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Device-independent quantum key distribution with generalized two-mode Schrödinger cat states
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We show how weak nonlinearities can be used in a device-independent quantum key distribution (QKD)
protocol using generalized two-mode Schrödinger cat states. The QKD protocol is therefore shown to be secure
against collective attacks and for some coherent attacks. We derive analytical formulas for the optimal values of
the Bell parameter, the quantum bit error rate, and the device-independent secret key rate in the noiseless lossy
bosonic channel. Additionally, we give the filters and measurements which achieve these optimal values. We find
that, over any distance in this channel, the quantum bit error rate is identically zero, in principle, and the states
in the protocol are always able to violate a Bell inequality. The protocol is found to be superior in some regimes
to a device-independent QKD protocol based on polarization entangled states in a depolarizing channel. Finally,
we propose an implementation for the optimal filters and measurements.
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The last two decades have seen a rise in the number and
quality of quantum key distribution (QKD) protocols [1–3].
Some of these have been developed into successful commercial
products currently deployed in telecommunications [4,5].
These systems are designed on the principle of provably secure
communication in which, under certain assumptions, the
security is guaranteed by the laws of physics, not the assumed
difficulty of performing certain mathematical operations as
in classical cryptography protocols. Unfortunately, practical
implementations of QKD protocols have in many cases fallen
short of their desired goal; due to rate ceilings, current QKD
systems are used only to generate keys for use with standard
cryptographic protocols. Additionally, in recent years both
research and commercially developed QKD systems have been
successfully hacked by using side-channel information [6–21].

In response to these limitations, there has been an effort
to develop QKD protocols which are immune to the practical
limitations of the devices in which they are implemented.
These protocols are called device-independent QKD (DIQKD)
protocols and are based on violation of Bell and Einstein–
Podolsky–Rosen-steering (EPR-steering) inequalities
[22–26]. If a particular physical implementation of the
device-independent QKD protocol is able to violate a
Bell inequality, then the resulting key can be considered
to be secure, regardless of the details of the physical
implementation. Device-independent QKD protocols have
been shown to be secure under collective attacks and, in some
instances, are secure under coherent attacks [23,24,27,28].

Although device-independence provides a way around the
security limitations of previous QKD protocols, it further
restricts the secret key generation rate which may be obtained.
As a result, there is a growing interest in trying to implement
DIQKD in diverse systems in an attempt to increase the
secret key generation rate. With that in mind, in this paper
we present an alternative implementation of DIQKD which
makes use of highly non-Gaussian states: phase-entangled
coherent states. We show here that, in certain bosonic chan-
nels, phase-entangled coherent states have secret key rates

competitive with state-of-the-art DIQKD systems, including
DIQKD systems based on discrete variables. Beyond being
competitive with state-of-the-art systems, we also show that
phase-entangled coherent states allow for a high degree of
flexibility in the deployment of the QKD protocol. This could
be helpful in situations where the properties of the channel,
in particular, the total transmission rate, are variable over
time. Additionally, although the phase-entangled coherent
state is non-Gaussian, it is relatively easy to generate, requiring
only a single photon source and a relatively weak Kerr
nonlinearity [29].

Device-independent quantum key distribution proceeds in
the following manner: Two distant parties, Alice and Bob,
receive entangled pairs from a distant third party, who is
possibly under the control of an eavesdropper, Eve. We assume
that the measurement device may not be trustworthy, having
possibly been manufactured by Eve. Alice and Bob are able
to set their devices to measure the operators {A0,A1,A2} and
{B1,B2} respectively; they record outcomes {ai,bj } which take
values in {−1,1}. We assume that Alice and Bob are in secure
locations; they are able to confirm that their devices do not
transmit signals of any kind to Eve. Alice and Bob select
their measurement settings at random for each photon they
measure. After all measurements have been performed, Alice
and Bob communicate the bases in which measurements where
made. Measurements performed in the bases {A0,B1} are used
to generate a secret key and determine the quantum bit error
rate (QBER) Q = prob(a0 �= b1). Measurements performed in
the basis {Ai,Bj } (i,j ∈ {1,2}) are used to determine whether
a Bell inequality is violated. Measurements performed in
the basis {A0,B2} are assumed to be uncorrelated and are
discarded.

We consider the phase-entangled coherent state which is
created by the entangling interferometer described in Ref. [30],

|ψ〉 = (|α+〉|α−〉 − |α−〉|α+〉)/N, (1)

where |α±〉 are coherent states with oppositely rotated phases
|α±〉 = |αe±iφ〉 with α � 0 where N = [2(1 − γ 2)]1/2 and
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γ = |〈α+|α−〉|. The phase-entangled coherent states are equiv-
alent to displaced Schrödinger cat states,

|ψ〉 = [D(α cos φ) ⊗ D(α cos φ)]

×(|β〉| − β〉 − | − β〉|β〉)/N, (2)

where β = iα sin φ. Additionally, we note that antisymmetric
states of this type have a concurrence of 1, are relatively robust
to photon loss, and are able to violate a Bell inequality after
a distance 400 km by using state-discrimination techniques
assuming a loss of 0.15 dB/km [29]. In the following,
we show that, in principle, with optimal measurements, the
phase-entangled coherent states can give rise to Bell-inequality
violation at any distance. It is this property we leverage for our
device-independent QKD protocol.

Once generated, the phase-entangled coherent states pass
through an optical fiber to Alice and Bob. We model the loss
incurred in the fiber as beam-splitter loss with transmission and
reflection coefficients t and r , respectively, where |t |2 + |r|2 =
1, and where the other input mode of the beam-splitter is in
the vacuum state. The resulting state is given by

|ψ ′〉 = (|tα+〉|tα−〉|rα+〉L|rα−〉L
− |tα−〉|tα+〉|rα−〉L|rα+〉L)/N, (3)

where we have assumed for simplicity that the loss coefficients
for the fiber to Alice are equal to those for the fiber to Bob. The
subscript L in Eq. (3) refers to the lossy modes of the optical
fiber, where we establish the convention that, in products of
the form |·〉L|·〉L, the first ket always refers to the lossy modes
of Alice’s fiber and the second to Bob’s, and single kets of the
form |·〉L refer generally to the joint space of Alice and Bob’s
lossy modes.

We define the orthonormal states following the work of
Ref. [31], which will be of use in tracing out the lossy modes
and quantifying the entanglement of the remaining state,

|±〉 = 1

N±
(eiδt /2|tα+〉 ± e−iδt /2|tα−〉), (4a)

|±〉L = 1

M±
(|rα+〉L|rα−〉L ± |rα−〉L|rα+〉L), (4b)

where N± = [2(1 ± γt )]1/2 and M± = [2(1 ± γ 2
r )]1/2, with

γq = |〈qα+|qα−〉| = γ |q|2 and δt = arg 〈tα+|tα−〉. It will also
be helpful to write out the inverse relationships,

|tα±〉 = e∓iδt /2

2
(N+|+〉 ± N−|−〉), (5a)

|rα±〉L|rα∓〉L = 1
2 (M+|+〉L ± M−|−〉L). (5b)

Substituting Eq. (5) into Eq. (3) and tracing over the lossy
modes, we arrive at the following mixed state written in the
basis of {| + +〉,| + −〉,| − +〉,| − −〉}:

ρ = M2
−

16N2
(N4

+ + N4
−)|	〉〈	| + M2

+
16N2

(2N2
+N2

−)|
〉〈
|, (6)

where |	〉 = (N2
+| + +〉 − N2

−| − −〉)(N4
+ + N4

−)−1/2 and
|
〉 = (| + −〉 − | − +〉)/√2.

We use this form of ρ to determine the optimal filtering
operations for single-copy entanglement distillation. The opti-
mal filters MA ⊗ MB are those which result in a Bell-diagonal

state, have maximum probability of success, and satisfy the
requirements of being a valid filtering operation [32]. A
Bell-diagonal state is one which can be expressed as a mixture
of Bell states. The probability of success of the filtering
operation is given by

p = Tr (MA ⊗ MB)ρ(MA ⊗ MB)†. (7)

Finally, a valid filtering operation Mi has the property that
(1 − M

†
i Mi) is a positive operator. We introduce the state � to

simplify the algebra,

� =

⎛
⎜⎜⎝

a 0 0 −√
ad

0 b −b 0
0 −b b 0

−√
ad 0 0 d

⎞
⎟⎟⎠, (8)

where the quantities in � are defined by the relation � = ρ,
i.e., a = M2

−N4
+/(16N2), b = M2

+N2
+N2

−/(16N2), and d =
M2

−N4
−/(16N2). Consequently, we note that a � d since N+ �

N−. By using the method described by Verstraete et al. [32] it
can be shown that the optimal filtering operations are given by

MA = MB =
(

(d/a)1/4 0
0 1

)
, (9)

also written as MA = MB = (d/a)1/4|+〉〈+| + |−〉〈−|. The
state after the filtering operation is given by

�′ = 1

2(b + √
ad)

⎛
⎜⎜⎝

√
ad 0 0 −√

ad

0 b −b 0
0 −b b 0

−√
ad 0 0

√
ad

⎞
⎟⎟⎠, (10)

which occurs with a probability of success of p = 2
√

d/a(b +√
ad). Since a, b, and d are all positive, we see that the filtering

operation always has a nonzero probability of success.
Following the work of Horodecki et al. [33], we can use

the correlation matrix to determine the maximum possible
Bell violation after the filtering operations. We briefly review
how this is done. The correlation matrix C is defined to
be Cij = Tr (σi ⊗ σj )�′, where σi and σj are the standard
Pauli matrices in the basis {|+〉,|−〉}, with i,j ∈ {x,y,z}. A
dichotomic measurement operator A with eigenvalues of ±1
can be represented by the unit vector a = (ax,ay,az) where
A = axσx + ayσy + azσz. It is straightforward to show that a
joint dichotomic measurement 〈A ⊗ B〉 can be calculated by
using the correlation matrix as 〈A ⊗ B〉 = a · C · b, where we
define b for operator B similar to a. Consequently, the Bell
parameter is given by

〈S〉 = (a1 + a2) · C · b + (a1 − a2) · C · b2, (11)

where S = A1 ⊗ B1 + A2 ⊗ B1 + A1 ⊗ B2 − A2 ⊗ B2. The
form of the Bell parameter given in Eq. (11) lends itself
easily to constrained maximization techniques, as shown
by Horodecki et al. [33]. The maximum value of the Bell
parameter is given by Smax = 2(s2

1 + s2
2 )1/2 where s1 and s2

are the largest two singular values of the correlation matrix.
The left- and right-singular vectors li and ri of the correlation
matrix can be used to determine a set of measurements
which achieves the maximum value of the Bell parameter.
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Specifically,

a1 = cos ϕ l1 + sin ϕ l2, b1 = r1,
(12)

a2 = cos ϕ l1 − sin ϕ l2, b2 = r2,

where cos ϕ = s1(s2
1 + s2

2 )−1/2 with (0 � ϕ � π/4). Mapping
the vectors in Eq. (12) back to operators in the two-qubit
Hilbert spaces yields the appropriate measurements for achiev-
ing the maximum value of the Bell parameter experimentally.

In our specific case, i.e., for the state �′, the correlation
matrix is diagonal with values Cxx = −1 and Cyy = Czz =
−(b − √

ad)/(b + √
ad). Consequently, the maximum value

of the Bell parameter is

Smax = 2

√
1 +

(
b − √

ad

b + √
ad

)2

. (13)

Except for the case where
√

ad = b, the state �′ is always able
to violate a Bell inequality. A set of measurements which give
rise to the maximum value of the Bell parameter are

A1 = cos ϕ σx + sin ϕ σy, B1 = −σx,
(14)

A2 = cos ϕ σx − sin ϕ σy, B2 = −σy,

where cos ϕ = 2/Smax with (0 � ϕ � π/4).
We now express the probability of success and the maxi-

mum value of the Bell parameter in terms of the initial overlap
γ and the total transmission probability T = |t |2:

p = (1 − γ T )2

1 − γ 2
, (15)

Smax = 2
√

1 + γ 4(1−T ). (16)

We see in Eq. (16) that, for a pure-loss channel, optimally
filtered phase-entangled coherent states are able to violate a
Bell inequality at any distance. Finally, as can be deduced
from the value of Cxx , measurements made in the σx ⊗ σx

basis are always perfectly anticorrelated regardless of the value
of γ or T . If A0 = σx then, in principle, the QBER for the
phase-entangled coherent states will be exactly zero: Qpecs =
0. These two remarkable results, Bell inequality violation as
well as zero QBER at any distance, are a result of the noiseless
nature of the pure-loss channel considered here, and are not
expected to extend to channel models which include noise.

We can use the probability of success, the maximum value
of the Bell parameter, and the QBER to determine a secret key
rate for a device-independent implementation of the protocol.
This is done by noting that the Holevo information between
Eve and Bob can be bounded by using the Bell violation,

χ (B1,E) � h

(
1 +

√
(S/2)2 − 1

2

)
, (17)

where the Holevo information is equal to the quantum mutual
information of the joint state shared by Bob and Eve after Bob’s
measurements have been performed [23]. In Eq. (17), h is the
binary Shannon entropy. Noting that the mutual information
between A0 and B1 is 1 and using the Holevo information in
Eq. (17), we find that the Devetak–Winter rate for the optimally
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FIG. 1. The secret key fraction K as a function of the distance
between Alice and Bob assuming a loss coefficient of 0.2 dB/km
and the optimal γ for the specified distance. This plot gives the raw
fraction; it does not include finite detection efficiencies, dark counts,
thermal noise, or the relative sampling frequency of the {A0,B1}
measurement.

filtered state is given by

rDW = 1 − h

(
1 + γ 2(1−T )

2

)
. (18)

Consequently, the raw secret key fraction K , under collective
attacks and with one-way classical postprocessing from Bob
to Alice is bounded by the probability of successful filtering
times the Devetak–Winter rate,

K � prDW = (1 − γ T )2

1 − γ 2

[
1 − h

(
1 + γ 2(1−T )

2

)]
. (19)

Since γ is a free parameter to be set by Alice and Bob given
knowledge of the total transmission T , we may optimize the
secret key fraction as a function of γ . We plot the resulting
secret key fraction in Fig. 1. The total secret key rate is just
the product of the secret key fraction, the {A0,B1} sampling
probability, and the raw repetition rate of the source.

For large distances, to lowest order in the total transmission
T , the optimal secret key fraction scales as T 2. The scaling
coefficient is given by

α = log2
10 γ

1 − γ 2

[
1 − h

(
1 + γ 2

2

)]
, (20)

which has a maximum of approximately 4.6% when γ 
 0.74.
By comparison, due solely to loss, the secret key fraction for a
biphoton entangled source scales no better than T 2 irrespective
of the QKD protocol. This indicates that, compared against
an error-free biphoton-based QKD protocol, our protocol can
never have a secret key rate worse than 4.6% of that which can
be achieved in a biphoton-based protocol. In the presence of
noise, however, our protocol can drastically outperform some
biphoton-based DIQKD protocols, as we now discuss.

We make a comparison to a DIQKD protocol based
on polarization-entangled states subject to depolarizing
noise [24]. In this case, depolarizing noise increases the
probability of error and decreases the Bell violation. The
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FIG. 2. Plot of the critical QBER Qcrit as a function of distance,
see text for details. The biphoton approach is superior in the gray
region, corresponding to Q < Qcrit. The phase-entangled coherent-
state approach is superior in the white region, corresponding to Q >

Qcrit. The discrete-variable DIQKD approach using biphotons cannot
be used when the QBER exceeds the dashed black line.

resulting secret key fraction has been shown to be given by

Kbiphoton = T 2

(
1 − h(Q) − h

[
1 +

√
(S/2)2 − 1

2

])
, (21)

where S = 2
√

2(1 − 2Q) [24]. To permit a comparison to
known results, we would like to determine values of the QBER
and the propagation distance for which the phase-entangled
coherent-state-based protocol gives an improved secret key
fraction as compared to biphoton-based QKD protocols, i.e.,
K � Kbiphoton. We calculate numerically the critical QBER
Qcrit such that Kbiphoton = K at a given distance. When
the QBER exceeds Qcrit, the protocol based on the phase-
entangled coherent state will have a higher secret key rate
than the biphoton-based protocol, i.e., for Q > Qcrit we find
that K > Kbiphoton. We plot this critical QBER as a function of
distance in Fig. 2. We find that our approach using Schrödinger
cat states is superior whenever the QBER for the depolarizing
channel exceeds the black line in Fig. 2. For example, we find
that, at a distance of 11 km, if the quantum bit error rate is 6.6%,
our protocol has a secret key rate roughly twice that of the
biphoton-based protocol. It can be seen that, at large distances,
our approach is superior when the QBER of the depolarizing
channel exceeds 6.7%. Furthermore, it is clear that there are
QBERs for which the depolarizing channel cannot be used at
all (Q � 0.715), whereas the phase-entangled coherent-state
approach is viable over any distance. This analysis, which
is valid only for a pure-loss channel for the phase-entangled
DIQKD protocol, suggests that there may be physical channels
in which the coherent-state approach is superior to alternative
protocols, even in the presence of noise.

Examination of Figs. 1 and 2 reveals another advantage of
the Schrödinger cat implementation of DIQKD: by tuning γ

to the transmission distance, the secret key fraction can be
improved dramatically for short distances relative to the long-
term scaling. This sort of dynamical control is not typically
present in standard implementations of DIQKD in discrete
systems.

We now discuss the feasibility of performing the measure-
ments required to implement the optimal filtering and to violate
the Bell inequality. The primary requirement is the ability to
make projective measurements in a superposition of the |+〉
and |−〉 states. Techniques for making such a measurement are
the subject of ongoing investigations, but recent theoretical
results for Gaussian states as well as advances in detectors
suggest that these types of measurements are becoming easier
to implement experimentally.

We briefly describe one possible approach which could be
used to perform the required measurements by using presently
available equipment. The primary difficulty is to measure in
an arbitrary superposition of the basis states, |±〉. Without
loss of generality, let us try to find a way to measure in the
basis {|φ〉,|φ〉} where |φ〉 = c|+〉 + d|−〉 and |φ〉 = d∗|+〉 −
c∗|−〉. By using the following rotation, we can rotate the state
to the |±〉 basis,

U =
(

c∗ d∗
d −c

)
. (22)

The result of the rotation is U |φ〉 = |+〉 and U |φ〉 = |−〉.
|+〉 and |−〉 are standard Schrödinger cat states, albeit with
an additional phase, and can be distinguished by using phase
rotations and parity measurements.

To implement the rotation U one can use the approach
of Ralph et al. [34] in which U is decomposed into Euler
rotations which can be implemented nearly deterministically.
The rotation above can be decomposed into

U (θ,λ,σ ) = iRz(q)ĤRz(r)ĤRz(s), (23)

where Ĥ is the Hadamard matrix, and Rz(2θ ) = 1 cos θ −
iσz sin θ is the phase rotation gate [35]. The phase rotation gate
can be accomplished by using a displacement operation and
teleportation and the Hadamard matrix can be accomplished
by using a teleportation-like setup [34]. The values of q, r , and
s in Eq. (23) are given by

q = π

2
+ ξ + η, r = 2θ, s = π

2
+ ξ − η, (24)

where ξ = arg c, η = arg d, and tan θ = |d/c|. It is easy to see
that this approach, involving five nondeterministic operations,
will surely cause a reduction in the overall secret key fraction.
Regardless, it is possible that an improved measurement
approach may alleviate this problem.

We have shown an approach to implementing a device-
independent quantum key distribution in which phase-
entangled coherent states are used as the information carriers.
We show how a judicious choice of initial states relative to
the overall transmission rate of the channel can, in principle,
lead to improved key-generation rates relative to depolarizing
channels in device-independent quantum key distribution
systems based on polarization entanglement. We have shown
that, for QBERs exceeding ∼6.7%, phase-entangled states can
be superior to polarization-entangled states, and we have given
the explicit form of the states and measurements which achieve
this result. We reiterate that, apart from being secure against
collective attacks and, in some instances, coherent attacks, our
system is also flexible to time-varying loss in the quantum
channel; for example, in ground-to-satellite schemes. This
means, for example, that if the transmission loss suddenly
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decreases, the input states and measurements may be adapted
to optimally make use of the updated channel. Finally, we note

that our implementation does not require the eavesdropper to
be restricted to Gaussian measurements.
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