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In engineered quantum systems, the Hamiltonian is often not completely known and needs to be determined
experimentally with accuracy and efficiency. We show that this may be done at temperatures that are higher than
the characteristic interaction energies, but not too much higher. The condition for this is that there are not too
many multiparticle interactions: the Hamiltonian is sparse in a well-defined sense. The protocol that accomplishes
this is related to compressed sensing methods of classical signal processing, in this case applied to sparse rather
than low-rank matrices.
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I. INTRODUCTION

In quantum physics, the standard method for understanding
a large system has long been to make an approximate model
Hamiltonian that captures the essential physics of the material
in question. More recently, this situation is often turned on its
head: a quantum system of n qubits is constructed and we need
to find its Hamiltonian from experimental data. To do quantum
information processing of any kind, accurate control of the
Hamiltonian is always a prerequisite. One needs to be able to
apply external controls to guide the desired time-dependent
Hamiltonian, but it is usually also the case that there are
“always-on” terms, generally time independent or nearly so,
in the Hamiltonian that need to be determined at a precise
quantitative level [1]. This is a particularly pressing issue for a
quantum memory or in cold-atom systems that are specifically
constructed in order to simulate many-body Hamiltonians. For
electron spin qubits in semiconductor quantum dots [2], for
example, the single-qubit energy-level splittings are subject to
unknown random hyperfine fields, and there are also dipole-
dipole interactions. These are one- and two-qubit interactions,
but there is also the more challenging case of multiqubit
interactions. In this paper we propose an efficient way to
determine these always-on terms.

For n = 1 and n = 2, considerable work has been done,
since these cases are relevant to the performance of gates [3–5].
Process tomography is the usual tool for problems with n > 2,
but standard methods [6,7] require a number of measurements
that scales exponentially with n. Other methods that pertain
particularly to spin systems require only a small number of
measurements, but they appear to involve full simulation of the
system, a task that again scales exponentially [8–11]. Another
proposal aims to characterize large-scale quantum simulators;
this procedure requires access to a trusted small-scale quantum
simulator [12].

Several authors have investigated the use of techniques from
compressed sensing (CS) [13], which would give an efficient
solution to this problem when the process matrix χ is s sparse
(has only s nonzero elements) in some basis [14–16]. The
number of measurements needed to determine χ is then O(sn).
However, this scheme requires prior knowledge of the basis in
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which χ is sparse. Thus it is useful for verifying quantum gates
but cannot be used to determine processes (or Hamiltonians)
when an approximation of the true dynamics is not known in
advance, which is the case we consider.

As pointed out in Ref. [17], it makes sense to take advantage
of the fact that, to a very good approximation, almost all qubit
Hamiltonians H have only one- and two-qubit interactions,
so that the number of parameters to be determined scales
only as n2. These authors suggest a sequence of randomly
chosen measurements on randomly prepared states. If the
time interval t between preparation and measurement is short
enough, ||H ||t � 1, then the density matrix is simply related
to H. Here ||H || is the operator norm (largest eigenvalue) of
H. CS techniques can then come into play and the number of
experimental configurations required to determine H is O(n3).
However, ||H || grows with the size of the system, which limits
the usefulness of this scheme.

II. METHOD

Here we propose a different approach for the experimental
determination of H. The most general Hamiltonian for an array
of n qubits is

H = −η

4n−1∑
a=1

Jaλa, (1)

where a is an n-digit base-4 number a = a1a2 . . . an and the
λa are tensor products of Pauli matrices: λa = σa1 ⊗ σa2 ⊗
. . . ⊗ σan

. σ1,2,3 = σx,y,z and σ0 is the identity matrix. For
notational convenience we have defined the energy scale
η, set by the condition that the dimensionless variables Ja

satisfy |Ja| � 1. We assume that only s of the 4n − 1 possible
Ja values are 0 and s � 4n. The system is placed in a
bath and comes to thermal equilibrium. The density matrix
is ρ = exp (−βH )/Q, where Q is the partition function:
Q = Tr exp (−βH ) and β = 1/kBT . If T = 0, ρ reduces to
ρ = |0〉〈0|, where |0〉 is the ground state so that the density
matrix has rank 1. We work in the opposite, high-temperature,
limit ηβ � 1, where ρ = 2−n(I − βH + β2H 2/2 + . . . ),
and we may truncate the expansion. In general there are a
macroscopic number of energy eigenstates that enter ρ, and
ρ represents a high-rank state. It is important to note that
the application of CS proposed here is opposite to others
in the literature, which focus primarily on the determination
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of states of low rank [18,19]. In fact the density matrix is
technically of full rank at any finite temperature and the
naive (but inefficient) procedure to determine the Ja would
be to measure the observables λa . For ηβ � 1 this gives
ηJa = −2−nTr(λaH ) ≈ β−1Tr(λaρ). However, we use the
fact that only s values of Ja are nonzero to reduce the number
of observables that need to be measured, when s is sufficiently
small. [Given that many-body systems typically have few
many-body interactions (resulting in small s), it is immediately
natural to represent the Hamiltonian in the “Pauli basis” of
Eq. (1), guaranteeing sparsity in a known basis.]

The measurement and processing protocol is as follows.
After the system reaches equilibrium, its state is given
by ρ = 2−nI + 2−n

∑4n−1
a=1 vaλa , where �v is the equilibrium

polarization vector of the system. We then subject the system
to a random unitary transformation U so that the new state
of the system is ρ ′ = UρU−1. The procedure for generating
random U ’s that are efficiently implementable with a small
gate set is a modified version of one proposed for quantum data
hiding by DiVincenzo, Leung, and Terhal [20], using work by
Harrow and Low on random quantum circuits [21]. The U ’s
are not selected uniformly from the Haar distribution but our
results indicate that they provide usable compression matrices.
(Details for generating each U are provided in Appendix B.)

The new polarization vector �v′ is linearly related
to the previous one: v′

a = ∑4n−1
b=1 Cabvb, with Cab =

2−nTr(λaUλbU
−1). C is an orthogonal matrix and �v is a long

but approximately sparse vector, the “signal vector.” We now
choose M unique observables in the set {λk}4n−1

k=1 . Measuring
the M chosen observables yields the results {yk}Mk=1, with the
yk satisfying −1 � yk � 1; |yk| will, in general, be of order
ηβ.

(Additionally, we note that, in practice, each observable λi

will be repeatedly measured to increase the accuracy of the
observed value yi . If we denote by Ri the number of times that
λi is measured on identical copies of ρ, then yi approaches
Tr(λiUρU †) as Ri approaches infinity. For the time being, we
make the idealizing assumption that the expectation value of
each observable is exactly known; we address the point of
finite measurement statistics at the end of Sec. III.)

We can consider our collection of measurements to form a
“measurement vector” �y, which is a subset of the elements of
�v′. We now have

yk =
∑

b

C
(M)
kb vb, (2)

where C(M) consists of M rows of C, the choice of rows
corresponding to the observables measured. C(M) is an M ×
(4n − 1) matrix, the “compression matrix.” The next step is to
estimate the polarization vector by minimizing the L1 norm
of all possible polarization vectors that are consistent with the
measurement results:

�vest = arg min
�w

|| �w||1, subject to
∑

b

C
(M)
kb wb = yk. (3)

The L1 norm of a vector �w is defined as ‖ �w‖1 = ∑d
i=1 |wi |.

This is a convex optimization problem that can be solved
efficiently. For our purposes it is important to note that this
CS protocol is stable with respect to deviations from exact

sparsity in the signal vector, so that, as we see below, the
protocol works at moderate temperatures. Also, it can be
shown that if C(M) is formed by choosing rows at random from
C, then C(M) satisfies a certain restricted isometry condition
which guarantees that if M > An ln3 s for some constant A,
we can recover an approximately s-sparse vector �v with a high
probability [22].

Once a good estimate of the polarization vector is available,
we can estimate the Hamiltonian:

Hest = β−1(2−nTr(ln ρest)I − ln ρest). (4)

III. RESULTS

We now turn to numerical studies of the protocol for
three, four, and five qubits, for which a takes on values of
N = 63, N = 255, and N = 1023, respectively. We input a
random Hamiltonian, compute the equilibrium density matrix
ρ, and measure M observables, i.e., characterize ρ by the
numbers Tr(λiρ), i = 1,2, . . . ,M. While the observables are
chosen at random, they are ordered by weight; that is, all
observables of weight 1 (i.e., single-qubit measurements) are
measured before all observables of weight 2 (i.e., two-qubit
measurements), and so on. (See Appendixes A and C for
details regarding Hamiltonian generation and weight-ordering
of measurements, respectively.)

The simplest case is the determination of the Ja values when
we are given that only s of them are nonzero. We do not have
firm guarantees of success at a finite temperature, since the
density matrix is not s sparse. So the first task is to determine
how high the temperature needs to be to ensure success.
The temperature is quantified by the dimensionless ratio ηβ.

Success is measured by the distance of Hest, the Hamiltonian
estimated from Eq. (4), from the actual Hamiltonian H, the
metric chosen as the one corresponding to the Frobenius
norm: if (||Hest − H ||F )/η < threshold, where threshold is
determined by numerical stability tests, the procedure is judged
to have succeeded.

Figure 1 shows the quality of the reconstruction of H

as a function of the parameters M/N , which is the number
of observables measured divided by the signal length, and
the sparsity ratio s/N. We assume for the moment that each
observable is measured completely accurately (which would
require Ri = ∞ for all measured observables λi). There are
three qubits and each pixel in the plots is the result of 100
trials. Note, first, that the lower-right corner is a region where
the number of nonzero entries in Ja is greater than the number
of measured observables: reconstruction is impossible there.
As we move away from the diagonal to the upper left, the
success probability increases. As is generally observed in
cases where CS works, the boundary between success and
failure (that is, the Donoho-Tanner phase transition) is sharp.
A high temperature is favorable for reconstruction, but even at
quite moderate temperatures there is a very substantial region
of parameter space where the determination of H succeeds.
The red region in both panels is where H is successfully
reconstructed, due to the density matrix being approximately
sparse in that region.

These computations show that CS can work, in principle,
and provide strong evidence that the number of measured
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(a)

(b)

FIG. 1. (Color) Quality of Hamiltonian determination for random
couplings as a function of temperature. (a) and (b) The inverse
dimensionless temperature is given by ηβ = 10−1 and ηβ = 10−4,
respectively. Red indicates a high success rate, green indicates failure,
and a “negative” success rate (blue) means that reconstruction is
impossible. [That is, heat map values between 0 (green) and 1 (red)
are to be taken as probabilities on a linear scale, while heat map
values of −1 (blue) indicate that not only would reconstruction
fail for our proposed procedure, but reconstruction would fail given
any procedure, as these blue points correspond to measuring fewer
observables than there are nonzero entries to be reconstructed.] Each
pixel is the average of 100 trials.

observables needed is proportional to n, the number of qubits,
rather than N, the number of possible couplings, when the
Hamiltonian is sparse. However, equipped with the knowledge
that H is sparse, quantum state tomography can also be carried
out with a reduced number of measured observables. We
next examine the question of how much advantage is actually
gained in practice over the straightforward method of standard
tomography, stopping when H has been determined. The left
column in Fig. 2 gives this comparison for n = 3 [Fig. 2(a)],
n = 4 [Fig. 2(b)], and n = 5 [Fig. 2(c)], with small values of s,

and for the moderate temperature of ηβ = 10−1. The number
of trials per data point is 100. The sampled M’s have a spacing
of 1 for n = 3 and n = 4, starting at a value of M = 2; due
to computational constraints, every tenth value of M is used
for n = 5, starting at a value of M = 11. The median value of
the normalized quality (||Hest − H ||F )/||H ||F of the estimate

is plotted as a function of M, so that low values correspond
to accurate estimates [23]. When the curve drops off sharply,
the “phase transition” from failure to success has occurred.
Thus, for example, in Fig. 2(a), the CS protocol for n = 3 and
s = 1 succeeds at M = 5. It is shown that CS gives a large
savings in the number of required observables for all cases
considered, ranging (roughly) from a factor of 4 to a factor of
7 for n = 3, from 6 to 12 for n = 4, and from 12 to as high
as 50 for n = 5. This is good evidence that the advantage of
the CS protocol increases with n, as we would expect from the
scaling arguments above.

In most cases of actual physical interest, we not only have
some knowledge of the sparsity of H, but also have some
knowledge of where the nonzeros lie. For example, for spin
qubits, one- and two-body interactions are likely to be much
greater in magnitude than three-body and higher interactions.
We then find s = O(n2). Locality may also reduce the sparsity;
for sufficiently short-range interactions s = O(n). This is a
very different situation than we have considered so far, where
the nonzero Ja’s were taken at random. Of course exponential
reductions in M required to reconstruct H are now out of the
question. The question is whether we can still get speedups that
may be useful in real situations: even constant speedups can
be important. So we perform the same numerical experiment
as in the left column in Fig. 2, but now the nonzero Ja values
are restricted to those corresponding to λa that are one- and
two-qubit operators, i.e., a has at most two nonzero digits. The
results are shown in the right column in Fig. 2. (The number of
trials and all other parameters are the same as in the left column
in Fig. 2.) In the “no-CS” (standard tomography) protocol,
measurements of one- and two-body operators are made first,
which improves the performance of the no-CS procedure, but
not enough to overcome the advantage of the CS protocol. (See
Appendix D for further details.)

The ratio of the number of observables required is about a
factor of 2 to 4 for n = 3, about a factor of 3 to 6 for n = 4,
and about a factor of 6 to 8 for n = 5. Thus the speedup is
less when the knowledge of the locations of the nonzeros is
increased, but it is still quite substantial. More importantly,
it appears that the speedup still increases with the number of
qubits.

It is also important to address the point of finite measure-
ment statistics (that is, finite Ri). While all simulated data
presented here were generated without finite measurement
error, these findings are, in the appropriate temperature limit,
robust against such error. Each observable λi may be thought
of as a biased coin, with the bias being given by 2yi − 1 =
2Tr(λiUρU †) − 1. The accuracy in estimating this bias is
given by the usual biased-coin formula; that is, the error in
the estimator for λi will scale as

√
Ri

−1
. As we are looking at

thermalized states, we expect each yi to be relatively close to
0; thus Ri should be of the order of |yi |−2 in order to estimate
the expectation value of λi accurately. As |yi | ∼ O(2−nηβ),
we find that relatively hotter and larger systems would require
unfeasibly large Ri to implement. (For example, ηβ = 10−4,
n = 3 would require Ri to be of the order of several billion!)
However, at moderate temperatures and qubit numbers, our
proposed scheme should be reasonable. For example, our
main results shown in Fig. 2 assume ηβ = 10−1, implying that
Ri < 7 × 103 would be sufficient for a three-qubit system.
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FIG. 2. (Color) Quality of Hamiltonian determination as a function of number of qubits and measured observables. (a)–(c) For Hamiltonians
with entirely random couplings; (d)–(f) for Hamiltonians with random one- and two-qubit couplings only. (a) and (d) n = 3; (b) and (e) n = 4;
(c) and (f) n = 5. Each plot gives the error in the estimated Hamiltonian as a function of the number of observables measured (M), with
compressed sensing (CS) and without (no CS), for varying small values of s (number of nonzero couplings). [While the minimum error
obtained by the no-CS protocol appears to be lower than the minimum error obtained with the CS protocol (∼10−14 and ∼10−9, respectively),
these differences are simply artifacts of the different noise floors of different numerical methods. For each algorithm, achieving its respective
noise floor indicates that the Hamiltonian has been successfully reconstructed.] In each case, the CS protocol substantially decreases the M

required to accurately reconstruct the Hamiltonian; this improvement is more significant when the couplings are totally random. Additionally,
we see that for both coupling schemes, the improvement increases with the number of qubits. Each data point is the median value of 100 trials.

Thus we see that the key to success is striking a balance
between the need for approximate sparsity (corresponding
to smaller ηβ) and the need for a feasibly low value of Ri

(corresponding to larger ηβ). This exact regime will depend
on the constraints of the experimentalist wishing to implement
this protocol.

Finally, we observe that one potential problem with this
method is that if there exists an always-on unknown Hamilto-
nian, it may be hard or impossible to implement high-precision
measurements via high-fidelity unitaries, as the presence of the
unknown Hamiltonian terms can ruin the implementation of
the desired unitaries. However, there exist several potential
work-arounds. First, even if the terms in the Hamiltonian
are “always on,” if the experimentalist can temporarily turn
off the entire Hamiltonian, such terms would not affect the
applied unitaries. Second, even if the Hamiltonian is truly
always on (i.e., can never be turned off), if the applied unitaries
are sufficiently strong, then the applied unitaries will only be
slightly perturbed by the always-on terms of the Hamiltonian.

More generally, the problem rectifying the effects of
always-on Hamiltonian terms on desired unitaries and
measurements indicates the importance of ensuring self-
consistency in the tomographic protocol. The exploration
of self-consistent tomographic protocols is a relatively new
development, with several notable proposals appearing re-
cently [24,25]. It is certainly worth exploring the possibility
of adapting one of these frameworks to fit our protocol or
developing an entirely new such framework to implement
tomography of sparse high-rank states in a self-consistent
manner.

IV. CONCLUSION

Previous improvements in the efficiency of quantum state
tomography have shown the usefulness of CS techniques by
focusing on the reconstruction of states of low rank. This
work, by contrast, uses this technique to reconstruct states of
high rank. This is not useful for validation of gate quality, but
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it can be used to determine the parameters in a many-body
Hamiltonian.

As CS reduces the number of real-valued system parameters
that must be measured, at the cost of increased postprocessing,
CS is only of value for systems in which measurements
are expensive but signal processing and postprocessing are
cheap. This trade-off is highly attractive for many classical
applications, but the trade-offs vary from case to case. In
nonqubit systems, one would need to examine whether there
is a clear way to determine the candidate observables. Our
quantum protocol will be useful and attractive when measure-
ment settings are expensive but quantum gate operations are
cheap. Otherwise, straightforward tomography will be better.
The competition between the two is greatly affected by how
much advance knowledge we have about the system. It is when
we do not have a very good idea in advance about the shape
of the Hamiltonian that our method is useful.
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APPENDIX A: GENERATION OF H

We generate random sparse Hamiltonians in the following
manner. For an energy scale η [as defined in Eq. (1)] and fixed
sparsity s, we generate s random pairs (J,λ), where each J

is a real number chosen uniformly from the interval [−η,η]
and each λα is an n-qubit Pauli operator, chosen without
replacement from the set of all appropriate Pauli operators.
By “appropriate,” we mean that each λ satisfies the desired
weight constraints for the particular Hamiltonian we are
constructing. (That is, if we are simulating a Hamiltonian with
arbitrary interactions, each λ may be of any weight; if we are
simulating a Hamiltonian that contains only one- and two-qubit
interactions, then each λ may only be of weight 1 or weight 2.)

APPENDIX B: GENERATION OF U

To choose a random unitary map that is efficiently imple-
mentable with a small gate set, we use the following procedure,
inspired by a technique for quantum data hiding proposed
by DiVincenzo, Leung, and Terhal [20], along with work by
Harrow and Low on random quantum circuits [21].

For an n-qubit system, we consider the set G of quantum
gates

G =
{
Hp,Pq,P

†
r ,Rs

(
π

8

)
,CNOTtu

}
, (B1)

where H is the Hadamard gate, P is the phase gate, R(π
8 ) is

the π
8 gate, and CNOT is the controlled-not gate. The subscripts

label the qubit (or qubits) that each gate is acting on; that is,
G contains all single-qubit copies of {H,P,P †,R(π

8 )} and all
two-qubit copies of CNOT.

To form the unitary map U , we simply select (with
replacement) n8 elements of G uniformly at random. Letting
gi denote the ith selection from G, we define U to be

given by

U =
n8∏

i=1

gi. (B2)

Note that this gives us a random unitary operation on n

qubits which, while not selected uniformly from the Haar
distribution, is sufficiently random as to successfully generate
a compression matrix which can be used for CS. Additionally,
we note that it is an open question whether or not a smaller
set of gates and/or a shorter gate sequence could yield equally
successful results. The recent results in [26] indicate that the
gate sequence could potentially be linear (up to additional
logarithmic factors) in n.

Finally, we note that perfect knowledge of U may be
unobtainable. However, this does not affect our overall point,
as compressed sensing methods are robust against errors in the
measurement record, provided these errors are not too large
[13]. Thus, perfect knowledge of U is not required, although
it should be known to reasonable approximation.

APPENDIX C: WEIGHT-ORDERING OF MEASUREMENTS

It may be of some benefit to the experimentalist for
whom lower weight observables are easier to measure to be
able to prioritize low-weight measurements over high-weight
measurements. Therefore, we show here that the order the
observables are chosen in should not affect the accuracy of the
Hamiltonian or the density matrix reconstructions, allowing
for the measurements to be chosen according to weight. (That
is, all single-qubit measurements may be performed before
any two-qubit measurement, which in turn may precede all
three-qubit measurements, and so on.) This ordering by weight
is justified in the following manner.

We note that if the kth Pauli measured is λk , then the kth
element of our measurement vector �y is given as

yk = Tr(λkU
†ρU ), (C1)

where ρ is the initial density matrix and U is the random
unitary map. However, due to the cyclic property of the trace,
we may re-express Eq. (C1) as

yk = Tr[(UλkU
†)ρ]. (C2)

That is, we may consider our kth observable measured to
correspond to measuring the expectation value of a Pauli sub-
jected to a random unitary transformation with respect to the
fixed and original density matrix. Therefore, as U effectively
randomizes each λk , choosing them in order of their weights
should not affect the reconstruction algorithm. (Indeed, we
have performed numerical tests which demonstrate this.)

APPENDIX D: STATE RECONSTRUCTION
VIA “NO-CS” PROTOCOL

The no-CS protocol for reconstructing the density matrix
ρ is as follows. For an estimate of ρ in which M Pauli
observables are measured, the M expectation values are input
as the appropriate vi’s; the remaining vi’s are set to 0.
While this estimation procedure could theoretically produce
a nonphysical ρest with negative eigenvalues, in practice,
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this is not a concern, as any state we are estimating has a
polarization vector with a small L2 norm, while a nonphysical

density matrix with one or more negative eigenvalues has a
polarization vector with a large L2 norm.
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