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Searching for quantum speedup in quasistatic quantum annealers
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We argue that a quantum annealer at very long annealing times is likely to experience a quasistatic evolution,
returning a final population that is close to a Boltzmann distribution of the Hamiltonian at a single (freeze-out)
point during the annealing. Such a system is expected to correlate with classical algorithms that return the same
equilibrium distribution. These correlations do not mean that the evolution of the system is classical or can be
simulated by these algorithms. The computation time extracted from such a distribution reflects the equilibrium
behavior with no information about the underlying quantum dynamics. This makes the search for quantum
speedup problematic.
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Quantum annealing (QA) [1–5] is a means for solving
optimization problems by using quantum mechanics. Recently,
QA processors with up to more that a thousand qubits have
been developed [6] and tested by many independent research
groups [7–16]. The processors are designed to implement a
transverse Ising Hamiltonian:

H (s) = −A(s)
∑

i

σ x
i + B(s)HP , (1)

HP =
∑

i

hiσ
z
i +

∑

i<j

Jij σ
z
i σ z

j , (2)

where σ
x,z
i are Pauli matrices acting on qubit i,s = t/ta, t

is time, ta is the annealing time, hi and Jij are tuneable
dimensionless parameters, and A(s) and B(s) are monotonic
functions such that A(0) � B(0) ≈ 0 and B(1) � A(1) ≈ 0
[see Fig. 2(a)]. A successful computation yields the ground
state or an acceptable low-energy eigenstate of HP .

By now, the presence of quantum mechanics [6,7], in-
cluding entanglement [17] and the computational benefit of
multiqubit tunneling [14], has been established in the QA
processors. However, whether quantum mechanics can lead
to any scaling advantage (quantum speedup) over available
classical algorithms remains an open question. Recently, there
have been many attempts to detect signatures of quantum
speedup in D-Wave Two (DW2) QA processors [8–10,18].
In these studies the processor’s performance is compared with
some classical algorithms, such as simulated annealing (SA),
quantum Monte Carlo simulation of QA (SQA), or other
algorithms. The computation time tc is typically expressed
as a function of the success probability, which is usually taken
to be the final ground-state probability P0. Here, we define

tc = ta/P0, (3)

which is asymptotically equivalent to the definition used in
previous publications [8–10,18]. For a classical solver such as
SA or SQA, ta is taken to be proportional to the number of
sweeps (number of iterations in which all spins are updated in
a single anneal).1

1This is 1/N times smaller than the total computation time if only
a single-core processor is used. This factor is incorporated to include

One hopes to determine how tc scales with the problem
size N and whether the quantum annealer provides a better
scaling compared to classical solvers. For problems with
essentially two-dimensional structure, such as the Chimera
graph (the native graph of DW2), tc is expected to be an
exponential function of

√
N (i.e., the tree width of the graph).

The slope of log(tc) versus
√

N , therefore, provides the
coefficient in the exponent. Quantum speedup then means
that the quantum annealer provides a smaller slope than other
classical solvers. In practice, complications arise due to the
dependence of the scaling curves on ta . Figure 1(a) shows
schematically a behavior commonly observed from some
annealing algorithms, such as SA or SQA. The slope of the
curves are small for small N , because ta is typically too long
for such easy problems. The slope increases abruptly at large N

reflecting the fact that the chosen ta is not long enough to find
a solution. This makes the asymptotic scaling of the algorithm
unclear. To deal with this problem, Ref. [8] suggests optimizing
all of the annealers at each size, i.e., finding the optimal ta that
minimizes tc for each N . The resulting “optimal” curve will
be independent of a particular choice of ta (the blue line in
Fig. 1).

In practice, QA processors come with their own limitations
in terms of control parameters or available annealing sched-
ules. For example, DW2 annealing curves, A(s) and B(s), are
fixed and the minimum available ta is 20 μs, which is typically
too long rendering suboptimal computation. In the absence of
an optimal scaling, it was suggested [8,9] to determine an
upper bound for quantum speedup using a suboptimal scaling.
Suppose Fig. 1(a) is the tc obtained from a quantum annealer
with the minimum-allowed annealing time ta3 and maximum
512 qubits (

√
N < 23). The red curve in Fig. 1(a) represents

the experimentally accessible region. It is clear that the slope
of the red curve in Fig. 1(a) is not a representative of the
asymptotic performance. If we were allowed to decrease ta
so that optimization becomes feasible, it would have been
possible to obtain the blue (optimal) curve, which has more
slope than the red one. Therefore, the slope of the measured

the possibility of classical parallelism (for a more detailed discussion
see Ref. [14]).
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FIG. 1. (Color online) (a) A sketch of computation time as a
function of

√
N for different annealing times ta1 < ta2 < ta3. Similar

behavior has been observed in SA and SQA and conjectured for
QA [8,9]. The blue line shows scaling of an optimized solver. The red
line represents the region accessible by a quantum annealer with
ta � ta3 and N � 512. (b) The success probability for the same
system. The optimal curve in panel (b) is plotted by connecting the
corresponding tangency points in panel (a). We have assumed T > 0
to correspond better with a realistic quantum annealer. At T = 0, the
asymptotic probability is flat at P0 = 1.

(red) curve provides a lower bound for that of the optimal
(blue) curve.

To acquire more intuition, we plot in Fig. 1(b) the success
probability P0 by inverting each curve in Fig. 1(a) and
shifting vertically (since log P0 = log ta − log tc). The curves
in Fig. 1(b) tend to overlap at small N , demonstrating weak
dependence of P0 on ta for small N (or long ta). Such
a weak dependence, commonly observed in both QA and
classical algorithms, is an indication of quasistatic behavior. In
thermodynamics, a system is called quasistatic when its time
dependence is very slow compared to its relaxation time so
that it stays near the equilibrium state at all times. Typically,
in QA the system will follow the equilibrium distribution up
to some point but then starts deviating from equilibrium and

the probabilities will all freeze shortly thereafter. If the time
between the deviation and freezing is short, the final probabil-
ities will be close to the equilibrium probability distribution
at a single (freeze-out) point within the freezing region. To
demonstrate this behavior numerically, we consider a 16-qubit
problem with hi selected from ±1/3 and Jij from ±1/3 or
−1 uniform randomly. Figure 2(b) shows (solid lines) the 12
lowest-energy eigenvalues of H (s) obtained with the realistic
A(s) and B(s) plotted in Fig. 2(a). The dashed black lines
represent the corresponding classical energies, i.e., eigenvalues
of B(s)HP . We calculate the occupation probabilities by
using the open quantum (Redfield) master equation discussed
in Refs. [6,14,19]. Similar master equations have proven
to provide good qualitative and quantitative descriptions of
superconducting QA processors [6,7,11,14,20]. We assume an
Ohmic environment at equilibrium temperature T = 40 mK
with dimensionless coupling constant η = 0.24. The same
model with the same parameters was successfully used to
explain the experimental data in Ref. [14]. Here, we have
chosen a larger than normal temperature to deliberately popu-
late the excited states, otherwise the desired effects would not
have been visible. Circles in Fig. 2(c) represent the occupation
probabilities of the lowest 12 eigenstates during the evolution.
We have also plotted the equilibrium probabilities (solid lines)
using the Boltzmann distribution: P B

n (s) = Z−1e−En(s)/kBT ,
where En(s) is an instantaneous eigenvalue of H (s), kB

is the Boltzmann constant, and Z = ∑
n e−En(s)/kBT is the

partition function. As can be seen in the figure, the probabilities
closely follow P B

n (s) up to almost 2/3 of the evolution (green
region). As s→1, A(s) becomes smaller, making the thermal
relaxation slower. When the relaxation becomes too slow, the
system stops following equilibrium and the probabilities start
deviating from Boltzmann until they all saturate (freeze). The
saturations happen within a freezing (yellow) region. If the
freezing region is narrow enough, then the final probabilities
will be close to the Boltzmann probability distribution at a
single freeze-out point s = s∗, marked by the red vertical
dotted line in Fig. 2.

Typically, s∗ depends weakly on ta . Let γ (s) denote
the dominant relaxation rate at s. As s→1, γ (s) vanishes
exponentially due to exponential decay of A(s), i.e., γ (s) ∼
γ0e

−αs where γ0 and α are problem dependent constants. The
freeze-out happens when γ (s) becomes too small compared
to t−1

a , therefore no thermal transition can happen during
the rest of the annealing. This mean γ0e

−αs∗ ≈ t−1
a , which

yields s∗ ≈ ln(γ0ta)/α or P0(ta) ≈ P B
0 [ln(γ0ta)/α]. Expanding

to linear order around s∗ gives

P0(ta) ∼ (κ/α) ln (γ0ta), (4)

where κ is the expansion coefficient. This weak logarithmic
dependence is responsible for the asymptotic behavior illus-
trated in Fig. 1(b).

Notice in Fig. 2(b) that the quantum energy eigenvalues
(solid lines) at s = s∗ are not far from the classical ones
(dashed lines), although earlier they were very different. The
final probabilities are therefore close to a classical Boltzmann
distribution, even though the dynamics during the evolution
are not classical. This can explain correlations with SA as
reported in, e.g., Ref. [9].
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FIG. 2. (Color online) (a) Envelope functions A(s) and B(s) for
a DW2 quantum annealer. (b) The lowest 12 energy levels of
a randomly generated 16-qubit problem. Dashed black lines are
classical energies. Notice that the quantum energy eigenvalues are
close to the classical ones at s∗. (c) Occupation probabilities during
the annealing calculated by using the Redfield formalism (circles)
and the Boltzmann distribution (solid lines), assuming T = 40 mK
and ta = 20 μs. All probabilities follow the Boltzmann distribution in
the quasistatic region (green) until they start freezing in the freezing
region (yellow) and stay constant in the frozen region (blue). All final
probabilities are close to the Boltzmann probabilities at the freeze-out
point s∗, marked by the vertical (red) dashed line.

It has been conjectured that QA can become advantageous
over thermal annealing or SA for problems that have thin
but tall barriers in their energy landscapes [4]. The reason
is tunneling through such barriers becomes more efficient
than thermal excitation over the barrier. This is certainly
a dynamical effect and not an equilibrium property. If the

source of a possible quantum speedup is dynamical, as
conjectured, then searching for the speedup requires access to
such dynamics. In general, an equilibrium population is only a
function of the energy eigenvalues and therefore is independent
of the dynamics. For a quasistatic quantum annealer with a
sharp freeze-out at s = s∗, the final ground-state population
is close to P B

0 (s∗), which is only a function of En(s∗). It
is clear that, from such probabilities, it is not possible to
determine how fast the distribution is established. For example,
consider a hypothetical quantum annealer that can return a
Boltzmann distribution of H (s∗) within a constant time ta =
O(1) (independent of N ) that is much faster than any other
classical solvers and obviously scales better than all of them.
Since sampling from a Boltzmann distribution is a very hard
computational problem, this hypothetical quantum annealer
(although it may never exist) can provide an incredible
quantum speedup for such a hard problem. Nevertheless, when
assessed based on a suboptimal tc, defined in Eq. (3), it may
scale worse than some optimized classical solvers, merely due
to the scaling of P B

0 (N ).
We can now return to our original question of whether it

is possible to determine a bound for quantum speedup from
suboptimal data. If the measured slope in Fig. 1(a) provides a
lower bound for the optimal slope, as it appears in that figure,
then one may know with certainty when quantum speedup is
not possible. A measured (suboptimal) slope being larger than
the classical slopes means that the optimal slope would be even
larger. Therefore, the optimized QA would scale even worse
and it can never be able to provide quantum speedup. On the
other hand, if the measured slope is smaller than classical,
then no conclusion can be made because there is always a
possibility that the optimal slope be larger than classical. In
other words, it is possible to “rule out” quantum speedup from a
suboptimal performance, but it is not possible to prove it. Based
on what we discussed before, if the suboptimal probabilities
do not provide information about the quantum dynamics, then
it should not be possible to even put a bound on quantum
speedup, which seems to contradict the above argument. To
resolve this, we notice that the situation depicted in Fig. 1(a) is
based on assumptions which may not hold in general for QA.
For example, it is assumed that the slope of each curve at a
fixed ta is a monotonically increasing function of N , or that tc
increases with ta at small N , but decreases at large N . It is also
assumed [implicitly in Fig. 1(a), but explicitly in Fig. 1(b)]
that the probability P0 is a monotonically increasing function
of ta . Most of these assumptions are based on observations
from classical solvers such as SQA (see, e.g., supplementary
information of Ref. [8]) and may even apply to most classical
solvers. Establishing that they also hold in general for QA
requires a proof. It is, however, possible to disprove them by a
counterexample, as we do next.

As a counterexample, we examine the last assumption
mentioned above, i.e., P0(ta) is a monotonically increasing
function. We calculate P0 as a function of ta for the 16-qubit
instance of Fig. 2 by using the Redfield model that we
used before with the same realistic parameters that have
shown agreement with experiment [14]. Circles (squares)
in Fig. 3 are results of the master equation calculations
with (without) coupling to the environment. It is clear that
the open system probability behaves nonmonotonically. For
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FIG. 3. (Color online) Ground-state probability as a function of
ta for the problem instance studied in Fig. 2. The circles are calculated
by using the Redfield master equation calculation with the same
parameters as in Fig. 2(c). The squares are results of closed-system
calculations. Three regions are distinguished: Coherent, where the
environment does not have enough time to affect the system hence
the open- and closed-system probabilities coincide. Nonequilibrium,
in which the environment starts to occupy the excited states during
the evolution but does not have enough time to establish equilibrium.
Quasistatic, where the evolution is so slow that the system follows
equilibrium during most of the evolution [as in Fig. 2(c)] and P0

depends on ta according to Eq. (4).

short ta , the environment does not have enough time to
excite the system from the ground state; therefore, the open-
and closed-system probabilities coincide (gray region). For
intermediate ta , the environment starts to populate the excited
states through a nonequilibrium dynamics and the probabilities
decrease (pink region). At long ta , the system starts observing
quasistatic evolution with an equilibrated final population and
a P0 that increases according to Eq. (4). Such a monotonic
ta-dependence is expected to be more generic than the chosen
example. Since in QA the system starts in the ground state, the
thermal excitation populates the excited states from bottom
up (unlike the top-down relaxation in SA). By decreasing ta
beyond the relaxation time, the thermal processes will not have
enough time to excite the system, thus P0 will increase. When
annealing becomes so fast that the nonadiabatic excitations
become possible, P0 will start decreasing again. Similar
behavior has recently been observed in SQA [21].

A nonmonotonic P0(ta) may result in a performance very
different from what is predicted in Fig. 1(a). If we allow
probabilities to exceed the asymptotic probability for small
ta in Fig. 1(b), then we may obtain Fig. 4(a), which leads to a
tc plotted in Fig. 4(b). The plotted optimal line in Fig. 4(b) has
now a smaller slope than the asymptotic one, contradicting
the argument used to bound quantum speedup. It should be
emphasized that the behavior depicted in Fig. 4 serves only as
a counterexample and we do not claim it to be generic for QA.
Other situations may arise that could be different from both
Figs. 1 and 4.

It is important to mention that the final probabilities of a
quantum annealer is not always an equilibrium population,
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FIG. 4. (Color online) (a) P0 and (b) tc as a function of
√

N

assuming a nonmonotonic P0(ta). The probabilities at ta2 exceed
the asymptotic line. The optimal curve in panel (a) is plotted by
connecting the corresponding tangency points in panel (b).

even for long ta . Since the relaxation rates between different
energy levels change differently with time, they may freeze at
different points during the annealing, leading to a distributed
freeze-out [a wide freezing region in Fig. 2(c)]. In such
cases, it is not possible to identify a single freeze-out point
at which the equilibrium population gives the final population.
Such situations are likely to happen when the problem has
a complicated energy landscape involving numerous valleys
with large barriers between them. These problems are expected
to have final populations that are more sensitive to ta and do not
correlate with equilibrated QMC simulations. In Ref. [22], it
was shown that random problems on the Chimera graph have
no spin glass phase transition at any nonzero temperature.
The lack of spin-glass phase transition is an indication that the
classical energy landscape of the problem is not very complex,
thus equilibration may be easy. This signifies the importance
of the problem selection for any exploration of the role of
quantum dynamics in QA, as correctly pointed out in Ref. [22].

To summarize, we have shown that a quasistatic evolution
with long annealing time can mask the underlying quantum
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dynamics in a quantum annealer. The final population of such
an annealer is likely to be close to a Boltzmann distribution at
a single freeze-out point. It is therefore expected to correlate
well with a quantum Monte Carlo simulation equilibrated at
the same point with a correct temperature. Reference [12]
provides indications of such correlations, although QMC was
used as an annealing algorithm (SQA) with a time-dependent
Hamiltonian (not at a fixed s∗), and the T used was smaller than
the real temperature. This may explain why correlations did
not persist when considering excited states [13]. Correlation
with SA is also possible (see, e.g., Ref. [9]) but requires the
quantum eigenenergies to be close to the classical energies
at the freeze-out point. Other semiclassical models may also
correlate with a quasistatic quantum annealer if they reach
the same equilibrated population (see, e.g., Ref. [23]). These
correlations are signatures of a quasistatic behavior and do
not mean that the dynamics of the quantum annealer can
be simulated by such algorithms. The lack of access to the

relevant quantum dynamics makes the search for quantum
speedup in a suboptimal quantum annealer problematic. Since
one cannot neither prove nor rule out the possibility of
quantum speedup, no conclusion can be made unless the
optimization procedure proposed in Ref. [8] is done properly.
We should emphasize that our argument does not undermine
the importance of benchmarking in assessing the performance
of a quantum annealer, even if suboptimal, nor do we claim
that a quasistatic quantum annealer is not useful. Indeed,
providing samples from a Boltzmann distribution is a very hard
computational problem with many applications especially in
machine learning. However, different benchmarking strategies
are required to assess QA for such applications [24].
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Isakov, W. Kaminsky, A. King, D. Lidar, C. McGeoch, H.
Neven, J. Raymond, J. Rolfe, A. Roy, A. Smirnov, and R. de
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