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Tunneling time in attosecond experiments and the time-energy uncertainty relation
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In this work we present a theoretical model of the tunneling time and the tunneling process (in attosecond
experiment for the He atom). Our model is supported with physical reasoning leading to a relation which performs
an excellent estimation for the tunneling time in attosecond and strong-field experiments, where we address the
important case of the He atom. Our tunneling time estimation is found by utilizing the time-energy uncertainty
relation and represents a quantum clock. The tunneling time is also featured as the time of passage through the
barrier similar to Einstein’s photon-box Gedanken experiment. Our work tackles an important case study for
the theory of time in quantum mechanics and is very promising for the search for a (general) time operator in
quantum mechanics. The work can be seen as a fundamental step in dealing with the tunneling time in strong-field
and ultrafast science and is appealing for more elaborate treatments using quantum wave-packet dynamics and

especially for complex atoms and molecules.
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I. INTRODUCTION

A comprehensive theory of time measurement in quantum
mechanics is missing to date [1] (Chap. 3). Often it is said
that time plays a role essentially different from the role of the
position in quantum mechanics. In contrast, Hilgevoord [2]
argued that there is nothing in the formalism of the quantum
mechanics that forces us to treat time and position differently.
Observables such as position, velocity, etc., both in classical
mechanics as well as in quantum mechanics, are relative
observables, and one never measures the absolute position
of a particle, but the distance in between the particle and some
other object [2,3]. Indeed, there are many attempts to consider
time as a dynamical intrinsic or an observable time called
event time. Hilgevoord concluded [2] that, when looking to a
time operator, a distinction must be made between universal
time coordinate ¢, a c-number like a space coordinate, and
the dynamical time variable of a physical system situated in
space-time, i.e., clocks. Busch [4] argued that the conundrum
of the time-energy uncertainty relation (TEUR) in quantum
mechanics is related in the first place to the fact that time
is identified as a parameter in Schrodinger equation (SEQ).
He classified three types of time in quantum mechanics:
external time (referred to as parametric or laboratory time),
intrinsic or dynamical time, and observable time. External
time measurements are carried out with clocks that are
not dynamically connected with the object studied in the
experiment and usually called parametric time. The intrinsic
or dynamical time is measured in terms of the physical system
undergoing, dynamically, a change, where every dynamical
variable marks the passage of time. We will see that this is
important for our time invention where the energy serves as the
dynamical variable in question, which enables a quantitative
measure for the length of the time interval of the tunneling or
the tunneling time (T-time) in strong-field experiments. The
third type of time according to Busch is the observable time
or event time, for example, the time of arrival of the decay
products at a detector.
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In the history of the quantum mechanics, the earliest
attempt, which causes one of the most impressive debates,
is Einstein’s photon-box Gedanken experiment (GE) [5] or the
Bohr-Einstein weighing photon-box GE [3] (and the references
therein). A photon is allowed to escape from a box through a
hole, which is closed and opened temporarily by a shutter. The
period of time is determined by a clock, which is part of the box
system, which means that the time is intrinsic and dynamically
connected with the system under consideration. The total mass
of the box before and after a photon passes is measured. Bohr
showed that the process of weighting introduces a quantum
uncertainty (in the gravitational field), leading to an uncertainty
in time 7, which is the time needed to pass out of the box and is
usually called the time of passage [4], in accordance with the
TEUR, Eq. (1) below. Aharonov and Reznik [3] offer a similar
interpretation, that the weighing leads, due to the backreaction
of the system underlying a perturbation (energy measurement),
to an uncertainty in the time of the internal clock relative to the
external time [3]. Hence, for quantum systems it is important
to observe the time from within the system or using an internal
clock. Busch [4] presented an argument which makes no
assumptions concerning the method of measurement and is
simply based only on a version of quantum clock uncertainty
relation as follows: If the energy of the escaping photons is
determined with an accuracy § E from the difference of energy
before and after the opening period of the shutter, then these
energies must be defined within an uncertainty 8 E; i.e., the
box energy uncertainty A E must satisfy AE < §E. Then the
clock uncertainty allows us to conclude that the box system
needs at least a time 7y = A—hE in order to evolve from the initial
state, “shutter closed,” to the orthogonal state, “shutter open.”
Accordingly, the time interval within which a photon can pass
through the shutter is indeterminate by an amount AT = ;.
This leads to Bohr’s TEUR ATSE = h[1] (Chap. 3).

In this work we use similar ideas. We define the T-time
as the time delay caused by the barrier (denoted 77 4) and it
is suggested to be similar to the time of passage through the
barrier (and escaping at the exit of the barrier). The (quantum)
particle (an electron) undergoing this process spends a time
that is the time needed from the moment of entering the barrier
region (i.e., the classically forbidden region) to the moment of
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escaping the barrier in the tunneling direction. In addition,
we suggest a time interval needed to reach the entrance of
the barrier (denoted t7 ;) after it is shaken off by the laser
field at its initial position x;. Tr 4 is similar to the traversal
time used in the context of the tunneling approaches [6-8]
or the Feynman path integral (FPI) approach [9-11] (and [1],
Chap. 7). However, our approach differs conceptually from
other approaches, particularly because it is not probabilistic
(statistical). For example, in contrast to the FPI, we do not
make any assumption about paths inside the barrier, while, as
is well known, the FPI approach is based on all paths starting
at the entrance of the barrier at # = 0 and ending at the exit of
the barrier at time ¢t = t, which defines a time duration t and is
identified as the traversal time through the barrier and assumed
to be equal to the delay time measured by the experiment [12].
A second type of T-time that we invent is what we call the
symmetrical T-time or the total T-time (denoted t7 sym). We
will see that that can be easily calculated from the symmetry
property of the T-time but then later we find that t7 gym =
Tr.; + Tr.4, Which is the time accounted from the moment
of starting the interaction process, where the electron gets a
shakeoff, responds, and jumps up to the tunneling “entrance”
point, taking the (opposite) orientation of the field, passes the
barrier region, and overcomes the barrier at the “exit” point
(the tunneling) and escapes to the continuum. The key issue
of the present work is (in the words of Busch [1], Chap. 3) a
case study, the T-time in attosecond experiments and ultrafast
science, derived by utilizing the TEUR:

h
ATAE > 7. (1)

In Sec. II we present our theoretical model, in Sec. III we offer
a convincing physical reasoning for our theoretical model,
in Sec. IV we discuss our result with a comparison to the
experiment, and finally we give a conclusion to our work.

II. THEORY AND MODEL

In this section we suggest a way to approximate the T-time
in attosecond experiments based on simple mathematical and
quantum mechanical rules. We first prepare in Sec. II A the
basic material needed to introduce our model. The outline
of the model is given in Sec. [IB and the T-time model is
presented in Sec. IIC.

A. Preview

Our starting point is a model of Augst et al. [13,14], where
the appearance (or the threshold) intensity of a laser pulse for
the ionization of the noble gases is predicted. The appearance
intensity is defined [13] as the intensity at which a small
number of ions is produced. In this model (in atomic units)
the effective potential of the atom-laser system is given by

Zf

Verr(x) = V(x) —xF = — —xF, 2)
where F' = F,, is the field strength at the maximum of the laser
pulse (in this work, in all our formulas F stands for F,,) and Z;
is the effective nuclear charge that can be found by treating
the (active) electron orbital as hydrogenlike, similar to the
well-known single-active-electron (SAE) model [15,16]. The
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FIG. 1. (Color online) Graphic display of the potential curves,
the barrier width and the two inner and outer points x,i =
(I, £6,)/2F, the “classical exit” point x,. = I,/F, and x,,(F) =
V Zesi/F, the position at the maximum of the barrier height [note
Xq = x,,(F = F,)]; see text.

choice of Z. is easily recognized for a multielectron system
and well-known in atomic, molecular, and plasma physics
[14,17-19]. Many authors use the quantum defect [20], which
is very similar to the effective charge approximation. We take a
one-dimensional model along the x axis as justified by Klaiber
and Yakaboylu et al. [21,22]. Augst et al. [13] calculated the
position of the barrier maximum x,, by setting 0 Veg(x)/0x =
0= x, = x,(F,) = (V/Zt/ F,) and by equating V.g(x,,) to
the ionization potential Vi(x,) = —1, (compare Fig. 1, the
lower green curve). They found an expression for the atomic-
field strength F,,

Zet I;
L X F=-1,= F, = , 3
Xq ¢ g T 4 Ze ©)

and the appearance intensity I, = F2. Now we take this idea
and relate our argumentation to this model for F' < F,, i.e.,
for the tunnel ionization in the regime of the well-known
Keldysh [23] parameter yx < 1. It is easy to see from Fig. 1
that the tunnel exit (denoted x, ;) obeys x, (F) = x,(F),
where the equality is valid for F' = F,. In this regime, when
F < F, the energy of the tunneling electron is not sufficient
to reach the top of the barrier (as for F,), suggesting an energy
uncertainty, which is determined by the energy that the electron
needs to overcome the barrier and appears in the continuum
at the exit point. It appears with zero velocity at the exit point
X+ according to the strong-field approximation (SFA) due
to Keldysh-Faisal-Reiss theory [23-25]. Indeed, the barrier
height at a position x is given by (compare Fig. 1)

Zett

hp(x) = |hp(xX)| = |E = Verr(x)| = |—1p + .

+xF,

4)

where h(x) is equal to the difference between the ionization
potential and effective potential Veg(x) of the system (atom +
laser) at the position x, where £ = —1, is the binding energy

052118-2



TUNNELING TIME IN ATTOSECOND EXPERIMENTS AND ...

of the electron before interacting with the laser. Note that
we can also get x, and the maximum hpg(x,) from the
derivative of Eq. (4), 0hp(x)/dx = 0. An immediately arising
question is as follows: What about its maximum /4 z(x,,) and
how this maximum is related to the energy uncertainty when
the electron passes the barrier region and is shifted to the
continuum or a “quasi” energy level? First, in light of the
work of Augst er al. and the derivation of x, = x,,(F,) and
Eq. (3), it turns out (compare Fig. 1) that the maximum of
the barrier height hp(x,,) for arbitrary field strength lies at
Xm(F) = «/Zegr/ F; see the Appendix. Indeed, Eq. (3) can be
generalized as the following, for a field strength F < F, we
get

12
F<—L2 =8 =1>—4ZxF > 0. 5
4Zeff z P eff ()

The equality 6, = 0 is valid for FF = F,. We will see that
8, =8,(F) =
tunneling process and determines the “time delay” t7 4 caused

by the barrier and the total or the symmetrical T-time t7 sym,
Sec. Il C. From Fig. 1 we see the barrier height at x,,:

hp(xy) =|— 1, — Vesg(x)| = | = I, ++/4ZeF|.  (6)

This is the maximum of the barrier height, and by setting
hpg(x,) = 0 one obtains F, = Ip2 /(4Zeg), which is equivalent
to the setting Vig(x,,) = —Ip as done by Augst et al. [13]
and can be easily verified from Eqgs. (4) and (6). Note,
in contrast to a statical barrier, that the barrier height and
the barrier width are interdependent (both depend on F),
and we have hg(x,) = 0 < dg = 0, where dp is the barrier
width, which is the length between the entrance and the exit
points of the barrier region along the tunneling direction,
the x axis, determined by the major axis of the laser field
F at its maximum. The “entrance” and ‘“exit” points of the
tunneling region, x, _ and x, y, respectively, are determined
by the vanishing barrier height 45(x) = 0 (compare Fig. 1)
and are the crossing points of Veg(x) with the —1I,, line. Using
Eq. (4) and setting i g(x) = 0 leads to

/I3 — 4Z F is a key quantity; it controls the

I,+3, 5.
Xe,+ = oF = dB = Xe 4+ T Xe,— = F
and Xe,+ = Xee = Xe,—s @)

where x, . is called the “classical exit” point, the intersection
of the electric field line —x F with the ionization potential
of the electron —Ip line; hence, x, . = %, and 6, = §,(F) is
given in Eq. (5). We emphasize the dependence of §, on Z.g
[14,19]. Note the origin of the axes is at 0.

B. Outline of the model

The (tunneling-) ionization happens according to SFA
with zero kinetic energy at the exit point x.. Our idea is
that the uncertainty in the energy can be quantitatively
discerned from the atomic potential energy at the exit point
AE ~|V(x,)|=]|— %| for arbitrary field strength F' < F,.
Then, when the electron is moving in the x direction [21,22]
(the major axis orientation of the laser field) and overcomes
the barrier, its kinetic energy is decreasing; at the same time it
moves upwards on the potential energy scale, losing potential
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energy (*f““ getting smaller in absolute value). The change

happens simultaneously in the potential and the kinetic energy
while tunneling [one can imagine while tunneling that the
electron is staying at the level —/p on the energy scale (—Ip
line in Fig. 1) until reaching the exit point, which possibly
defines a quasienergy state; in a similar way a metastable state
is defined (see the Appendix)] until its kinetic energy becomes
zero at the exit point, although its (atomic) potential energy
is # = 0. This can be also gathered from the analysis of
the short-range Yukawa and long-range Coulomb potentials
given by Torlina et al. [26]. Their conclusion, supported with
ab initio numerical tests, is that for long-range potentials
ionization is not yet completed at the “moment” the electron
exits the tunneling barrier in contrast to the usual assumption
that ionization is completed once the electron emerges from the
barrier. Indeed, it is not difficult to see that the electric field of
the laser pulse shifts the electron far from the nucleus (mainly
along the x-axis direction [21,22]), reaching the exit point with
zero velocity; i.e., the electron is forced by the electric field
to take and move (mainly or approximately) along a preferred
direction and, most importantly, to reduce its kinetic energy to
zero at the exit point x, (the field interacts only kinematically
with the electron since there is no photon absorption), where
it is still underlying the attraction of the atomic potential
Vix,) = —% that defines the uncertainty in the energy and
acts as a shutter, open-closed, like in the photon-box GE with
an uncertainty proportional to AE ~ |V (x,)|. We will see in
Sec. IV that the result is very convincing.

It is straightforward to show, when setting AE ~ |V (x, )|,
that the classical exit point x, . (see the Appendix) leads to
incorrect T-time (i.e., it fails to predict T-time measured by the
experiment). Thus, it is important to use a correct exit point.
From Fig. 1, one can see that x, . is far from the “correct”
exit point x, 1 ; see Eq. (7). Therefore, to use the classical exit
point, x, ., to determine the T-time will never give a correct
answer. Here we can indicate a failure of the Keldysh time (see
the Appendix), which results primarily from its inadequate
definition. If we recall the definition of the Keldysh T-time,
the time it takes a classical electron (with an average velocity)
to cross a static barrier of a length [ [27], where [ = dp.
For hp(x,,) =0 =1 =0 we get the Keldysh T-time 7, = 0
(meaning the ejection of an electron happen instantaneously
at F = F,) because the barrier width vanishes for F — F,
|xe+ — x..—| = 0. However, we know, at the appearance (or the
threshold) intensity (I, = F, az) the ionization time is equal to
1%, (in a.u.) [28] (Chap. 8) and is not (and cannot be) zero. This

seems natural because the energy gap that has been overcome
is I,, and as we will see in the next section this follows
immediately from our model. As a consequence, Keldysh time
represents a laboratory clock (parametric or external time),
whereas in our following T-time model and time relation(s)
the time is dynamically connected to the system (to observe
the time form within the system and consider the quantum
nature of the particle); thus, it represents a quantum clock.

C. Tunneling time

Our goal now is to find an expression to calculate the
T-time, and what we need is the correct exit point, where many
approximations exist. The most used one in the literature can
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be obtained from Eq. (4) and given in Eq. (7). As seen in
Fig. 1, x, _ is the inner crossing point, the entrance point, and
X, + 1s the outer crossing point, the exit point. Physically, it
is argued that the electron escapes the barrier at x, 4, when
it moves in the direction x, —~ — x, 4, and vice versus for
the opposite direction. We will see that this presents a useful
symmetry property of the tunneling process when deriving the
T-time. For the atomic-field strength F,, 6, = 0 and we have
Xe4 = Xe— = X,. A first arising question in our model is,
what happens in the limit of the appearance intensity, i.e., for
F— F, = 1[% /(4Zt), where the electron is shifted from the
ground state Eg = —1, to Ey ~ 0 appearing at x, _ = x, =
X+ with zero velocity. Its energy uncertainty (since there is no
photon absorption) is then (according to our model) A E(F,) ~
| — er| . One sees that for atomic-field strength (F,)
the efectron is heavily disturbed but appearing not far from

Zer _ 2
F,

time that follows immediately from TEUR in Eq. (1),

1 1
2AE(F) 1,

the nucleus at x, = x,,(F,) = 1—5“ with an ionization
14

Ta = s (8)
as it should be for the ionization process at the F, [28] (Chap.
8). However, we will see later that F, is a special case because
Xe,— = X4 = X, .+ [a double solution of hp(x) = 0] and the

limit case 1 for F — F, is a sum of two equal terms 2} ; see

further below and Sec. IIT A. The special case F, showed that
our model is meaningful and that atomic potential energy of
the electron at the tunnel exit x, ;. (instead of the gravitational
potential in the Einstein-Bohr GE) amounts to calculating the
uncertainty of the energy in the tunneling process, and hence
the T-time, by virtue of Eq. (1), which leads to an excellent
result, as we see in Sec. IV.

We turn now to the general case F' < F,, where we can
calculate the uncertainty in the energy A E(x, ) by using the
exit point x, 4 (in the direction x, — — X, ) and from this the
T-time. From Eqs. (7) and (1) and according to our model, we
get

AE(}C ) _ _Zeff _ ZeffZF _ (Ip - 82,) (9)
ot Xe,+ (Ip +4;) 2 ’
11 1
Trunsy = 3 x & — 77 <o v (10)
’ 2AE (I, -5,

which we call the unsymmetrical T-time 77 ypsy. One can easily
show that a T-time resulting from using the classical exit point
X 18 the first order of Eq. (10) [see the Appendix, Eq. (A3)].
We show now that a factor (1/2) is missing, which can be
recovered by a symmetry consideration. What about the inner
point x, _? We could assume, due to the §, symmetry between
X+ and x, _, that the electron enters the barrier backwards
from x, 4 entrance to x, _ exit with an uncertainty (according
to our model) AE(x, ) = I%L which leads to [compare
Egs. (9) and (10)]
1 Iy =) 1

2AE(x,-)  AZgF — (I, +36.)

This symmetry is deduced in a way similar to how the

Aharonov-Bohm time operator [29] is defined for a free par-
ticle T = %()E p~' 4+ p~1%) or in more elaborate and detailed

(1)
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treatment (the so-called bilinear form) given by Olkhovsky
and Recami [30]. Such operators (given by Aharonov-Bohm or
Olkhovsky) have the property of being maximally symmetric
in the case of the continuous energy spectra and the property
of quasi-self-adjoint [31] operators in the case of the discrete
energy spectra [30] (and the references therein); they are
the next-best thing to self-adjoined operators and satisfy the
conjugate relation with the Hamiltonian and therefore implies
an ordinary TEUR [30], [1] (Chap. 1). We use this property,
i.e., we assume that the maximally symmetric (or almost
self-adjoint [30]) property holds for the T-time (for more
details, see [30]), which leads to using Eqs. (10) and (11)
in a simple relation for what we call the symmetrical (or total)

T-time given by
1 1 n 1
2\ AE~- AE*

1 1 1
Aty -
2 (Ip + 81) (Ip - 61) 4ZeffF

Tr,sym = TT,+ +ir- =

where we defined 774 = 1/QAEF) = [2(Ip £ 65.)]!
(1/2)AE* = AE(x,+). Relation (12) has again (clearly
because 5, = 0) the correct limit for atomic-field strength
[compare Eq. (8) and the discussion after it]:

(F— F)=— +—— L .

7, — _— = —,

. 2p " 2p T 4zgir  Ip
Note that the limit F — F, gives x, + = X, = x,,(F,) = x4,

which means that the two points coincide at the top of
the barrier. The question is whether this means a symmetry
break of the tunneling process, so that the “tunneling”
becomes a “real” ionization (or an ejection) process at the
appearance intensity I, = F2, and §, becomes imaginary for
superatomic-field strength F' > F, (whereas F' < F, is called
the subatomic-field strength); a further discussion is given in
Sec. IV.

A further question concerns whether the time to reach the
entrance of the barrier and overcome and escape the barrier at
the exit, which is an intrinsic or dynamical type of time to be
measured by a quantum clock, becomes a classical, external
(or parametric) time after the tunneling due to the break of
some symmetry property, so that (only) under such a symmetry
break does a quantum clock (the internal time) coincide with
a laboratory clock (the external time), as is the case for a free
particle (continuous energy spectra).

In Sec. IV we see that Eq. (12) (especially 17— = %m)
gives an excellent agreement with the experimental result
of [32]. In the next section, Sec. III, we discuss our model
following a physical reasoning.

III. PHYSICAL REASONING
A. Tunneling time and a model of a shutter

The theoretical mathematical model developed in Sec. 11
can be supported and derived by physical arguments; the only
difference is that we try to figure a physical insight that helps
us to put physics in mathematical relations. From Fig. 1 and
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Eq. (7) we get [dg(F) is the barrier width]

(Ip + 81) (Ip - 82) (Sz

dp(F) = ey = Yo = =2
From this it follows §, = (x,,+ — x,,—) F. Because, for atomic
field strength F = F, = §, = 0, dp = 0, we can interpret §,
as the field’s (kinetic) energy exerting in the tunneling process
between the entrance (or the “inner”) point and the “outer”
exit point. The uncertainty in the energy as the electron
moves to x, 4, i.e., when tunneling, overcomes the barrier
region and escapes at the exit to the continuum, is then
AE" = abs(—1, + §;). That means the barrier itself causes
a time delay relative to the atomic-field strength F, (§, = 0).
The T-time is then obtained from Eq. (1),

1
T 2AE*

13)

1
= 20, =5, (for F < F)),
which we call t7 4 [=7_, compare Eq. (12)], meaning that
that is the delay in the time relative to the atomic field
(more details in [34]) or the time duration (time interval)
to pass the the barrier region (in the direction x, - — x. 4)
and escape at the exit point x, 4 to the continuum. The term
ra(F — F,) = # at the limit F' = F, accounts for turning

off the wave packet (por shakeoff step, as discussed in Secs. I[II B
and IIIC) at the “entrance-exit” point x, to escape to the
continuum, which indicates that the shakeoff step or turning at
X, + to the continuum for F' < F, happens with a time delay
as given in Eq. (14). Expanding 8, = Ip/1 — (4Zx F/1p?)
and taking the first order, we get Eq. (12), t ~ 4215’; 7 = TT,sym-
It means using the symmetrization gives a linearized time
duration (linearized T-time).

Now we argue that this picture fits well in the GE of Einstein
and the (intrinsic) time 77 4 [Eq. (14)] or that the second term
in Eq. (12) is rather the time of passage, where the shutter
open-closed time interval (generated in the internal time [3]) is
related by the virtue of Eq. (1) to the uncertainty (1/2)AEY =
AE(x,+) = V(x. ), which acts as a shutter [note that we
recovered in Egs. (12) and (14) the factor (1/2) missing in
Eq. (10)]. We think also that the attosecond experiment, with
the help of our model, represents a realization of the photon-
box GE (with the electron as a particle instead of the photon)
with an uncertainty being determined from the (Coulomb)
atomic potential due to the electron being disturbed by the
field F, instead of being disturbed by the weighting process
and, as a result, an uncertainty in the gravitational potential
[3], as shown by the famous proof of Bohr to the uncertainty
(or indeterminacy) of time in the photon-box GE [3,4].

T4 (14)

B. Total time (F = F,)

At the moment, one can obtain the total time, i.e., including
the time to reach the entrance of the barrier x, _, by adding the

term 1/(21,) to Eq. (14),
1 1+ 1
2\1, 1,-6.)

where the index ¢ is used only to distinguish between different
notations. Nevertheless, the term 1/(21,) that we added is
exact only when F = F, or x, _(F,) = x, = x. +(F,), since
the time to reach the entrance-exit point x, follows from

5)

T7,sym ~ Tr =
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the uncertainty (the response or jump-up to the —1,-level at
entrance-exit point)

1
AE = AV xpl = 1p = Toix) = 57

T (16)

where x; is the initial point. It can be viewed as the response
time of the electron to the field, that is, the electron received
a kick by the field, and is polarized along the field direction,
while (jumping up [35]) moving from x; to the entrance-exit
point x, to the continuum, x; — X, _(= X, = X, 4+) = 0C.
In this case [hg(F = F,) =0, §, = 0], the most probable
“tunneling” mechanism is that the laser field distorts the
electron, shakes it up (moving from x; to x,), and shakes
it off (moving to the continuum) at a (total) time given in
Egs. (12) or (15) T = %(% + i) = ,i In this model, for
F = F, the (illustrative) two steps are not strictly separated,
whereas, for F' < F, they are well separated due to the barrier
dp(F) > dg(F,) = 0, as we discuss in the next section.

C. Total time for subatomic field F < F,

However, x, = x, _ = x, ; is the maximum entrance point
(the most-far-right-lying entrance point, see Fig. 1), the
electron is less disturbed for F < F, and moved to a point
Xe— < X, that is closer to the initial point x; [36], this
shortens the time to reach the entrance point, and we expect
that the response of the electron to a small field strength F
is weaker than that to a stronger field F — F,. The time
reduction in 7, ,, ) for F compared to 7, x,) = 1/(21,) for
F, [Eq. (16)] is a factor depending on &, [see discussion after
Eq. (13)], because the kinetic energy experiences a change
proportional to (x, — — x;) F < (x, — x;) F,. A (weaker) field
F < F, is not sufficient to compensate for the kinetic energy
at the (shakeup) step; instead, the electron is at the entrance
X.— < x, with a velocity that is sufficient to enter the barrier
region, overcomes the barrier, and reaches the exit point x,
with zero velocity. Here we indicate another failure of the
Keldysh time (see the last passage of Sec. II B); that is, the
electron does not enter the barrier region (or start the tunneling)
with the initial velocity \/E suggested by many authors [35].
Now we give the following relation for the time needed to
reach the entrance point x, _ and show an explanation further
below:

1 1
2(1,+6.)  2ME-

i = Tox,) = (17)
The factor §, [comparing to Eq. (16) for F,,] in the denominator
results from two parts. Indeed, we follow [3] in that the uncer-
tainty is a result of the different reactions or responses of the
electron to different field strengths. The first part comes from
the difference of moving along the x axis, i.e., the difference in
shifting the electron to x, with F, orto x, _ < x, for F < F,,
which leads to A} = x,F; — x,_F = 17" — U’Tﬂs) = 87 The
other part can be deduced from the change on the vertical
(potential energy) scale. When the electron receives a kick,
changing its potential (on a vertical scale), its atomic potential
experiences different changes between V (x;) and V (x) forx =
X, or x, — < x,. However, this is a result of different responses
(on energy scale), while the electron is forced to follow an
orientation along the (opposite) field direction at x, or at x, _.
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Therefore, this part can be approximated from the difference
AV (x) in the atomic potential at the different entrance points
which gives Ap = V(x,) — V(xo.-) = =V Zegt Fy + ZZE“F =

5 + 5= Gy H ) = 2’ . We are led to a difference equal to
Al + A2 = §, between reaching the entrance point x, _ (for
F) relative to the entrance-exit point x, (for F,), leading to an
energy uncertainty AE = abs(— I —68)=Up+ ), for F <
F, and with a time 17 ;(F) = T80 H 5 for arbitrary subatomic-

field strength F'; hence, one obtalns Eq. (17) instead of Eq. (16).
We have explained so far Eqgs. (14) and (17); in doing so we
explained the physical meaning of the symmetry consideration
done above [see Eq. (12) and the discussion before] and we
obtain from Egs. (14) and (17) the result obtained in Eq. (12),

Trsym = Tri + T1.d = Tr+ + T7,—

I 1 1 1,
== + = ., (18)
2L, 46, U, —8)]  4ZiF

where the first term t7; = t7 4 corresponds to the first step,
where the electron is shaken up and moved to the entrance x,
(or x, for F,) that takes the times 1/(2E~) = [2(I, + §,)] "
The second term 77 4 = 17 _ corresponds to the actual T-time,
or the time it takes the electron to move from x, _ to x, 4,
overcome the barrier, and be shaken off to the continuum,
with a time delay 1/(2E™) = [2(1, — 8.)]! due to the barrier
relative to the atomic-field strength F,, where §, = 0 and
tra = Q)"

For F = F,, as already mentioned, the second or shakeoff
step immediately follows the first or shakeup step and the two
steps are not strictly separated. For F' < F, the two steps of
the tunneling process are well separated. They happen with
opposite directions at the time scale; the first step is less time
consuming since F causes a smaller disturbance relative to F,,
and the the electron does not move far from its initial position
forasmall F,x, _ < x,, whereas the second step happens with
a time delay, x, 4 > x4, relative to the ionization at atomic-
field strength. So far, our theoretical model is assisted with an
explanation through a physical reasoning. In the following we
show and discuss our result for the He atom with a comparison
to the experiment [32,33,37].

IV. RESULT AND DISCUSSION

In Fig. 2 we show the results of Eq. (10), the unsymmetrical
T7,unsy> and Eq. (12), the symmetrical T-time 77 sym. The results
for 17 4 Eq. (14) and again the symmetrical (or total) T-time
7r,sym Of Eq. (18) are shown in Fig. 3. Note that Eq. (18) is
identical with Eq. (12), whereas Eq. (14) is the second term
of Eq. (18) or (12), which is the actual T-time, i.e., the time
needed to pass the barrier region (x,_ — x, ) and escape
at x, 4 to the continuum, and most likely that is the T-time
measured in the experiment, as explained in the next paragraph.
The results are for the He atom in a comparison with the
experimental result of [32,33,37]. The experimental data and
the error bars in the figure were kindly sent by Landsman
[37]. We plotted the relations (10), (12), (14), and (18) at the
values of the field strength at the maximum of the elliptically
polarized laser pulse (A = 735, elliptical parameter ¢ = 0.87,
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FIG. 2. (Color online) T-time 7w [Eq. (10)] and 77 gm
[Eqg. (12)] for two Z.¢ models [41] and [42]. Time is in attosecond
units vs laser-field strength in atomic units, corresponding to the
tunneling ionization of the He atom in strong field (compare Fig. 3).
Experimental values were kindly sent by Landsman [37].

F = Fy/+/1 + &?) used by the experiment exactly as given
in [37].

The experiment. Concerning the experiment by the group
of Keller et al. [37], the time delay due the barrier is measured
indirectly, 17" = =00 \where o is the laser frequency, 6,
the angular offset of the center of angular distribution, and 6¢
a correction due to the Coulomb force of the ion calculated by
classical-trajectory simulation [32,33,37-39]. Unfortunately,
in this experiment the beginning of the interaction between the
laser field and the bound electron cannot be directly observed
or exactly determined.
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FIG. 3. (Color online) T-time 77 4 [Eq. (14)] and 77 ¢ym [Eq. (18)]
for two different Z.; models as in Fig. 2. Note that Eq. (18) is
identical to Eq. (12) [see Fig. 2], with units as in Fig. 2. T-time
corresponds to the tunneling ionization of the He atom in strong
field, in excellent agreement with the experimental result [32,33,37].
Experimental values as in Fig. 2.
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The time zero thpt is one of the assumptions of the model,

which is used to interpret the data. Consequently, in the
experiment it is not possible to distinguish between the instant
of the interaction #, = 0 and the instant when the electron
enters the barrier region, say #7; [40]. The assumption implies
that ISXP[, the moment when the laser-field points along the
major axis, is consistent with the time “zero-time-calibration,”

say tgimul, of a model based on classical-trajectory simulation

to interpret the data tgi““” = thPt. Itis likely (in our opinion and
according to our communication [40]) that thpt (the moment
when the laser field points along the major axis, as assumed
in the experiment) differs from the instant of (starting) the
interaction with the laser field o = 0. On the other hand, it is
difficult to identify #,""" with t7; = 77, which is the instant
of the orientation along the laser-field direction (in our model
the moment of entering the barrier region).

However, arguing that the probability of tunneling is highest
when the barrier is shortest, corresponding to 75™ [40],
suggests that the data from the measurement are comparable
to the time delay caused by the barrier (the time spent in
the classical forbidden region [40]), which means that t?pl
corresponds to or (approximately) equals the actual T-time
delay of our model, Z;Xpt ~Trg.

Discussion and comparison to the experiment. In Fig. 2,
the upper two curves are the unsymmetrical T-time 77 ungy,
Eq. (10), for two different models of the effective nuclear
charge Z.g that the tunneling electron experiences during the
tunneling process. Accordingly, the lower two curves are the
symmetrical T-time, 7 ¢, [Eq. (12)], for the two different
models of Z.¢. We mention that Eq. (15) (not plotted) gives a
closer result to Egs. (12) and (18). The two different effective
charge models are from Kullie [41], with Zeg x = 1.375, and
Clementi and Raimondi [42], with Z¢; c = 1.6875. In Fig. 2
we see that our 77y, 1s nOt close to the experimental data,
whereas T7 gy is close for both models of the Z.¢. However,
we notice (see discussion further below) that the first term in
Eqgs. (12) and (18) is much smaller than the second t7; < tr 4
for small F (relative to F,).

Concerning Z.g, we see for a small field strength F < 0.05
that t7 sym, With Zg x, is closer to the experimental data (and
especially for 77 4, see discussion of Fig. 3 below). The reason
is that the Z.s x model is a H-atom-like model, based on the
assumption that the first electron of the He atom occupies the
1s orbital [with probability density |¥(r)|?], which screens
the nuclear charge and the second electron is treated as an
active electron or a “valence” electron [41] similar to that
done in the SAE approximation. This is a good approximation
when the tunneling electron moves far from the left atomic
core (He™) or when the barrier width is large (x, , > 15 a.u.),
hence the better agreement, and possibly this is important for
smaller field strength in the region, where yx = 1. In the range
of larger field strength, multielectron effects are expected and
the model Zg ¢ based on the Hartree-Fock calculation is more
reliable, where the electron moves not far from the left atomic
core (small barrier width) and hence the better agreement in
this region.

Now we look to Fig. 3, where 77 m Eq. (18) and 774
Eq. (14) are shown. Equation (18) is the same as Eq. (12)
(shown in Fig. 2). For the t7 4 we see an excellent agreement
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with the experiment. As already discussed, 77 4 corresponds
to the T-time measured in the experiment, that is, the time
(interval) needed to pass the barrier (the classically forbidden)
region between the entrance to the exit point and escape to
the continuum with a shakeoff, or between the instant of
orientation at x, _ and the instant of ionization at x, 4, which
corresponds to the time spent in the classically forbidden
region. Concerning Z.g in Fig. 3, we readily see for 77 4 the
same behavior as in Fig. 2 for Ty sym. For small F < 0.055 a.u,,
Z.g x gives better agreement with the experiment, whereas for
larger field strength Z.¢, ¢ is more reliable, where multielectron
effects are expected due to the decreasing width of the barrier
and the tunneling electron is closer to the first one when it
tunnels through the barrier region. It is likely that a model
depending on the x coordinate Z.g(x;x, +) will achieve a
better agreement that smoothly fits the two regions. Moreover,
when taking Z.s c we get F, = 0.115 a.u., which is a good
estimation in regard to the experimental data and the trends of
the curves in Fig. 3.

In Fig. 3 we see that the difference between the total or
symmetrical T-time 77 sy, and the (actual) T-time 77 4 is small,
because the second term 77 4 in Eq. (18) incorporates the time
delay caused by the barrier and is the main time contribution of
the tunneling process for a large barrier, whereas the first part
7r1.i, 1s due to the shakeup of the electron by the field moving it
from its initial position to the entrance x, _, which is small for
asmall F. For large field strength the two parts become closer
because the barrier width decreases 8,/ F = (x, + — x,—)— 0
and for the appearance intensity (§, = 0) they become equal.

In Fig. 4 we plot our result t7 4 Eq. (14) together with the
FPI and Larmor Clock (LC) results of [37] (data were kindly
sent by Landsman and Hofmann). In Fig. 4, the FPI is in a
good agreement with our result, and the difference between
the two results is smaller than the experimental error bars.
Indeed, we expect that the FPI would agree better for large field
strength F' > 0.055 a.u. with the lower curve (Z. ¢, green).
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FIG. 4. (Color online) T-time 17, Eq. (14) for two different
Z. models as in Fig. 2 together with the FPI and Larmor clock
results [37] and the experimental result [32,33]. Experimental values,
the FPI, and Larmor result were kindly sent by Landsman and
Hofmann [37].
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For small field strength, FPI is more or less close to both
curves (green, blue), but our upper curve (Z. g, blue) tends
to be in a better agreement with the experimental data. An
important point is that our model and result(s) estimate a real
T-time (time delay or time interval) of a single particle similar
to the LC time; it is not distributive or that of an ensemble
(although indeterminately in regard to the uncertainty relation)
and we make no assumption about the path of the particle
inside the barrier, whereas the FPI treatment is probabilistic
and/or distributive and makes use of all possible (classical)
paths inside the barrier that have a traversal tunneling time
T = 1. Furthermore, Landsman et al. [37] uses the time 7,
which is determined by the measurement to coarse grain the
FPI distribution of the T-times to achieve the desired results,
whereas Sokolovski [11], [1] (Chap. 7) claims (in regard to
his FPI description) that no real time is associated with the
tunneling. We think that the two views (our result and the
FPI of Landsman et al. [37]) are rather complementary, as it
is usual in quantum mechanics: wave-particle or individual
(single particle)-statistical (distributive), etc. The result of the
LC should, in principle, agree better with our result, but the data
of Landsman et al. [12,37,38] show that the agreement is good
only for F = 0.05-0.1 a.u.; hence, the LC values are inferior
for F < 0.05 a.u. The same holds for F > 0.1 a.u. Although
the difference to our result here is smaller than the error bars,
the trends of the LC curve for a large field strength looks
somewhat too flat. In general, the LC curve is flat compared to
the other curves and tends to disagree with the experimental
data for a small field strength F < 0.05 a.u.

In Fig. 5 we show the tunneling time tr, versus the
barrier width dg(F). tr 4 shows a linear dependence on the
barrier width dg(F) in the region F = 0.04-0.11 a.u. and a
limit 1/(21,) at dg(F,) = 0. The other limit for very large
barrier width (F — 0,8, — 1,)is ~ 2 = 77 ym, which is
straightforward because, for very large barrier, tr 4 > 17, =
Tr,d A Tr,sym- We DOte, as seen in Fig. 5, that the time spent by
a particle (a photon) to traverse the same barrier width with the
speed of light is much smaller than the T-time of an electron
in the He atom.
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FIG. 5. (Color online) T-time t7, [Eq. (14)] vs barrier width

dp(F) [Eq. (13)] for two different Z.z models as in Fig. 2. The

lines at the bottom of the figure show the time spent by a particle (a
photon) traversing the same barrier at the speed of light.
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Further discussion. At the limit F = F, of the subatomic-
field strength the tunneling process is out and an ionization
process called “above the barrier decay” is beginning [20].
For superatomic-field strength F' > F,, §, becomes imaginary
(and so the crossing points, compare Eq. (7), but still a real

Xm = «/Zee/ F), which indicates that the real part i of

Tr.q O Tr;, is the limit for a “real” time tunnel-ionization
process. Indeed, in this case the atomic potential is heavily
disturbed and the imaginary part of the time 77, is then
due to the release or the escape of the electron [at x,,(F)]
from a lower energy level than —/p (and possibly escaping
with a high velocity), where the ionization happens mainly
by a shakeoff step [28] (Chap. 9). Here we see the clear
difference between the quantum mechanical and the classical
clocks [3,29]. Classically, we can make the interaction time
with the system arbitrarily small, the real part of the time can
be made arbitrary small, and an imaginary part is absent. In
quantum mechanics the tunneling-ionization time has a real
part limit 77 4 = 1/(21,,); an imaginary part arises when the
field strength is larger than the atomic-field strength F,, in
terms t7; and 77 4.

However, in our treatment, although t7; and 77, both
have an imaginary part when F > F,, we get a real total or
symmetrical T-time 7, gym = 4z F for ionization processes
with an arbitrary field strength. It becomes very small for
very large field strengths and probably loses its validity in
this regime, suspecting a break of some symmetry, nonlinear
effects arise, and the interaction becomes physically a different
character. It certainly also loses its validity in the multiphoton
regime, i.e., for large Keldysh parameter y > 1, where
F < F,. It is apparent from 7, ¢ym [Egs. (12) and (18)] that
the T-time has no imaginary part when the symmetry of
the time is considered, i.e., when assuming the maximally
symmetrical (or quasi-self-adjoint) property discussed in detail
by Olkhovsky et al. [30] It is now the question to what extent
the above relation 4z 7 preserves its validity for F > F, (or
for small F <« F,, Wtilere yk > 1), where or what is or are
the limit(s) of its validity? A break of some symmetry for
F > F, (or F < F,) can probably give a hint to answer this
question. Finally, we mention that for F > F, or intensities
I > 1, Stark-shift, relativistic, and nonlinear effects become
large, the perturbation theory breaks down (which is valid for
small parameter £ = F [28]), and several regions appear at
intensities larger than the appearance intensity /,, such as the
critical /. and the saturation /; intensities, I, > I. > I,, where
multiple ionization occurs [28] (Chaps. 7 and 9).

V. CONCLUSION

We presented in this work an analysis for the tunneling
time and the tunneling process in attosecond experiments and
found an accurate and simple relation to calculate the tunneling
time for the important case of the He atom, where reliable
experimental data is available. Our result (especially the T-
time 77 4) was shown to be in excellent agreement with the
experiment [32,33,37] and with the FPI treatment of [37],
although for small field strengths our result of Z.y g tends
to agree better with the experiment. Note that in Figs. 2-5
we use for the evaluation of our result the same values of the
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field strengths used by the experiment, i.e., the field strength at
the maximum; see [12,37,38]. The T-time in our treatment is
dynamical or intrinsic type of time and represents a quantum
clock, i.e., to observe the time form within the system and
consider the quantum nature of the (bound) particle, in contrast
to the classical Keldysh time which is external (or parametric),
where we indicated two of its failures to treat the T-time in our
(study) case. Further investigation and more details will be
given in [34].

Further, we suggest a model of a shutter to the tunneling
process in attosecond experiment, and we think the experiment
together with our tunneling model (Secs. II B, II C, and IIT A)
offers a realization of the Bohr-Einstein’s photon-box GE,
with the electron as a particle instead of the photon and
with the uncertainty being determined from the (Coulomb)
atomic potential instead of the gravitational potential. Our
treatment suggests that a symmetry (maximally symmetrical
or quasi-self-adjoint) [30] assumption to calculate the T-time
is important and gives a hint to the search for a time operator
in the tunneling process and maybe for a general time operator
in quantum mechanics. Our result uses two models of the
effective charge Z.g of the left core He™ that the tunneling
electron experiences. The Zegr xk = 1.375 of Kullie [41], which
is based on a model similar to that of the SAE, is better for
a small field strength F < 0.055 a.u. [barrier width dg(F) >
14 a.u.], whereas Zeg c = 1.6875 of Clementi et al. [42] is
more reliable for larger field strengths because it is based on
the Hartree-Fock calculation, and that is justified when the
multielectron effects are not negligible.
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APPENDIX

(1) The maximum position of the barrier, x,(F)=
Zeir/ F. This follows immediately from the fact that x,, is
determined by the maximum of the effective potential energy
for arbitrary field strength, and that is the intersection point of
the two potentials, V(x) = —Z%ff and —x F (see Fig. 1); then

xe“ =—X= xm(F) =V Zeff/F.

(AL)
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Otherwise (to both sides), one of the two potentials
(—% or — xF) slopes down more quickly than the other
slopes up [which can be easily gathered from Fig. 1 and
Eq. (6)], leading to Veg(x) < Viegr(xy,) for x #£ xp,.

(2) The classical exit point x,.. X.. is determined by
neglecting the atomic potential [35],

2 2 _ _ _ b

v, — vy =0—2I, = -2F(x, — X0) = Xe.c = 7 (A2)
where x, ~ (x, — xo), xo ~ 01is the initial point of the electron,
and assuming that the electron moves along the x axis direction
[21,22].

(3) The “classical” T-time, tr .. We show that the first
order of Eq. (10) is equal to the T-time 77 ., which results from
using x, ., the classical exit point, to calculate the uncertainty
AE form AV (x,, ). Expanding Eq. (10) in terms of n = (%),
we get immediately that the first order equals t7 ., the T-time
at the classical exit point x, .; then

1 1 1

_r

2F 2 AE,

OI(TT,unsy) = =TT, (A3)
where AE, = |%| (classically, Zeg = 1).

(4) The Keldysh T-time, t,. The calculation of Keldysh
T-time is based on the assumption that / &~ x, ., where x, . is
given in Eq. (A2), [ is defined as length or the width of the
barrier, and the average velocity v of the electron to pass the
barrier is classically determined, v = (v — vg)/2 = m&,
where vy = v, is the velocity at the exit point,

I xee I, 2 \/E
v v FJ21, F

(5) Delay time and lifetime. Some authors define or claim
that the T-time (in an attosecond experiment) is the lifetime
of the electron in a metastable state or the time for which the
electron detained in the barrier or the well. This speciously
seems to be similar to the delay time caused by the barrier that
we calculated in our model, which we do and cannot define
it as the lifetime because the concept of the lifetime, which is
borrowed from the atomic physics in the perturbation regime,
is rather misleading in the regime of strong-field or attosecond
science. The electron does not “occupy” a metastable state
and become detained in the well, or “wait,” until the barrier is
opened, but it moves along a preferred direction far from the
nucleus and escapes to the continuum or to a “quasi” energy
level. That means the delay time in our model is a different
concept from the lifetime of a metastable state. Indeed,
Orlando et al. [27] used the later concept, the Mandelstam-
Tamm relation, which is usually (and almost exclusively) used
to calculate the lifetime. Their result was in disagreement with
the experimental finding of Eckle ef al. [33,37].

% = (A4)
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