protocol where there
are two senders and two receivers, and where the channels
from the senders to the receivers are noiseless. In this case
if a four-qubit gGHZ state and an arbitrary four-qubit pure
state have equal capacities of LOCC-DC, then the gGHZ state
possesses less genuine multiparty entanglement than that of
the arbitrary state, i.e., we have

E(|ψ〉) � E(|gGHZ〉), (62)

if (i) S(ρR1 ) � S(ρS1R1 ), i.e., the reduced state, ρS1R1 , has
more disorder than its local subsystem, ρR1 , and (ii) the
maximum eigenvalue required for GGM is obtained from the
density matrix, ρR2 . Similar conditions can be obtained by
interchanging S1 and R1 with S2 and R2, respectively.

Proof. As argued above, it is plausible that for the gGHZ
state,

CLOCC
gGHZ = 2 + H (α). (63)

For an arbitrary four-qubit pure state, |ψ〉, shared between the
senders S1,S2 and receivers R1,R2, the upper bound of the
capacity of LOCC-DC is given by

CLOCC
ψ � BLOCC(|ψ〉)

= 2 + S(ρR1 ) + S(ρR2 ) − S(ρS1R1 ), (64)

where S(ρRi ),i = 1,2, and S(ρS1R1 ) are the reduced density
matrices of |ψ〉.

Note that for pure state S(ρS1R1 ) = S(ρS2R2 ). Let us now
assume that the LOCC-DC capacities for |ψ〉 and the gGHZ
state are equal, so that

CLOCC
gGHZ = 2 + H (α)

= CLOCC
ψ � 2 + S(ρR1 ) + S(ρR2 ) − S(ρS1R1 ), (65)

which implies H (α) � S(ρR2 ), provided S(ρR1 ) � S(ρS1R1 ).
This implies that

α � λR2 , (66)

where λR2 is the maximum eigenvalue of ρR2 .

The GGMs of the gGHZ and the arbitrary four-qubit pure
state are respectively given by

E(|gGHZ〉) = 1 − α, (67)

E(|ψ〉) = 1 − λR2 , (68)

provided that λR2 is the maximum eigenvalue among all the
eigenvalues of its single site and two site density matrices.
Then, by using (66), we get

E(|ψ〉) � E(|gGHZ〉).
Hence the results. �

While the above Result 2 has been stated for two senders
and two receivers, simple changes in the premises render it
valid for the case of multiple senders and two receivers.

One should stress here that if the DC protocol involves
several senders and a single receiver, it has recently been shown
that the gGHZ state requires more multipartite entanglement
than an arbitrary four-qubit state if they both want to have
equal DC capacities in a noiseless scenario [19]. For both
uncorrelated and correlated noise models, the relative abilities
of the general quantum state and the generalized GHZ state to
transfer classical information in a dense coding protocol can
get inverted by administering a sufficient amount of noise.
These results led us to believe that the generalized GHZ
state may have a special status also in the case of more
than one receiver. Here we show that changing the number
of receivers from one to two can alter the hierarchy with
respect to the multiparty entanglement and the multiparty DC
capacity among four-qubit states and the gGHZ state under the
assumption that the LOCC-DC capacity saturates the bound,
BLOCC, given in Eq. (61).

To visualize the above Result 2, and to check the relevance
of the imposed conditions, we randomly generate 105 arbitrary
four-qubit pure states, Haar uniformly on that space. In Fig. 3,
the GGM (E) is plotted against the upper bound, BLOCC,
of the LOCC-DC capacity for the generated states. The red
curved line represents the gGHZ states. Among the randomly
generated states, 47.6% states (blue triangles) satisfy both the
conditions (i) and (ii) of Result 2. Interestingly, however,
49% states (orange squares) violate at least one of the above
conditions, and yet reside above the gGHZ line, i.e., satisfy the
conclusion of Result 2. And only 3.4% of the total violate the
conclusion of Result 2 (green circles). Numerical simulations
show that there exists states which satisfy Eq. (62), even after
violating one of the assumptions in Result 2, indicating that
Result 2 is probably true even when one relaxes the two
proposed conditions.

The topology of the quantum communication protocol with
two receivers may hint at us to consider two natural bipartitions
of the N + 2 parties. See Fig. 1. Let us call them the horizontal
and vertical partitions. The horizontal partition has the parties
S1,S2, . . . ,Sr , and R1 on one side and the remaining parties
on the other. On the other hand, the vertical partition has the
senders on one side and the receivers on another side. We then
define a multiparty entanglement measure for an arbitrary pure
(N+2)-party quantum state, |ψ〉, as

EHV (|ψ〉) = 1 − max |〈χ |ψ〉|2, (69)
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FIG. 3. (Color online) Noiseless case: how does a general four-
qubit pure state compare with the gGHZ states? We randomly
generate 5 × 104 four-qubit pure states uniformly with respect to
the corresponding Haar measure, and their GGM is plotted as the
abscissa, while BLOCC is plotted as the ordinate. The red curved line
represents the gGHZ states. Among the states generated randomly,
47.6% (blue triangles) satisfy both the conditions in Result 2; 49%
(orange squares) violate either of the conditions, but still fall above
the gGHZ line. Green circles represent 3.4% states which violate the
conclusion of Result 2. The line at abscissa equal to 2 corresponds
to the capacity achievable without prior shared entanglement. The
vertical axis is dimensionless, while the horizontal one is in bits.

where the maximization is over all |χ〉 that are a product across
either the horizontal or the vertical partition. Compare this
definition with that in Eq. (59). This quantity can be expressed
in terms of Schmidt coefficients, just like Eq. (59), and can be
reduced to Eq. (60). In particular, for four-party states (N = 2),
the reduced form is given by

EHV (|ψ1234〉) = 1 − max[e1,e2], (70)

where e1 and e2 respectively denote the maximal Schmidt
coefficients in the S1R1 : S2R2 and the S1S2 : R1R2 splits. It
may be noted that, just like the GGM, the quantity EHV is
an LOCC monotone, that is, it is monotonically nonincreasing
under local quantum operations at the N + 2 sites and classical
communication between them. It is therefore a valid multiparty
entanglement measure. However, unlike the GGM, it is not
a measure of genuine multiparty entanglement. From the
topology of the quantum communication protocol under study,
it may seem that EHV will be of relevance in quantifying and
understanding the capacity of the information transfer here.
Evidently, E � EHV . We have created a scatter diagram as
in Fig. 3, but with the E axis replaced by EHV (see Fig. 4).
The new measure varies in [0,3/4] for generic states, while
its value for the gGHZ states varies in [0,1/2]. We find that
among randomly generated 4-qubit states, 1.2% states (orange
squares) have EHV > 0.5 and 0.7% of states (green circles)
fall below the gGHZ line. The result indicates that even if
one modifies the entanglement measure motivated by the DC
protocol, we can again find that the gGHZ state has a special
status in the sense that a large majority of the points in the
scatter diagram falls above the gGHZ line. Note here that,
with this modification, we are able to reduce the percentage of
states that are below the gGHZ line.
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FIG. 4. (Color online) Noiseless case: comparison between arbi-
trary four-qubit pure states and the gGHZ states, with constrained
GGM. We randomly generate 5 × 104 four-qubit pure states uni-
formly with respect to the corresponding Haar measure, and their
HV-GGM (EHV) is plotted as the abscissa, while BLOCC is plotted as
the ordinate. The red curved line represents the gGHZ states. Among
the states generated randomly, 0.7% (green circles) states fall below
the gGHZ line. Orange squares represent those states whose EHV

is greater than 0.5 (above the horizontal line)—they are very few
in number, and constitute only 1.2% of the total generated random
states. The line at abscissa equal to 2 corresponds to the capacity
achievable without prior shared entanglement. The vertical axis is
dimensionless, while the horizontal one is in bits.

A. Noisy case

We now try to find a relation between the GGM and the
maximal classical information transfer by LOCC, as quantified
by χLOCC

noisy given in Eq. (25), under fully correlated Pauli noisy
channel. We randomly generate 5 × 104 four-qubit pure states
Haar uniformly on the state space, and calculate the χLOCC

noisy , for
the states under Pauli noise. We do the same for the generalized
GHZ states. We choose two sets of noise parameters: (i)
parameters that lead to a state which is close to the state of
the noiseless case, and we refer to it as the low noise case,
and (ii) parameters which take the state close to the maximally
mixed state, and we refer to it as the high noise case. Our
aim is to connect the LOCC-DC capacity in the presence of
Pauli noise, and multiparty entanglement, as quantified by
the GGM, of the initially shared state. For the low noise case,
we choose the noise parameters as q0 = 0.93, q1 = 0.01, q2 =
0.02, and q3 = 0.04, and plot the GGM against χLOCC

noisy . For
the high noise case, we choose q0 = 0.485, q1 = 0.015, q2 =
0.015, and q3 = 0.485. The plots are presented in Fig. 5. In the
high-noise case, the upper bound on the LOCC-DC capacity,
as expected, suggests that most of the states have capacities
which are lower than the capacity achieved by the classical
protocol. In the noiseless as well as the low noise scenarios,
we see that there exists a set of states which is not bounded
by the gGHZ line, while such states are almost absent in the
presence of higher amounts of noise (see Fig. 5). It suggests
that the gGHZ state is more robust to noise among four-qubit
pure states.

For the case of multiple senders and a single receiver,
the gGHZ state changes its role as one increases noise
in the channel that carries the encoded quantum systems
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FIG. 5. (Color online) Fully correlated Pauli noise: the gGHZ
states are again better than a significant fraction of states. We plot
the GGM as the ordinate and χLOCC

noisy as the abscissa for 5 × 104

randomly generated four-qubit pure states uniformly with respect to
the corresponding Haar measure for low (top panel) and high (bottom
panel) full correlated Pauli noise. In the top panel, q0 = 0.93, q1 =
0.01, q2 = 0.02, and q3 = 0.04, while in the bottom panel, we
choose q0 = 0.485, q1 = 0.015, q2 = 0.015, and q3 = 0.485. In the
presence of high noise, almost all states are bounded by the four-qubit
gGHZ states (red curved line). A significant fraction of the generated
states lie above the gGHZ line even for low noise. It indicates that the
gGHZ state is more robust against noise as compared to an arbitrary
four-qubit pure state. The lines at abscissa equal to 2 correspond to the
capacity achievable without prior shared entanglement. The vertical
axis is dimensionless, while the horizontal one is in bits.

from the senders to the receiver [19]. Precisely, the gGHZ
state requires less multiparty entanglement (as quantified by

GGM) than a generic state to be equal in dense coding
capacity with the generic state, if the channels are noisy. The
opposite is true when the channels are noiseless. Here we
see that if there are two receivers in the protocol, there is no
such role reversal. The gGHZ state requires less multiparty
entanglement than a generic state to have the same LOCC
dense coding capacity as the generic state. Note that this
statement is under the assumption that the upper bounds on the
LOCC-DC capacities faithfully mirror the qualitative features
of the actual capacities.

VI. CONCLUSION

The dense coding protocol is a quantum communication
scheme which demonstrates that the classical information can
be transferred via quantum states more efficiently than any
classical protocol. The “Holevo bound” is applied to obtain the
capacities, when there is a single sender and a single receiver
as well as when there are multiple senders and a single receiver.
Capacities are known for both noiseless and noisy channels.
However, realistic scenarios of a communication protocol
should involve multiple senders and multiple receivers. The
difficulty in such generalization is due to the nonexistence,
hitherto, of a Holevo-like bound in the multipartite decoding
process in the many-receivers scenario in the case of noisy
channels. In this paper, we address the problem of estimating
the dense coding capacity, when there are arbitrary number
of senders and two receivers. In particular, we find an upper
bound on the classical capacity of the multipartite quantum
channel, when the senders and receivers share a multiparty
quantum state and noisy channels, and the receivers are
allowed to perform only local quantum operations and classical
communication. A compact form of the upper bound on the
capacity is obtained when the noisy channels are covariant.
When the four-party shared state is the GHZ state, several
paradigmatic noisy channels are considered and the upper
bounds on the capacities are determined. Finally, we connect
the capacity of dense coding with a multiparty entanglement
measure, both in the noiseless and noisy scenarios.
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