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Minimum time generation of SU(2) transformations with asymmetric bounds on the controls
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We study how to generate in minimum time special unitary transformations for a two-level quantum system
under the assumptions that (i) the system is subject to a constant drift, (ii) its dynamics can be affected by three
independent, bounded controls, and (iii) the bounds on the controls are asymmetric, that is, the constraint on
the control in the direction of the drift is independent of that on the controls in the orthogonal plane. Using
techniques recently developed for the analysis of SU(2) transformations, we fully characterize the reachable sets
of the system and the optimal control strategies for any possible target transformation.
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I. INTRODUCTION

The implementation in minimum time of specific transfor-
mations is a key ingredient of many protocols requiring the
manipulation of two-level quantum systems (as in quantum
information theory [1], in quantum optics, or in atomic and
molecular physics). Usually, one is interested in mapping in
minimum time an initial state to a final state under specific
conditions (see, e.g., [2–4] and references therein). However,
a general and convenient approach to this problem consists of
considering as a control target the transformations themselves,
rather than the states of the underlying physical system. In
our context, the problem can be formulated as an optimal
control problem on the Lie group SU(2) of special unitary
transformations in two dimensions [5–7]. An arbitrary element
of this group can be written as

X =
[
α −β∗
β α∗

]
, (1)

where α,β ∈ C satisfy |α|2 + |β|2 = 1. The dynamics of X is
given by the Schrödinger operator equation

Ẋ = (ω0Jz + uxJx + uyJy + uzJz)X, X(0) = I, (2)

where Jk (k = x,y,z) are the skew-Hermitian generators
of SU(2), that is, independent elements of the Lie algebra
su(2),ω0 is an arbitrary real parameter characterizing a con-
stant drift term in the dynamics, and uk = uk(t) are possibly
time-dependent control actions constrained by

u2
x + u2

y � γ 2
1 , u2

z � γ 2
2 , (3)

where γ1 � 0,γ2 � 0. In other words, we assume that the
strengths of the controls affecting the dynamics through Jz,
or, rather, through generators depending on Jx and Jy , are
independent.

Bounds on the controls depending on their squares, as
in (3), naturally arise when the control actions are physically
realized through fields, with energy proportional to their square
amplitude. The choice of bounds in (3) corresponds to different
driving strengths along the z direction or along directions in
an orthogonal plane. This means that there is an anisotropy in
the problem, with a privileged direction in space, determined
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by the specific apparatuses which are used to steer the system.
Stronger constraints can be given by choosing independent
bounds for the three controls, u2

x � γ 2
1 ,u2

y � γ 2
2 and u2

z � γ 2
3 ,

and have been considered elsewhere (for instance, see [2]
and references therein). From a theoretical point of view, the
analysis of the specific constraints considered in this work
is relevant because it represents an intermediate situation
between the problem with independently constrained controls,
which has not been solved in the general case, and the problem
with the isotropic bound u2

x + u2
y + u2

z ≤ γ 2, which has been
fully investigated [6,7]. Physically, bounds on the controls
depending on their squares are generically relevant in quantum
information processing [1], in atomic and molecular physics,
and in nuclear magnetic resonance (NMR) [8].

The generators satisfy the standard SU(2) commutation
relations

[Jj ,Jk] = Jl, (4)

where (j,k,l) is a cyclic permutation of (x,y,z). More
explicitly, Jk = − i

2σk , where σk are the Pauli matrices.
The target of the control action is to steer the identity I =

X(0) to an arbitrary final operator Xf = X(tf ) in minimum
time tf , through a suitable optimal control strategy uk(t). To
determine this strategy, we will use the necessary condition
of optimality provided by the Pontryagin maximum principle
(PMP) [9,10], which we briefly review. We introduce an auxil-
iary variable, the so-called costate M ∈ su(2), represented by
the coefficients

bk = −〈M,X†JkX〉, k = x,y,z, (5)

where bk = bk(t) and 〈A,B〉 ≡ Tr (AB†). Then we define the
Pontryagin Hamiltonian as

H (M,X,vx,vy,vz) = ω0bz + vxbx + vyby + vzbz. (6)

The PMP says that, if a control strategy uk(t) satisfying the
bounds (3) and the corresponding trajectory X̃(t) are optimal,
then there exists a costate M̃ �= 0 such that

H (M̃,X̃,ux,uy,uz) � H (M̃,X̃,vx,vy,vz) (7)

for all vk satisfying (3). The PMP is only a necessary
condition for optimality, useful for finding extremal control
strategies and trajectories. The optimal strategy and trajectory
are determined by comparing the extremal ones, analytically
or numerically.
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For its relevance, the control of SU(2) operations has been
extensively studied, with several constraints on the control
protocols. In this work we follow the approach presented
in [6], which allows an analytical investigation of the problem.
In that paper, the cases with three or two controls were
considered, with bounds u2

x + u2
y + u2

z � γ 2 and u2
x + u2

y �
γ 2, respectively. We refer to this work for several technical
details which are omitted here for brevity. Note that the present
framework reduces to the case with two controls in [6,7] when
γ2 = 0. Moreover, some optimal solutions in the case with
three controls in [6] are also optimal solutions in the present
case, with values of γ1 and γ2 depending on the specific
trajectory. Therefore, our analysis complements that presented
in [6,7].

II. DETERMINATION OF EXTREMAL TRAJECTORIES

The differential equations describing the costate dynamics
can be found by using (4) in (5), and they are given by

ḃx = −(ω0 + uz)by + uybz,

ḃy = (ω0 + uz)bx − uxbz, (8)

ḃz = uxby − uybx.

After defining μ =
√
b2

x + b2
y , we find that μ2 + b2

z is a constant,
which cannot vanish because M �= 0. By maximizing the
Pontryagin Hamiltonian (6) with the constraints (3), we
determine the form of the extremal controls. There are three
possible cases: (i) μ ≡ 0, (ii) bz ≡ 0, and (iii) neither of them.
In case (i), it follows from (8) that ux ≡ 0 and uy ≡ 0, and
then bz is a nonzero constant. Therefore, it must be

uz = γ2sgn(bz). (9)

In case (ii), from maximization of H we determine the form
of the extremal controls

ux = γ1
bx

μ
, uy = γ1

by

μ
, (10)

and uz has values in the interval [−γ2,γ2]. Finally, in case (iii)
both (9) and (10) must hold.

Having the form of the extremal controls, we can inte-
grate (2) and determine the trajectories in SU(2). Case (i) is
trivial, and we obtain X(t) = ei(ω0±γ2)τ I , where τ = t

2 . We
do not further consider this situation, which does not provide
optimal solutions. Cases (ii) and (iii) can be jointly integrated
by remembering that −γ2 � uz � γ2 and uz = ±γ2 in the two
cases, respectively. By using these controls in (8), it is possible
to prove that

bx = μ cos (ωt + φ), by = μ sin (ωt + φ), (11)

where φ is a constant and ω is a possibly time dependent
function given by

ω = ω(t) = ω0 + 1

t

∫ t

0
uz(s) ds (12)

in case (ii) and the constant

ω = ω0 + uz − γ1
bz

μ
(13)

in case (iii). Its range depends on the case under investigation:
ω < ω0 + γ2 if bz > 0, ω > ω0 − γ2 if bz < 0, and ω0 − γ2 �
ω(t) � ω0 + γ2 if bz = 0. We shall use ω rather than bz and
μ to identify extremal trajectories. Notice that we have been
able to integrate (8) even in the case of time-dependent uz

(and then ω) because of the simple form of this system. By
substituting (11) into (10), we find

ux = γ1 cos (ωt + φ), uy = γ1 sin (ωt + φ). (14)

By using these expressions in (2) and considering the repre-
sentation of X given in (1), following the steps detailed in [6]
(which can be simply readapted when ω is a function of time),
we find

α = e−iωτ

(
cos aτ − i

b

a
sin aτ

)
,

(15)
β = −i

γ1

a
ei(ωτ+φ) sin aτ ,

where we have rescaled time as τ = t
2 and defined

a = a(ω) =
√

b2 + γ 2
1 , (16)

with b = 0 in case (ii) and b = b(ω) = ω0 + uz − ω in case
(iii).

Because of the form of the drift term and the bounds on the
controls, the problem has a natural cylindrical symmetry. This
is apparent from (15), where the phase of β can be arbitrarily
modified through the parameter φ. In other words, all operators
X differing by an off-diagonal phase are completely equivalent
in the framework adopted in this work, and they can be reached
in the same optimal time [7]. Consequently, we can fully de-
scribe the extreme trajectories in SU(2) by considering the evo-
lution of α, or, more conveniently, its real and imaginary parts
x and y, respectively, which must satisfy x2 + y2 � 1. There-
fore, we can represent the relevant trajectories in the unit disk
of R2 (or, equivalently, in C). When bz �= 0, they are given by

x± = cos ωτ cos aτ − b

a
sin ωτ sin aτ ,

(17)

y± = − sin ωτ cos aτ − b

a
cos ωτ sin aτ ,

with ω as in (13); when bz = 0, they are

x0 = cos ωτ cos γ1τ , y0 = − sin ωτ cos γ1τ , (18)

with ω = ω(t) as in (12).
In the analysis of extremal trajectories, it is often important

to consider the so-called singular trajectories, that is, extremal
solutions such that the Pontryagin Hamiltonian is independent
of the controls (for the relevance of extremal trajectories in
concrete problems, see, for instance, [11,12] and references
therein). By jointly considering (6) and (5), we can conclude
that, in the context considered in this work, these solutions do
not exist because they would require bx ≡ by ≡ bz ≡ 0, which
is inconsistent with the requirement M �= 0. Only regular
trajectories (i.e., nonsingular) have to be taken into account.
Using a similar argument, we observe that it is impossible to
concatenate the extremal trajectories described before. Again,
this would require the vanishing of all bj at the switching time,
which is not admitted.
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III. EVOLUTION OF THE REACHABLE SETS

Following [6], we define the optimal front line as the set
of terminal points for a candidate optimal trajectory at time τ .
As we have seen, depending on bz, there are three families of
extremal trajectories. Correspondingly, there are three optimal
front lines in R2,

F+(τ ) ≡ {(x+,y+), − ∞ < ω < ω0 + γ2},
F−(τ ) ≡ {(x−,y−),ω0 − γ2 < ω < ∞}, (19)

F0(τ ) ≡ {(x0,y0),ω0 − γ2 � ω � ω0 + γ2},
or similar definitions in C, in terms of α0,α±. We recall that
ω is a constant for a given trajectory in F+ or F−, a possibly
time-dependent function for an extremal in F0.

The reachable set at time τ is, by definition, the set of
operators in SU(2) which can be reached in time less than or
equal to τ . The evolution of the reachable set of the system is
determined by the evolution of the optimal front lines (19), in
particular by their intersections, where the trajectories could
lose optimality. In the setting considered in [6], there is a
unique optimal front line F(τ ), and if we work in C and forget
for a while the bounds on ω, F±(τ ) can be expressed in terms
of it as

F±(τ ) = e∓iγ2τF(τ ) (20)

by means of suitable shifts in ω. Therefore, assuming again
that ω can be any real number, we can write

F−(τ ) = e2iγ2τF+(τ ), (21)

that is, at time τ the two sets are mapped into each other
by a rotation of angle 2γ2τ in the unit disk. We observe that
F+(τ ) = F−(τ ) when τ = kπ

γ2
, with k ∈ Z.

The individual analysis of F+(τ ) and F−(τ ) follows from
that of F(τ ). We summarize the main results. First of all,
there is a one-to-one correspondence between values of ω and
points on F+ and F−; that is, the associated trajectories do
not intersect in optimal conditions. Moreover, for each locus
there is a critical trajectory [13] spiraling around the center of
the disk, modified with respect to that corresponding to F(τ )
according to (20), and parameterized by the critical frequencies

ωc = γ 2
1 + (ω0 ± γ2)2

ω0 ± γ2
(22)

and losing optimality at the critical times

tc = π |ω0 ± γ2|
γ1

√
(ω0 ± γ2)2 + γ 2

1

. (23)

These trajectories can be cut loci for the system, that is, special
lines where optimal trajectories lose their optimality. Other
trajectories lose optimality on the border of the unit disk, which
is then a cut locus for the system. At time τ , the frequencies
corresponding to these trajectories are given by

ωc′ (τ ) = (ω0 ± γ2) ±
√(π

τ

)2
− γ 2

1 . (24)

Note that in (22) and (23), quantities with + and − signs refer
to F+ and F−, respectively. The same applies for the first ±
sign in (24), but the second ± sign depends on the specific case.

It is possible to prove that the possible scenarios are ωc > ω0 +
γ2 > 0 or ωc < ω0 + γ2 < 0 for F+ and ωc > ω0 − γ2 > 0 or
ωc < ω0 − γ2 < 0 for F−. Therefore, considering the allowed
range of values for ω, we see that sometimes the critical
trajectories are not extremal trajectories for the system. We can
also refine the definition of the optimal front lines, neglecting
contributions which are certainly suboptimal. For instance,
when ω0 > 0, the range of values of ω for F+(τ ) is given by
ωc′ (τ ) < ω < ω0 + γ2. ForF−(τ ), it is ωc < ω < ωc′ (τ ) when
γ2 < ω0 and ω0 − γ2 < ω < ωc′ (τ ) when γ2 > ω0. Similar
expressions can be found when ω0 < 0.

For small times (that is, in the neighborhood of t = 0) there
is a one-to-one correspondence between values of ω and points
in F0. Nonetheless, from (12) we see that there are different
control strategies uz = uz(t) leading to the same ω, that is,
those having the same time average. Therefore, in this case
there are different trajectories converging to the same point
of F0, and they are all equivalent [14]. In other words, in the
region spanned by F0, there are distinct extremal trajectories
(corresponding to different control strategies) leading to the
same final state at the same time and remaining extremals
after they intersect. This is not in contradiction to the results
of [6], where the optimal solution is unique and uz is constant,
because, in general, the optimal solutions for the case of
asymmetric bounds parameterized by γ1 and γ2 are not optimal
solutions for the problem with the symmetric bound given by
γ 2 = γ 2

1 + γ 2
2 .

Since x2
0 + y2

0 = cos2 γ1τ , the optimal front line F0(τ ) is
an arc of a circle centered at the origin, with time-dependent
radius cos γ1τ and angle 2γ2τ . If 2γ2τ � 2π , there are several
values of ω corresponding to the same point on the optimal
front line, and the corresponding extremal trajectories become
equivalent; that is, they attain the same point at the same time
time even if the time average of uz(t) is different.

By considering the definition of F0(τ ) and F±(τ ), we see
that these three loci are connected. Moreover, by using implicit
differentiation, we find that

dy0

dx0
= dy+

dx+
= dy−

dx−
= cot ωτ ; (25)

therefore, they are smoothly connected. It is possible to
consider as the optimal front line for this problem the union of
these three loci.

To complete the analysis, we must consider the intersections
between F+(τ ),F−(τ ), and F0(τ ) at any time τ . It turns
out that F0(τ ) never intersects F+(τ ) or F−(τ ) unless it is
suboptimal (and then these intersections are irrelevant for the
characterization of the evolution of the reachable sets of the
system). The intersection of F+(τ ) and F−(τ ) can be found
numerically. The two end points of F+ and F−, associated
with ω = ω0 + γ2 and ω = ω0 − γ2, respectively, coincide in
two cases: either when τ = π

γ2
(when the two end points of F0

overlap) or when τ = π
2γ1

(when the radius of F0 vanishes).

IV. TYPOLOGIES OF THE EVOLUTION OF THE
REACHABLE SETS AND EXAMPLES

We can sum up the previous results and classify the
systems in four classes, depending on the specific values
of ω0,γ1, and γ2. They correspond to different forms of the
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optimal trajectories, producing different time evolutions of the
reachable sets. A given target operator Xf ∈ SU(2) will require
different control strategies (and associated minimum time tf )
depending on the case at hand. For the sake of simplicity we
assume ω0 � 0, but a completely analogous classification can
also be given in the case ω0 < 0.

First of all, we observe that, since ω0 + γ2 � 0, the locus
F+ rotates counterclockwise in the unit disk. The sense of
rotation of F− depends on the sign of ω0 − γ2; therefore, the
evolution of the reachable set is radically different in the two
cases γ2 > ω0 and γ2 < ω0. Similarly, the long-time evolution
of the reachable set depends on the relative magnitude of γ1

and γ2. Following the discussion in the previous section, if
2γ1 � γ2, there are extremal trajectories with ending points
on F+ and F− which can get arbitrarily close to the center of
the unit disk (corresponding to the SWAP operator). Otherwise,
when 2γ1 < γ2, there is a disk of radius cos π

γ1

γ2
, centered about

the origin, whose points can be reached only by trajectories
associated with F0. The relative magnitude between ω0

and γ1 determines how many times the optimal front lines
spiral around the origin before exhibiting the aforementioned
features. For a graphical representations of the evolution of
the reachable set with several choices of the parameters, see
Figs. 1 and 2. In the first case we have γ2 > ω0; in the second
case we have γ2 < ω0, with two different settings for 2γ1 and
γ2 in both cases.

Note that if γ2 = 0, the optimal front line F0 collapses to
a point, and the analysis consistently reproduces that of [6] in
the case of two independent controls.

To further illustrate the behavior of the reachable sets, we
provide some examples of optimal synthesis of some standard
unitary gates and compare them with the corresponding results
in the case of symmetric bounds.

In the case of diagonal target operators, Xf = eiλσz with
λ ∈ [0,2π ), since these are represented by points on the unit

FIG. 1. (Color online) Time evolution of the reachable sets in the
unit disk, with ω0 = 4,γ1 = 1 (left) or 2 (right), and γ2 = 3. We have
represented the optimal-front line at successive times t = 0.6,1.0, and
1.4. The gray curve isF0, and the dashed and dotted lines represent the
evolution of its end points before and after they converge, respectively.
The region spanned by F0 and enclosed in the dashed lines contains
points which can be reached via several equivalent optimal protocols
[and possibly with different time averages of uz(t) in the region
enclosed in the dotted lines]. The critical trajectory associated with
F− is a cut locus for the system. The other cut loci, not shown in
the plot, are the border of the unit disk and the set of intersections
between F+ and F−.

FIG. 2. Time evolution of the reachable sets in the unit disk,
with ω0 = 2,γ1 = 1 (left) or 2 (right), and γ2 = 3 at successive times
t = 0.6,1.0, and 1.4. The cut loci for the system, not shown in the
plot, are the border of the unit disk and the set of intersections between
F+ and F−.

circle, which are reached by the trajectories forming F+ or
F−, the optimal control strategies are given by controls ux and
uy as in (14) with ω = ωc′ as in (24) and uz = ±γ2 for F±,
respectively. From (20) and the results in [6], the optimal time
is given by

tf = 2 min
uz=±γ2

(
(π − λ)(ω0 + uz) + �

(ω0 + uz)2 + γ 2
1

)
, (26)

where � =
√
π2(ω0 + uz)2 + λ(2π − λ)γ 2

1 . In particular, ac-
cording to the former discussion on the evolution of the
reachable sets, the minimum is obtained with uz = γ2 when
γ2 < ω0; when γ2 > ω0, the situation is more complicated.
The optimal time (26) and the corresponding strategies can be
compared with analogous time and strategies in the case of a
symmetric bound on the controls [6],

tf =
{

4π−2λ
γ+ω0

if ω0 � π−λ
π

γ ,
2λ

γ−ω0
if ω0 < π−λ

π
γ ,

(27)

obtained with ux = uy = 0 and uz = γ or −γ . If we require
γ 2 = γ 2

1 + γ 2
2 (that is, the total control strength is the same),

we have that the time (27) is smaller than (26) since the
scenario with asymmetric control bounds is compatible with
a symmetric bound. As a check of consistency, this result
can be proven by using the Lagrange multipliers method
on (26), leading to the constrained minimum (27) obtained
when γ1 = 0 and γ2 = γ .

As a second example, we choose as the target operator the
SWAP operator Xf = iσy , which represents the NOT operation
in quantum information. In this case, the behavior of the opti-
mal trajectories is described by the optimal front lineF0, which
we analyzed in the previous section. The optimal strategies
are given by ux and uy as in (14), with ω taking an arbitrary
value in the interval [ω0 − γ2,ω0 + γ2], possibly being time
dependent. The control uz can take any form; in particular,
uz = 0 can be chosen, leading to ω = ω0. For any choice of
the parameters, the SWAP operator is attained in optimal time
tf = π

γ1
, which is independent of γ2, consistent with the fact

that uz is completely irrelevant for the optimal synthesis of
this operator. In the case of a symmetric bound on the controls,
the optimal control strategy has a similar structure [6], with
ux = γ cos (ω0t + ϕ),uy = γ sin (ω0t + ϕ), and uz = 0 (ϕ is
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a phase), and the optimal time is tf = π
γ

. Again, this optimal
time is smaller than that with an asymmetric bound on the
controls, under the assumption that γ 2 = γ 2

1 + γ 2
2 . It is clear

that the case with the symmetric bound is reproduced when
γ2 = 0 and γ1 = γ .

V. CONCLUSIONS

We have fully characterized the evolution of the reachable
sets of system (2) with controls subject to the asymmetric
constraints (3). We have derived the optimal trajectories and
the optimal control strategies for the system and provided its
classification in terms of the dynamical parameters, which are
completely arbitrary: driftless dynamics or unbounded control
actions are special cases of this treatment. By using this analy-
sis, it is possible to compute, at least numerically, the minimum
time for generating an arbitrary SU(2) transformation and the
required strategy. For the sake of clarity, we have analyzed the
cases of diagonal operations and the SWAP transformation of
a two-level system. These examples clearly illustrate the role
of the constraints on the controls in the study of time-optimal
synthesis of quantum operations.

The main tool for studying the evolution of the reachable
sets is the optimal front line, which has already proven useful
for the investigation of the minimum-time synthesis of SU(2)
operations. Its application to similar problems on different Lie
groups is of great potential interest. It provides not only a way
to clearly visualize the behavior of the reachable sets but also
a simple approach to prove rigorous results, whose derivation
when following the separate trajectories could be cumbersome
in some regions of the space of dynamical parameters.

For instance, the results in SU(2) can be used to perform a
similar analysis in SO(3) (because of the standard homomor-
phism connecting these groups) and are therefore related to
the problem of attitude control of a rigid body. In this context,
asymmetric bounds on the controls, such as those considered
in this work, are especially relevant for the treatment of rigid
bodies with rotational symmetry about one axis.

Another problem where the specific investigations pre-
sented in this paper could be of relevance is the synthesis
of SU(2) operations with individual bounds on ux,uy , and
uz. Also in this case the problem has more degrees of freedom
since the cylindrical symmetry of this work and [6,7] is broken.
However, the analysis of suitable optimal front lines could
provide new insights for the investigation of regions, in the
space of dynamical parameters, which have not been studied
so far.

Generalizations of this technique to problems characterized
by a higher number of degrees of freedom seems a promising
research line. Although in these cases it seems difficult to
obtain the particularly simple representation of the evolution
of the reachable sets arising in SU(2), we believe that an
approach based on the study of the envelopes of the front lines
is more promising than a direct analysis of the trajectories. A
prospective direction for this line of research is the study of the
optimal implementation of two-qubit gates, or, more generally,
the simultaneous control of two spins (see [15,16] for some
recent applications of the PMP principle in this context).
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