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In a variant of communication complexity tasks, two or more separated parties cooperate to compute a function
of their local data, using a limited amount of communication. It is known that communication of quantum systems
and shared entanglement can increase the probability for the parties to arrive at the correct value of the function,
compared to classical resources. Here we show that quantum superpositions of the direction of communication
between parties can also serve as a resource to improve the probability of success. We present a tripartite task for
which such a superposition provides an advantage compared to the case where the parties communicate in a fixed
order. In a more general context, our result also provides semi-device-independent certification of the absence of

a definite order of communication.
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I. INTRODUCTION

In its short history, the field of quantum information has
been very successful in discovering and explaining differences
between classical and quantum information processing—in
particular a variety of advantages that the use of quantum
resources confers over the use of classical resources [1].

Quantum resources provide an important benefit to commu-
nication complexity tasks [2—4] where two or more separated
parties compute a function of their input strings, seeking
to maximize the probability of success under the constraint
of limited communication between them. Communicating
quantum bits and sharing entanglement are two well-known
resources that can be used to improve success probability in
such scenarios [5].

A novel type of quantum resource—the quantum switch—
allows for the order in which quantum gates are applied to
be in a quantum superposition, using an auxiliary quantum
system that coherently controls the order in which the gates are
applied [6]. The quantum switch has been shown to reduce the
required number of queries to “blackbox” unitaries required
to solve certain computational tasks [6—10].

Here we find that the quantum control of the direction
of communication between parties is a useful resource in
communication complexity protocols. We demonstrate this
by considering an explicit three-party communication task,
in which Alice and Bob are each given input trits and
Charlie has to determine whether or not they are equal.
They are not allowed to share entanglement and the total
communication is restricted to two qubits. We show that
when the order of communication between parties is fixed (or
classically mixed), the success probability is bounded below
one. However, using the quantum switch to superpose the
direction of communication between Alice and Bob, there
exists a protocol that always succeeds.

II. PROCESS MATRIX FORMALISM

Superpositions of the direction of communication are read-
ily described in the process matrix formalism, first introduced
in Ref. [11]. We will briefly review some of its key aspects; for
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an extensive introduction to the subject, we refer the reader to
Ref. [12].

The most general quantum operation, a completely positive
(CP) map, maps a density operator ps, € A; to a density
operator p4, € Ao. Here, A; (Ao) denotes the space of linear
operators on the Hilbert space H*A! (H¢); in general, the di-
mensions dy, and d, of H4 and H*¢ do not have to be equal.

Using the Choi-Jamiotkowski [13,14] (CJ) isomorphism
(where we follow the convention of Ref. [12]), one can
represent a CP map My : A — Ao as an operator,

My = [T @ MAIINIINIT € A; ® Ao, (D

. . . dyy ..
where 7 is the identity map and |I) := Z;’l |jj) e Hi ® H;
is a non-normalized, maximally entangled state and the super-
script T denotes transposition. The inverse transformation is

Ma(p) = tr;[(p ® 1)M4]1". 2

Similarly, for two completely positive maps M4 : A; — Ap
and Mp : B; — By, the joint CJ matrix is the tensor product
of the CJ matrix of the individual maps € A; ® Ap ® B; ®
Bo.

One can use this isomorphism to conveniently represent
higher-order operations [11,15-18], which map quantum maps
to quantum maps. These “superoperators” or “processes” can
also be represented as CJ matrices themselves, by applying
the CJ isomorphism repeatedly.

One can also meaningfully define operations acting jointly
on states and operations. We will restrict our attention to the
class of processes VW mapping two CP maps and two states to
two states:

WM, Mp,oc,pr) =trag{W -Ms @ Mp @ oc ® pr}
= ppr- 3)

III. PROCESSES WITH AND WITHOUT A DEFINITE
ORDER OF COMMUNICATION

Quantum circuits form a well-known class of processes in
which gates corresponding to the operations M, and Mp
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FIG. 1. (Color online) Examples of quantum circuits (in red)
mapping two CPTP maps M 4, M and two states oc, pr to a state
pcr- The order of applying gates is well defined—A =< B for the left
circuit and B < A for the right one.

appear in a fixed order (as depicted in Fig. 1). Either M4
is applied before Mp (corresponding to processes of the
type Wa<p) or Mp is applied before M, (corresponding
to processes Wg<4) [17]. Identifying M 4 (M p) with Alice’s
(Bob’s) operation, these “ordered processes” correspond to
a definite order of signaling between Alice and Bob. More
generally, we will also refer to classical mixtures thereof,
which correspond to a classical random variable controlling
the order of the process,

Werd. 1= pWa<p + (1 — p)Whg<a,

as “causally separable processes” [12,19].!

Not all physically implementable processes are causally
separable: The quantum switch, first introduced by Chiribella
et al. [6], corresponds to the process Wiy, which applies two
CP maps to a target system o7 in an order that is controlled
by the value of a quantum control system o¢. The quantum
switch for pure target and control states [{/)  , |¢) - and unitary
operations U, (Up) on Alice’s (Bob’s) side is given by

We(Ua,Us. |9)c - [¥)r) = (019) [0)c UpUn [¥) 1
+ (L) (e UaUp 1Y)y (5)

and can be extended by linearity to mixed states and general
CP maps on Alice’s and Bob’s side [8]. It is neither of the type
Wa<p nor of the type Wp~ 4. Since it is an extremal process, it
also cannot be decomposed according to Eq. (4), which shows
that there is no definite order of signaling for the quantum
switch [12]. Rather, one should think of it as a coherent
superposition of circuits or of directions of communication,
controlled by a control qubit:

2 (e T
Mo T T

It has been shown that using such a quantum control of
circuits provides an advantage in query complexity for certain
computational tasks [6-9]. It has also been implemented
experimentally, using an interferometric setup [10].

O<ps<l, @&

(©)
).

IV. THE TRIPARTITE HAMMING GAME

To demonstrate the relevance of the quantum switch in
communication scenarios, we will introduce a communication
game closely related to the distributed Deutsch-Josza promise

'Note that the definition of causal separability in Ref. [19] slightly
differs from ours.
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FIG. 2. (Color online) Tripartite (nlog,3,m)-Hamming game
where Alice and Bob receive input strings of the length nlog, 3
bits, and Charlie has to compute f(x,y). The total communication is
m bits or qubits; no entanglement is preshared.

problem [5,20,21], the simultaneous message passing (SMP)
model [2,22], and random access codes (RACs) [23-27].

In our tripartite game—as for the SMP—Alice and Bob
receive input strings and Charlie computes a function of
them. Communication between all of the parties and shared
(classical) randomness are also allowed. Charlie has to
compute the parity of the Hamming distance of Alice’s and
Bob’s input strings, generalizing the function of the distributed
Deutsch-Josza promise problem (here, however, no promise on
the Hamming distance of the inputs is required).

More precisely, Alice and Bob both are given n trits
(x €{0,1,2}" and y € {0,1,2}", respectively), and Charlie
computes the Hamming parity f(x,y) defined as

fy) =P by (7)
i=1

In addition, the total length of the transcript communicated
by Alice, Bob, and Charlie is restricted to be m bits (or
qubits). This defines the (n log, 3,m)-Hamming game depicted
in Fig. 2; the average success probability associated to it will
be referred to as pgycc.

Next we show that for the (log, 3,2)-Hamming game (which
is equivalent to the equality game for trits), the success
probability is bounded below one when Alice, Bob, and
Charlie are restricted to using a causally separable process, i.e.,
when the direction of signaling is fixed or controlled by a clas-
sical random variable independent of the inputs. In contrast,
using quantum control over the direction of signaling—the
quantum switch—Charlie can always compute f(x,y). This
demonstrates that causally nonseparable processes are useful
resources for communication tasks.

We will first consider the case where Alice, Bob, and
Charlie can only implement classical operations and use a
process with a definite order of communication (or a mixture
thereof). The optimal strategy involves Alice encoding her
input trit x into a bit a(x) and sending it to Bob, who sends
the function b(a,y) to Charlie, who finally outputs a function
gD).

The deterministic strategies are the vertices of a convex
polytope in the nine-dimensional (all possible combinations
of x and y) space of probabilities p(c|x,y). Given that Alice,
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FIG. 3. (Color online) Optimal causally separable protocol for
the equality game, where no entanglement is shared among the parties.

Bob, and Charlie share randomness, they can probabilistically
combine deterministic strategies, reaching every point inside
the convex polytope.

For equally distributed inputs, the probability of success for
Charlie to output f(x,y) = 8, , is bounded by [28]

1 7
Pluce = 5 Zy ple=beylx.y) < 5. ®)

One deterministic strategy saturating this bound consists of
Alice encoding whether or not her input is 0 [a(x) = 8, o] and
Bob answering 1 only if he is sure that he and Alice both
have input 0 [b(a,y) = §,084,1]. Charlie simply returns Bob’s
answer. This strategy will fail only for input pairs x =y =1
andx =y =2.

‘We now turn to the case where Alice, Bob, and Charlie use
a causally separable process (consisting of quantum channels)
and have access to quantum operations, as shown in Fig. 3. The
parties are allowed to share randomness but not entanglement.
In the optimal protocol with two qubits of communication in
total, Alice encodes her input trit into a qubit x — p, and Bob
applies a completely positive trace-preserving (CPTP) map
B, for each value of his input trit y onto the incoming qubit;
Charlie then performs a two-outcome positive operator-valued
measure (POVM) {C,,} on the resulting state.

For equally distributed inputs, the probability of success for
causally separable strategies is bounded by

1

Phee <5 Ztr{clB (p0} + Y _tr{CoBy(py)} |
m X;ﬁy
€))
which, in the Appendix, we prove to be
5
Phaee < - (10)

Here, an optimal state preparation by Alice is

1
lao) = EOO) + 1),

lay) = sin = |0) + ¢ cos = [1),
8 8

1 .
la2) = —=(10) + e /4 1)), (11
V2 ( )

where p, = |ay,|)|{a,|. Bob projectively measures in the basis

lay) |aJ-) where |al) is orthogonal to |a,), and prepares the

state |x+) = [(IO) + 1) or|x—) = f(|0> —|1)), depend-
ing on the outcome.

Charlie simply applies a projective measurement in |x=)

basis, the outcome of which constitutes his guess c. The
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TABLE I. Conditional probabilities of success with a causally

separable process, for the optimal strategy (11), reaching ps%cc = %.

Xy 00 01 02 10 11 12 20 21 22
poe=d,by) 1§ ¢ & 1 3§ § 1

probability distribution arising from the optimal quantum
strategy is shown in Table 1.

We now show that when Alice, Bob, and Charlie can use
the quantum switch to implement quantum control over the
direction of communication between Alice and Bob, they can
violate Eq. (10) maximally (p&s¥ = 1).

Alice and Bob apply unitaries U%, U} to a target system and
the quantum switch coherently superposes the order in which
they are applied. Charlie receives the resulting state and applies
a two-outcome projective measurement I1,I1~. Since Alice
and Bob only have access to a qubit subspace, they each only
send one qubit out of their laboratory, while Charlie sends no
system out. The total communication between Alice, Bob, and
Charlie is m < log,(da,dp,dc,) =2 qubits, in accordance
with the assumptions of the (log, 3,2)-Hamming game.

Alice and Bob choose a Pauli gate corresponding to their
input trit U, = UL = o, and the control state is |¢) - = |x+)¢
(the state |y); is irrelevant); see Fig. 4. Inserting this into
Eq. (5), Charlie receives the state

WSW(GX10y3 |x+>C ’ |1/I)T)

1
= EOO)C oyox Y7 + [1)c oxoy [¥)r)

1
= ﬁﬂx_)C loy,ox] 1Y) + [x+)c {oy,0x} [¥)7), (12)
where [-] is the commutator and {-} is the anticommutator.

If Charlie chooses a projective measurement on the
resulting control system C, with T = |x+){x+|c and
IT™ = |x—){x — |c, he can determine whether [oy,0,] =0
or {oy,0:} = 0 (because of the commutation relations of the
Pauli matrices, one of them is always the case). If the former is
true, Charlie deduces that x = y, otherwise that x % y. Hence,

T
Alice L / Charlie
Oz |¢ >CT
PBS
Yy
Bob — €=y
|9) e 1) Ty

FIG. 4. (Color online) Linear optical implementation of the pro-
tocol using the quantum switch [9,29]. The control state |@). is
encoded in polarization and the target state 1), in another photonic
degree of freedom. Alice and Bob apply Pauli operators on the
target system depending on their input x and y. Charlie performs a
measurement in the |x=) basis on the outgoing control system C and
consequently outputs J, ,. Note that in the experiment of Ref. [10],
the control state was instead encoded in path.
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he can compute f(x,y) = 8, with unit probability, violating
the bound (10).

Note that the protocol can be extended to any (m log, 3,2m)
Hamming game (Alice and Bob each are given m trits and
have access to an m-qubit system). Alice and Bob apply
®); oy, and ), oy, respectively; Charlie, by measuring the
control qubit in the [x%) basis, can still determine whether
[, 0v, @; 0y, 1 0r {Q); 0y, Q); 0,1} is zero. Since, for each
different trit, a factor of —1 appears when permuting the
corresponding Pauli matrices, an even number of differences
in the trit strings of Alice and Bob will result in a vanishing
commutator, and an odd number of differences will result in a
vanishing anticommutator. Using the quantum switch, Charlie
can therefore always find the Hamming parity (7).

V. CONCLUSIONS

We demonstrated that a quantum superposition of the
direction of communication between parties is a useful
resource in communication complexity problems. This was
explicitly shown for the (log, 3,2)-Hamming game, where
the probability of success for processes with a definite or
classically mixed order of signaling is violated by using the
quantum switch as a resource. The result points to the necessity
for a general resource theory of communication to account
for superpositions of the direction of communication. Note
that having access to the quantum switch is not equivalent
to sharing a maximally entangled state between Alice and
Bob—for instance, the latter (through dense coding [30])
makes computing any binary function of two trits for Alice and
Bob possible by exchanging just two qubits of communication,
which is impossible with the quantum switch.

Our result also provides a semi-device-independent [31,32]
way of certifying the causal nonseparability of a process, where
Alice’s and Bob’s system is known to have (at most) a given
dimension, but the operations themselves are not trusted. It
lies between the stronger fully device-independent certification
of causal nonseparability [11,19,33]—which was already
shown to be impossible for the quantum switch [12,19]—
and the weaker device-dependent certification through causal
witnesses [12].

It would be interesting to improve the scaling (with the
length of the inputs) of the reduction in communication
achieved by using the quantum switch. To compute Hamming
parity of two m-trit input strings, 2m qubits need to be
exchanged using the quantum switch; making use of a process
with a fixed order of communication, one can easily construct
a protocol requiring only m(1 + log, 3) qubits. Hence, both
resources result in the same asymptotic scaling of communi-
cation for the Hamming game.
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APPENDIX: PROOF OF THE CAUSALLY SEPARABLE
QUANTUM BOUND ON THE EQUALITY GAME

Here we prove the validity of the quantum bound p2,. < 3.

6
We start with Eq. (9):

0 1

Psuce g 6 Ztr{CIB (px)}+ Z tr{COBy(px)}

P ,{
' © Xy.X7y

(Al)

We now use the fact that the POVM preceded by a CPTP map
is still a POVM (the elements of which we will call B and
B), which can be thought of as being applied by Bob and
Charlie together. This allows us to drop the optimization over
{Cn}:

w{BYoc} |. (A2)

pQ gé max Xx:tr{BipX}+ Z

0,1
AB X,y XAy

Since tr{BYp} =1 —tr{Blp},Vx (the probabilities sum to
one), we can rewrite (A2) as

6—|— max Ztr B1 Py —

Do Ay

X, X7y

Ipeee <

We notice that each optimization over Byl is independent;
similarly to the one for optimal state distinguishability [1],
we find that the optimal POVM elements B| !"are projectors on
the positive eigenvalue subspace of p, — ZA vy Px- Using the
Bloch vector decomposition p, = (1 + 0o - ax) /2, this leads to
the result

1 1
< < =4 — max a—a; —a
Psuce 18 ||aX||2<1,aX€R3(” 0 1 2“2
+ a1 —ag — az(l, + llay —ap — ay[|»). (A4)

Choosing ag = (1,0,0)", parametrizing a;,a, using spherical
coordinates, and optimizing (A4), the analytical maximum
turns out to be

0 5

psucc < 6’

with the optimal preparation and measurement strategies given
in Eq. (11). Charlie measures in the |x=) basis; the channels
of Bob are explicitly given by

By(p) = M pIly + I pT;,
Bi(p) = UiIT{ pTI{ U} + U\TT; pTI; UL, (A5)
Ba(p) = UsTIF pTI U + U1 pT; U,

where 1§ = |ao){aol, T = lai){a1|,T1; = |az){az| and the

correspondlng My, =1- 8’ 1.5~ The unitaries U, » corre-
spond to a basis transformation such that U 12 lai2) = lao).

052326-4



QUANTUM SUPERPOSITION OF THE ORDER OF PARTIES ...

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
2000).

[2] A. C.-C. Yao, Proceedings of the Eleventh Annual ACM
Symposium on Theory of Computing (ACM, New York, 1979),
pp- 209-213.

[3] A. C.-C. Yao, Proceedings of the 34th Annual Symposium
on Foundations of Computer Science, Palo Alto, CA (IEEE,
Piscataway, New Jersey, 1993), pp. 352-361.

[4] E. Kushilevitz and N. Nisan, Communication Complexity (Cam-
bridge University Press, Cambridge, 2006).

[5] H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Rev. Mod.
Phys. 82, 665 (2010).

[6] G. Chiribella, G. M. D’ Ariano, P. Perinotti, and B. Valiron, Phys.
Rev. A 88, 022318 (2013).

[7] T. Colnaghi, G. M. D’ Ariano, S. Facchini, and P. Perinotti, Phys.
Lett. A 376, 2940 (2012).

[8] G. Chiribella, Phys. Rev. A 86, 040301 (2012).

[9] M. Aratjo, F. Costa, and C. Brukner, Phys. Rev. Lett. 113,
250402 (2014).

[10] L. M. Procopio, A. Moqanaki, M. Araujo, F. Costa, I. Alonso
Calafell, E. G. Dowd, D. R. Hamel, L. A. Rozema, C. Brukner,
and P. Walther, Nat. Commun. 6, 7913 (2015).

[11] O. Oreshkov, F. Costa, and C. Brukner, Nat. Commun. 3, 1092
(2012).

[12] M. Aratjo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, and
C. Brukner, New J. Phys. 17, 102001 (2015).

[13] M.-D. Choi, Linear Alg. Appl. 10, 285 (1975).

[14] A. Jamiotkowski, Rep. Math. Phys. 3, 275 (1972).

[15] G. Gutoski and J. Watrous, Proceedings of the Thirty-Ninth
Annual ACM Symposium on Theory of Computing (ACM, New
York, 2007), pp. 565-574.

[16] G. Chiribella, G. M. D’ Ariano, and P. Perinotti, Europhys. Lett.
83, 30004 (2008).

PHYSICAL REVIEW A 92, 052326 (2015)

[17] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev. A
80, 022339 (2009).

[18] M. S. Leifer and R. W. Spekkens, Phys. Rev. A 88, 052130
(2013).

[19] O. Oreshkov and C. Giarmatzi, arXiv:1506.05449.

[20] D. Deutsch and R. Jozsa, Proc. R. Soc. London A 439, 553
(1992).

[21] H. Buhrman, R. Cleve, and A. Wigderson, Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing
(ACM, New York, 1998), pp. 63-68.

[22] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Phys. Rev.
Lett. 87, 167902 (2001).

[23] S. Wiesner, SIGACT News 15, 78 (1983).

[24] A. Nayak, Proceedings of the 40th Annual Symposium on
Foundations of Computer Science (IEEE, Piscataway, New
Jersey, 1999), pp. 369-376.

[25] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani, J. ACM
49, 496 (2002).

[26] M. Hayashi, K. Iwama, H. Nishimura, R. Raymond, and S.
Yamashita, New J. Phys. 8, 129 (2006).

[27] A. Ambainis, D. Leung, L. Mancinska, and M. Ozols,
arXiv:0810.2937.

[28] Note that it is also a facet of the polytope since it is saturated by
vertices spanning an eight-dimensional affine subspace.

[29] G. Chiribella, R. Ioniciou, T. Jennewein, and D. Terno (private
communication).

[30] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881
(1992).

[31] Y.-C. Liang, T. Vértesi, and N. Brunner, Phys. Rev. A 83, 022108
(2011).

[32] M. Pawlowski and N. Brunner, Phys. Rev. A 84, 010302
(2011).

[33] C. Branciard, M. Aragjo, A. Feix, F. Costa, and C. Brukner,
arXiv:1508.01704.

052326-5


http://dx.doi.org/10.1103/RevModPhys.82.665
http://dx.doi.org/10.1103/RevModPhys.82.665
http://dx.doi.org/10.1103/RevModPhys.82.665
http://dx.doi.org/10.1103/RevModPhys.82.665
http://dx.doi.org/10.1103/PhysRevA.88.022318
http://dx.doi.org/10.1103/PhysRevA.88.022318
http://dx.doi.org/10.1103/PhysRevA.88.022318
http://dx.doi.org/10.1103/PhysRevA.88.022318
http://dx.doi.org/10.1016/j.physleta.2012.08.028
http://dx.doi.org/10.1016/j.physleta.2012.08.028
http://dx.doi.org/10.1016/j.physleta.2012.08.028
http://dx.doi.org/10.1016/j.physleta.2012.08.028
http://dx.doi.org/10.1103/PhysRevA.86.040301
http://dx.doi.org/10.1103/PhysRevA.86.040301
http://dx.doi.org/10.1103/PhysRevA.86.040301
http://dx.doi.org/10.1103/PhysRevA.86.040301
http://dx.doi.org/10.1103/PhysRevLett.113.250402
http://dx.doi.org/10.1103/PhysRevLett.113.250402
http://dx.doi.org/10.1103/PhysRevLett.113.250402
http://dx.doi.org/10.1103/PhysRevLett.113.250402
http://dx.doi.org/10.1038/ncomms8913
http://dx.doi.org/10.1038/ncomms8913
http://dx.doi.org/10.1038/ncomms8913
http://dx.doi.org/10.1038/ncomms8913
http://dx.doi.org/10.1038/ncomms2076
http://dx.doi.org/10.1038/ncomms2076
http://dx.doi.org/10.1038/ncomms2076
http://dx.doi.org/10.1038/ncomms2076
http://dx.doi.org/10.1088/1367-2630/17/10/102001
http://dx.doi.org/10.1088/1367-2630/17/10/102001
http://dx.doi.org/10.1088/1367-2630/17/10/102001
http://dx.doi.org/10.1088/1367-2630/17/10/102001
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1209/0295-5075/83/30004
http://dx.doi.org/10.1209/0295-5075/83/30004
http://dx.doi.org/10.1209/0295-5075/83/30004
http://dx.doi.org/10.1209/0295-5075/83/30004
http://dx.doi.org/10.1103/PhysRevA.80.022339
http://dx.doi.org/10.1103/PhysRevA.80.022339
http://dx.doi.org/10.1103/PhysRevA.80.022339
http://dx.doi.org/10.1103/PhysRevA.80.022339
http://dx.doi.org/10.1103/PhysRevA.88.052130
http://dx.doi.org/10.1103/PhysRevA.88.052130
http://dx.doi.org/10.1103/PhysRevA.88.052130
http://dx.doi.org/10.1103/PhysRevA.88.052130
http://arxiv.org/abs/arXiv:1506.05449
http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/10.1103/PhysRevLett.87.167902
http://dx.doi.org/10.1103/PhysRevLett.87.167902
http://dx.doi.org/10.1103/PhysRevLett.87.167902
http://dx.doi.org/10.1103/PhysRevLett.87.167902
http://dx.doi.org/10.1145/1008908.1008920
http://dx.doi.org/10.1145/1008908.1008920
http://dx.doi.org/10.1145/1008908.1008920
http://dx.doi.org/10.1145/1008908.1008920
http://dx.doi.org/10.1145/581771.581773
http://dx.doi.org/10.1145/581771.581773
http://dx.doi.org/10.1145/581771.581773
http://dx.doi.org/10.1145/581771.581773
http://dx.doi.org/10.1088/1367-2630/8/8/129
http://dx.doi.org/10.1088/1367-2630/8/8/129
http://dx.doi.org/10.1088/1367-2630/8/8/129
http://dx.doi.org/10.1088/1367-2630/8/8/129
http://arxiv.org/abs/arXiv:0810.2937
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1103/PhysRevA.83.022108
http://dx.doi.org/10.1103/PhysRevA.83.022108
http://dx.doi.org/10.1103/PhysRevA.83.022108
http://dx.doi.org/10.1103/PhysRevA.83.022108
http://dx.doi.org/10.1103/PhysRevA.84.010302
http://dx.doi.org/10.1103/PhysRevA.84.010302
http://dx.doi.org/10.1103/PhysRevA.84.010302
http://dx.doi.org/10.1103/PhysRevA.84.010302
http://arxiv.org/abs/arXiv:1508.01704



