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Tunneling time in attosecond experiments and the time-energy uncertainty relation
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In this work we present a theoretical model of the tunneling time and the tunneling process (in attosecond
experiment for the He atom). Our model is supported with physical reasoning leading to a relation which performs
an excellent estimation for the tunneling time in attosecond and strong-field experiments, where we address the
important case of the He atom. Our tunneling time estimation is found by utilizing the time-energy uncertainty
relation and represents a quantum clock. The tunneling time is also featured as the time of passage through the
barrier similar to Einstein’s photon-box Gedanken experiment. Our work tackles an important case study for
the theory of time in quantum mechanics and is very promising for the search for a (general) time operator in
quantum mechanics. The work can be seen as a fundamental step in dealing with the tunneling time in strong-field
and ultrafast science and is appealing for more elaborate treatments using quantum wave-packet dynamics and
especially for complex atoms and molecules.
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I. INTRODUCTION

A comprehensive theory of time measurement in quantum
mechanics is missing to date [1] (Chap. 3). Often it is said
that time plays a role essentially different from the role of the
position in quantum mechanics. In contrast, Hilgevoord [2]
argued that there is nothing in the formalism of the quantum
mechanics that forces us to treat time and position differently.
Observables such as position, velocity, etc., both in classical
mechanics as well as in quantum mechanics, are relative
observables, and one never measures the absolute position
of a particle, but the distance in between the particle and some
other object [2,3]. Indeed, there are many attempts to consider
time as a dynamical intrinsic or an observable time called
event time. Hilgevoord concluded [2] that, when looking to a
time operator, a distinction must be made between universal
time coordinate t , a c-number like a space coordinate, and
the dynamical time variable of a physical system situated in
space-time, i.e., clocks. Busch [4] argued that the conundrum
of the time-energy uncertainty relation (TEUR) in quantum
mechanics is related in the first place to the fact that time
is identified as a parameter in Schrödinger equation (SEQ).
He classified three types of time in quantum mechanics:
external time (referred to as parametric or laboratory time),
intrinsic or dynamical time, and observable time. External
time measurements are carried out with clocks that are
not dynamically connected with the object studied in the
experiment and usually called parametric time. The intrinsic
or dynamical time is measured in terms of the physical system
undergoing, dynamically, a change, where every dynamical
variable marks the passage of time. We will see that this is
important for our time invention where the energy serves as the
dynamical variable in question, which enables a quantitative
measure for the length of the time interval of the tunneling or
the tunneling time (T-time) in strong-field experiments. The
third type of time according to Busch is the observable time
or event time, for example, the time of arrival of the decay
products at a detector.
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In the history of the quantum mechanics, the earliest
attempt, which causes one of the most impressive debates,
is Einstein’s photon-box Gedanken experiment (GE) [5] or the
Bohr-Einstein weighing photon-box GE [3] (and the references
therein). A photon is allowed to escape from a box through a
hole, which is closed and opened temporarily by a shutter. The
period of time is determined by a clock, which is part of the box
system, which means that the time is intrinsic and dynamically
connected with the system under consideration. The total mass
of the box before and after a photon passes is measured. Bohr
showed that the process of weighting introduces a quantum
uncertainty (in the gravitational field), leading to an uncertainty
in time τ , which is the time needed to pass out of the box and is
usually called the time of passage [4], in accordance with the
TEUR, Eq. (1) below. Aharonov and Reznik [3] offer a similar
interpretation, that the weighing leads, due to the backreaction
of the system underlying a perturbation (energy measurement),
to an uncertainty in the time of the internal clock relative to the
external time [3]. Hence, for quantum systems it is important
to observe the time from within the system or using an internal
clock. Busch [4] presented an argument which makes no
assumptions concerning the method of measurement and is
simply based only on a version of quantum clock uncertainty
relation as follows: If the energy of the escaping photons is
determined with an accuracy δE from the difference of energy
before and after the opening period of the shutter, then these
energies must be defined within an uncertainty δE; i.e., the
box energy uncertainty �E must satisfy �E � δE. Then the
clock uncertainty allows us to conclude that the box system
needs at least a time t0 = �

�E
in order to evolve from the initial

state, “shutter closed,” to the orthogonal state, “shutter open.”
Accordingly, the time interval within which a photon can pass
through the shutter is indeterminate by an amount �T = t0.
This leads to Bohr’s TEUR �T δE ≈ � [1] (Chap. 3).

In this work we use similar ideas. We define the T-time
as the time delay caused by the barrier (denoted τT,d ) and it
is suggested to be similar to the time of passage through the
barrier (and escaping at the exit of the barrier). The (quantum)
particle (an electron) undergoing this process spends a time
that is the time needed from the moment of entering the barrier
region (i.e., the classically forbidden region) to the moment of
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escaping the barrier in the tunneling direction. In addition,
we suggest a time interval needed to reach the entrance of
the barrier (denoted τT,i) after it is shaken off by the laser
field at its initial position xi . τT,d is similar to the traversal
time used in the context of the tunneling approaches [6–8]
or the Feynman path integral (FPI) approach [9–11] (and [1],
Chap. 7). However, our approach differs conceptually from
other approaches, particularly because it is not probabilistic
(statistical). For example, in contrast to the FPI, we do not
make any assumption about paths inside the barrier, while, as
is well known, the FPI approach is based on all paths starting
at the entrance of the barrier at t = 0 and ending at the exit of
the barrier at time t = τ , which defines a time duration τ and is
identified as the traversal time through the barrier and assumed
to be equal to the delay time measured by the experiment [12].
A second type of T-time that we invent is what we call the
symmetrical T-time or the total T-time (denoted τT,sym). We
will see that that can be easily calculated from the symmetry
property of the T-time but then later we find that τT,sym =
τT,i + τT,d , which is the time accounted from the moment
of starting the interaction process, where the electron gets a
shakeoff, responds, and jumps up to the tunneling “entrance”
point, taking the (opposite) orientation of the field, passes the
barrier region, and overcomes the barrier at the “exit” point
(the tunneling) and escapes to the continuum. The key issue
of the present work is (in the words of Busch [1], Chap. 3) a
case study, the T-time in attosecond experiments and ultrafast
science, derived by utilizing the TEUR:

�T �E � �

2
. (1)

In Sec. II we present our theoretical model, in Sec. III we offer
a convincing physical reasoning for our theoretical model,
in Sec. IV we discuss our result with a comparison to the
experiment, and finally we give a conclusion to our work.

II. THEORY AND MODEL

In this section we suggest a way to approximate the T-time
in attosecond experiments based on simple mathematical and
quantum mechanical rules. We first prepare in Sec. II A the
basic material needed to introduce our model. The outline
of the model is given in Sec. II B and the T-time model is
presented in Sec. II C.

A. Preview

Our starting point is a model of Augst et al. [13,14], where
the appearance (or the threshold) intensity of a laser pulse for
the ionization of the noble gases is predicted. The appearance
intensity is defined [13] as the intensity at which a small
number of ions is produced. In this model (in atomic units)
the effective potential of the atom-laser system is given by

Veff(x) = V (x) − xF = −Zeff

x
− xF, (2)

where F = Fm is the field strength at the maximum of the laser
pulse (in this work, in all our formulas F stands for Fm) and Zeff

is the effective nuclear charge that can be found by treating
the (active) electron orbital as hydrogenlike, similar to the
well-known single-active-electron (SAE) model [15,16]. The

FIG. 1. (Color online) Graphic display of the potential curves,
the barrier width and the two inner and outer points xe,± =
(Ip ± δz)/2F , the “classical exit” point xe,c = Ip/F , and xm(F ) =√

Zeff/F , the position at the maximum of the barrier height [note
xa = xm(F = Fa)]; see text.

choice of Zeff is easily recognized for a multielectron system
and well-known in atomic, molecular, and plasma physics
[14,17–19]. Many authors use the quantum defect [20], which
is very similar to the effective charge approximation. We take a
one-dimensional model along the x axis as justified by Klaiber
and Yakaboylu et al. [21,22]. Augst et al. [13] calculated the
position of the barrier maximum xm by setting ∂Veff(x)/∂x =
0 ⇒ xa = xm(Fa) = (

√
Zeff/Fa) and by equating Veff(xm) to

the ionization potential Veff(xa) = −Ip (compare Fig. 1, the
lower green curve). They found an expression for the atomic-
field strength Fa ,

−Zeff

xa

− xaF = −Ip ⇒ Fa = I 2
p

4Zeff
, (3)

and the appearance intensity Ia = F 2
a . Now we take this idea

and relate our argumentation to this model for F � Fa , i.e.,
for the tunnel ionization in the regime of the well-known
Keldysh [23] parameter γK < 1. It is easy to see from Fig. 1
that the tunnel exit (denoted xe,+) obeys xe,+(F ) � xm(F ),
where the equality is valid for F = Fa . In this regime, when
F < Fa the energy of the tunneling electron is not sufficient
to reach the top of the barrier (as for Fa), suggesting an energy
uncertainty, which is determined by the energy that the electron
needs to overcome the barrier and appears in the continuum
at the exit point. It appears with zero velocity at the exit point
xe,+ according to the strong-field approximation (SFA) due
to Keldysh-Faisal-Reiss theory [23–25]. Indeed, the barrier
height at a position x is given by (compare Fig. 1)

hB(x) = |hB(x)| = |E − Veff(x)| =
∣∣∣∣−Ip + Zeff

x
+ xF

∣∣∣∣,
(4)

where hB(x) is equal to the difference between the ionization
potential and effective potential Veff(x) of the system (atom +
laser) at the position x, where E = −Ip is the binding energy
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of the electron before interacting with the laser. Note that
we can also get xm and the maximum hB(xm) from the
derivative of Eq. (4), ∂hB(x)/∂x = 0. An immediately arising
question is as follows: What about its maximum hB(xm) and
how this maximum is related to the energy uncertainty when
the electron passes the barrier region and is shifted to the
continuum or a “quasi” energy level? First, in light of the
work of Augst et al. and the derivation of xa = xm(Fa) and
Eq. (3), it turns out (compare Fig. 1) that the maximum of
the barrier height hB(xm) for arbitrary field strength lies at
xm(F ) = √

Zeff/F ; see the Appendix. Indeed, Eq. (3) can be
generalized as the following, for a field strength F � Fa we
get

F �
I 2
p

4Zeff
⇒ δ2

z = I 2
p − 4ZeffF � 0. (5)

The equality δz = 0 is valid for F = Fa . We will see that

δz = δz(F ) =
√

I 2
p − 4ZeffF is a key quantity; it controls the

tunneling process and determines the “time delay” τT,d caused
by the barrier and the total or the symmetrical T-time τT,sym,
Sec. II C. From Fig. 1 we see the barrier height at xm:

hB(xm) = | − Ip − Veff(xm)| = | − Ip +
√

4ZeffF |. (6)

This is the maximum of the barrier height, and by setting
hB(xm) = 0 one obtains Fa = I 2

p/(4Zeff), which is equivalent
to the setting Veff(xm) = −Ip as done by Augst et al. [13]
and can be easily verified from Eqs. (4) and (6). Note,
in contrast to a statical barrier, that the barrier height and
the barrier width are interdependent (both depend on F ),
and we have hB(xm) = 0 ⇔ dB = 0, where dB is the barrier
width, which is the length between the entrance and the exit
points of the barrier region along the tunneling direction,
the x axis, determined by the major axis of the laser field
F at its maximum. The “entrance” and “exit” points of the
tunneling region, xe,− and xe,+, respectively, are determined
by the vanishing barrier height hB(x) = 0 (compare Fig. 1)
and are the crossing points of Veff(x) with the −Ip line. Using
Eq. (4) and setting hB(x) = 0 leads to

xe,± = Ip ± δz

2F
⇒ dB = xe,+ − xe,− = δz

F

and xe,+ = xe,c − xe,−, (7)

where xe,c is called the “classical exit” point, the intersection
of the electric field line −x F with the ionization potential
of the electron −Ip line; hence, xe,c = Ip

F
, and δz = δz(F ) is

given in Eq. (5). We emphasize the dependence of δz on Zeff

[14,19]. Note the origin of the axes is at 0.

B. Outline of the model

The (tunneling-) ionization happens according to SFA
with zero kinetic energy at the exit point xe. Our idea is
that the uncertainty in the energy can be quantitatively
discerned from the atomic potential energy at the exit point
�E ∼ |V (xe)| = | − Zeff

xe
| for arbitrary field strength F � Fa .

Then, when the electron is moving in the x direction [21,22]
(the major axis orientation of the laser field) and overcomes
the barrier, its kinetic energy is decreasing; at the same time it
moves upwards on the potential energy scale, losing potential

energy (−Zeff
x

getting smaller in absolute value). The change
happens simultaneously in the potential and the kinetic energy
while tunneling [one can imagine while tunneling that the
electron is staying at the level −Ip on the energy scale (−Ip

line in Fig. 1) until reaching the exit point, which possibly
defines a quasienergy state; in a similar way a metastable state
is defined (see the Appendix)] until its kinetic energy becomes
zero at the exit point, although its (atomic) potential energy
is −Zeff

xe
�= 0. This can be also gathered from the analysis of

the short-range Yukawa and long-range Coulomb potentials
given by Torlina et al. [26]. Their conclusion, supported with
ab initio numerical tests, is that for long-range potentials
ionization is not yet completed at the “moment” the electron
exits the tunneling barrier in contrast to the usual assumption
that ionization is completed once the electron emerges from the
barrier. Indeed, it is not difficult to see that the electric field of
the laser pulse shifts the electron far from the nucleus (mainly
along the x-axis direction [21,22]), reaching the exit point with
zero velocity; i.e., the electron is forced by the electric field
to take and move (mainly or approximately) along a preferred
direction and, most importantly, to reduce its kinetic energy to
zero at the exit point xe (the field interacts only kinematically
with the electron since there is no photon absorption), where
it is still underlying the attraction of the atomic potential
V (xe) = −Zeff

xe
that defines the uncertainty in the energy and

acts as a shutter, open-closed, like in the photon-box GE with
an uncertainty proportional to �E ∼ |V (xe)|. We will see in
Sec. IV that the result is very convincing.

It is straightforward to show, when setting �E ∼ |V (xe,c)|,
that the classical exit point xe,c (see the Appendix) leads to
incorrect T-time (i.e., it fails to predict T-time measured by the
experiment). Thus, it is important to use a correct exit point.
From Fig. 1, one can see that xe,c is far from the “correct”
exit point xe,+; see Eq. (7). Therefore, to use the classical exit
point, xe,c, to determine the T-time will never give a correct
answer. Here we can indicate a failure of the Keldysh time (see
the Appendix), which results primarily from its inadequate
definition. If we recall the definition of the Keldysh T-time,
the time it takes a classical electron (with an average velocity)
to cross a static barrier of a length l [27], where l ≡ dB .
For hB(xm) = 0 ⇒ l = 0 we get the Keldysh T-time τk = 0
(meaning the ejection of an electron happen instantaneously
at F = Fa) because the barrier width vanishes for F → Fa ,
|xe,+ − xe,−| = 0. However, we know, at the appearance (or the
threshold) intensity (Ia = F 2

a ) the ionization time is equal to
1
Ip

(in a.u.) [28] (Chap. 8) and is not (and cannot be) zero. This
seems natural because the energy gap that has been overcome
is Ip, and as we will see in the next section this follows
immediately from our model. As a consequence, Keldysh time
represents a laboratory clock (parametric or external time),
whereas in our following T-time model and time relation(s)
the time is dynamically connected to the system (to observe
the time form within the system and consider the quantum
nature of the particle); thus, it represents a quantum clock.

C. Tunneling time

Our goal now is to find an expression to calculate the
T-time, and what we need is the correct exit point, where many
approximations exist. The most used one in the literature can
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be obtained from Eq. (4) and given in Eq. (7). As seen in
Fig. 1, xe,− is the inner crossing point, the entrance point, and
xe,+ is the outer crossing point, the exit point. Physically, it
is argued that the electron escapes the barrier at xe,+, when
it moves in the direction xe,− → xe,+, and vice versus for
the opposite direction. We will see that this presents a useful
symmetry property of the tunneling process when deriving the
T-time. For the atomic-field strength Fa , δz = 0 and we have
xe,+ = xe,− = xa . A first arising question in our model is,
what happens in the limit of the appearance intensity, i.e., for
F → Fa = I 2

p/(4Zeff), where the electron is shifted from the
ground state E0 = −Ip to Ef ≈ 0 appearing at xe,− = xa =
xe,+ with zero velocity. Its energy uncertainty (since there is no
photon absorption) is then (according to our model) �E(Fa) ∼
| − Zeff

xa
| = Ip

2 . One sees that for atomic-field strength (Fa)
the electron is heavily disturbed but appearing not far from

the nucleus at xa = xm(Fa) =
√

Zeff
Fa

= 2Zeff
Ip

with an ionization

time that follows immediately from TEUR in Eq. (1),

τa = 1

2|�E(Fa)| = 1

Ip

, (8)

as it should be for the ionization process at the Fa [28] (Chap.
8). However, we will see later that Fa is a special case because
xe,− = xa = xe,+ [a double solution of hB(x) = 0] and the
limit case 1

Ip
for F → Fa is a sum of two equal terms 1

2Ip
; see

further below and Sec. III A. The special case Fa showed that
our model is meaningful and that atomic potential energy of
the electron at the tunnel exit xe,+ (instead of the gravitational
potential in the Einstein-Bohr GE) amounts to calculating the
uncertainty of the energy in the tunneling process, and hence
the T-time, by virtue of Eq. (1), which leads to an excellent
result, as we see in Sec. IV.

We turn now to the general case F < Fa , where we can
calculate the uncertainty in the energy �E(xe,+) by using the
exit point xe,+ (in the direction xe,− → xe,+) and from this the
T-time. From Eqs. (7) and (1) and according to our model, we
get

�E(xe,+) =
∣∣∣∣−Zeff

xe,+

∣∣∣∣ = Zeff2F

(Ip + δz)
= (Ip − δz)

2
, (9)

τT,unsy = 1

2

1

�E
= 1

(Ip − δz)
, (10)

which we call the unsymmetrical T-time τT,unsy. One can easily
show that a T-time resulting from using the classical exit point
xe,c is the first order of Eq. (10) [see the Appendix, Eq. (A3)].
We show now that a factor (1/2) is missing, which can be
recovered by a symmetry consideration. What about the inner
point xe,−? We could assume, due to the δz symmetry between
xe,+ and xe,−, that the electron enters the barrier backwards
from xe,+ entrance to xe,− exit with an uncertainty (according
to our model) �E(xe,−) = |−Zeff

xe,−
|, which leads to [compare

Eqs. (9) and (10)]

1

2�E(xe,−)
= (Ip − δz)

4ZeffF
= 1

(Ip + δz)
. (11)

This symmetry is deduced in a way similar to how the
Aharonov-Bohm time operator [29] is defined for a free par-
ticle T̂ = 1

2 (x̂ p̂−1 + p̂−1x̂) or in more elaborate and detailed

treatment (the so-called bilinear form) given by Olkhovsky
and Recami [30]. Such operators (given by Aharonov-Bohm or
Olkhovsky) have the property of being maximally symmetric
in the case of the continuous energy spectra and the property
of quasi-self-adjoint [31] operators in the case of the discrete
energy spectra [30] (and the references therein); they are
the next-best thing to self-adjoined operators and satisfy the
conjugate relation with the Hamiltonian and therefore implies
an ordinary TEUR [30], [1] (Chap. 1). We use this property,
i.e., we assume that the maximally symmetric (or almost
self-adjoint [30]) property holds for the T-time (for more
details, see [30]), which leads to using Eqs. (10) and (11)
in a simple relation for what we call the symmetrical (or total)
T-time given by

τT,sym = τT,+ + τT,− = 1

2

(
1

�E− + 1

�E+

)

= 1

2

[
1

(Ip + δz)
+ 1

(Ip − δz)

]
= Ip

4ZeffF
, (12)

where we defined τT,± = 1/(2�E∓) = [2(Ip ± δz)]−1 or
(1/2)�E± = �E(xe,±). Relation (12) has again (clearly
because δz = 0) the correct limit for atomic-field strength
[compare Eq. (8) and the discussion after it]:

τT,sym(F → Fa) = 1

2Ip
+ 1

2Ip
= Ip

4 Zeff
Ip2

4 Zeff

= 1

Ip
.

Note that the limit F → Fa gives xe,+ = xe,− = xm(Fa) = xa ,
which means that the two points coincide at the top of
the barrier. The question is whether this means a symmetry
break of the tunneling process, so that the “tunneling”
becomes a “real” ionization (or an ejection) process at the
appearance intensity Ia = F 2

a , and δz becomes imaginary for
superatomic-field strength F > Fa (whereas F < Fa is called
the subatomic-field strength); a further discussion is given in
Sec. IV.

A further question concerns whether the time to reach the
entrance of the barrier and overcome and escape the barrier at
the exit, which is an intrinsic or dynamical type of time to be
measured by a quantum clock, becomes a classical, external
(or parametric) time after the tunneling due to the break of
some symmetry property, so that (only) under such a symmetry
break does a quantum clock (the internal time) coincide with
a laboratory clock (the external time), as is the case for a free
particle (continuous energy spectra).

In Sec. IV we see that Eq. (12) (especially τT,− = 1
2

1
(Ip−δz) )

gives an excellent agreement with the experimental result
of [32]. In the next section, Sec. III, we discuss our model
following a physical reasoning.

III. PHYSICAL REASONING

A. Tunneling time and a model of a shutter

The theoretical mathematical model developed in Sec. II
can be supported and derived by physical arguments; the only
difference is that we try to figure a physical insight that helps
us to put physics in mathematical relations. From Fig. 1 and
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Eq. (7) we get [dB(F ) is the barrier width]

dB(F ) = xe,+ − xe,− = (Ip + δz)

2F
− (Ip − δz)

2F
= δz

F
. (13)

From this it follows δz = (xe,+ − xe,−) F . Because, for atomic
field strength F = Fa ⇒ δz = 0, dB = 0, we can interpret δz

as the field’s (kinetic) energy exerting in the tunneling process
between the entrance (or the “inner”) point and the “outer”
exit point. The uncertainty in the energy as the electron
moves to xe,+, i.e., when tunneling, overcomes the barrier
region and escapes at the exit to the continuum, is then
�E+ = abs(−Ip + δz). That means the barrier itself causes
a time delay relative to the atomic-field strength Fa (δz = 0).
The T-time is then obtained from Eq. (1),

τT,d ≡ 1

2�E+ = 1

2 (Ip − δz)
(for F � Fa), (14)

which we call τT,d [=τ−, compare Eq. (12)], meaning that
that is the delay in the time relative to the atomic field
(more details in [34]) or the time duration (time interval)
to pass the the barrier region (in the direction x

e,− → xe,+)
and escape at the exit point xe,+ to the continuum. The term
τT,d (F → Fa) = 1

2Ip
at the limit F = Fa accounts for turning

off the wave packet (or shakeoff step, as discussed in Secs. III B
and III C) at the “entrance-exit” point xa to escape to the
continuum, which indicates that the shakeoff step or turning at
xe,+ to the continuum for F < Fa happens with a time delay
as given in Eq. (14). Expanding δz = Ip

√
1 − (4ZeffF/Ip2)

and taking the first order, we get Eq. (12), τ ≈ Ip

4ZeffF
= τT,sym.

It means using the symmetrization gives a linearized time
duration (linearized T-time).

Now we argue that this picture fits well in the GE of Einstein
and the (intrinsic) time τT,d [Eq. (14)] or that the second term
in Eq. (12) is rather the time of passage, where the shutter
open-closed time interval (generated in the internal time [3]) is
related by the virtue of Eq. (1) to the uncertainty (1/2)�E+ =
�E(xe,+) = V (xe,+), which acts as a shutter [note that we
recovered in Eqs. (12) and (14) the factor (1/2) missing in
Eq. (10)]. We think also that the attosecond experiment, with
the help of our model, represents a realization of the photon-
box GE (with the electron as a particle instead of the photon)
with an uncertainty being determined from the (Coulomb)
atomic potential due to the electron being disturbed by the
field F , instead of being disturbed by the weighting process
and, as a result, an uncertainty in the gravitational potential
[3], as shown by the famous proof of Bohr to the uncertainty
(or indeterminacy) of time in the photon-box GE [3,4].

B. Total time (F = Fa)

At the moment, one can obtain the total time, i.e., including
the time to reach the entrance of the barrier xe,−, by adding the
term 1/(2Ip) to Eq. (14),

τT,sym ≈ τT,t = 1

2

(
1

Ip

+ 1

Ip − δz

)
, (15)

where the index t is used only to distinguish between different
notations. Nevertheless, the term 1/(2Ip) that we added is
exact only when F = Fa or xe,−(Fa) = xa = xe,+(Fa), since
the time to reach the entrance-exit point xa follows from

the uncertainty (the response or jump-up to the −Ip-level at
entrance-exit point)

�E = |�V(xi ,xa )| = Ip ⇒ τ(xi ,xa ) = 1

2Ip

, (16)

where xi is the initial point. It can be viewed as the response
time of the electron to the field, that is, the electron received
a kick by the field, and is polarized along the field direction,
while (jumping up [35]) moving from xi to the entrance-exit
point xa to the continuum, xi → xe,−(= xa = xe,+) → ∞.
In this case [hB(F = Fa) = 0, δz = 0], the most probable
“tunneling” mechanism is that the laser field distorts the
electron, shakes it up (moving from xi to xa), and shakes
it off (moving to the continuum) at a (total) time given in
Eqs. (12) or (15) τ = 1

2 ( 1
Ip

+ 1
Ip

) = 1
Ip

. In this model, for
F = Fa the (illustrative) two steps are not strictly separated,
whereas, for F < Fa they are well separated due to the barrier
dB(F ) > dB(Fa) = 0, as we discuss in the next section.

C. Total time for subatomic field F < Fa

However, xa = xe,− = xe,+ is the maximum entrance point
(the most-far-right-lying entrance point, see Fig. 1), the
electron is less disturbed for F < Fa and moved to a point
xe,− < xa that is closer to the initial point xi [36], this
shortens the time to reach the entrance point, and we expect
that the response of the electron to a small field strength F

is weaker than that to a stronger field F → Fa . The time
reduction in τ(xi ,xe,−) for F compared to τ(xi ,xa ) = 1/(2Ip) for
Fa [Eq. (16)] is a factor depending on δz [see discussion after
Eq. (13)], because the kinetic energy experiences a change
proportional to (xe,− − xi) F < (xa − xi) Fa . A (weaker) field
F < Fa is not sufficient to compensate for the kinetic energy
at the (shakeup) step; instead, the electron is at the entrance
xe,− < xa with a velocity that is sufficient to enter the barrier
region, overcomes the barrier, and reaches the exit point xe,+
with zero velocity. Here we indicate another failure of the
Keldysh time (see the last passage of Sec. II B); that is, the
electron does not enter the barrier region (or start the tunneling)
with the initial velocity

√
2Ip suggested by many authors [35].

Now we give the following relation for the time needed to
reach the entrance point xe,− and show an explanation further
below:

τT,i ≡ τ(xi ,xe,−) = 1

2(Ip + δz)
≡ 1

2�E− . (17)

The factor δz [comparing to Eq. (16) for Fa] in the denominator
results from two parts. Indeed, we follow [3] in that the uncer-
tainty is a result of the different reactions or responses of the
electron to different field strengths. The first part comes from
the difference of moving along the x axis, i.e., the difference in
shifting the electron to xa with Fa or to xe,− < xa for F < Fa ,
which leads to �1 = xaFa − xe,−F = IP

2 − (Ip−δ)
2 = δz

2 . The
other part can be deduced from the change on the vertical
(potential energy) scale. When the electron receives a kick,
changing its potential (on a vertical scale), its atomic potential
experiences different changes between V (xi) and V (x) for x =
xa or xe,− < xa . However, this is a result of different responses
(on energy scale), while the electron is forced to follow an
orientation along the (opposite) field direction at xa or at xe,−.
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Therefore, this part can be approximated from the difference
�V (x) in the atomic potential at the different entrance points,
which gives �2 = V (xa) − V (xe,−) = −√

ZeffFa + 2ZeffF

(Ip−δz) =
− Ip

2 + (Ip+δz)
2 = δz

2 . We are led to a difference equal to
�1 + �2 = δz between reaching the entrance point xe,− (for
F ) relative to the entrance-exit point xa (for Fa), leading to an
energy uncertainty �E = abs(−Ip − δz) = (Ib + δ), for F �
Fa and with a time τT,i(F ) = 1

2(Ip+δz) for arbitrary subatomic-
field strength F ; hence, one obtains Eq. (17) instead of Eq. (16).
We have explained so far Eqs. (14) and (17); in doing so we
explained the physical meaning of the symmetry consideration
done above [see Eq. (12) and the discussion before] and we
obtain from Eqs. (14) and (17) the result obtained in Eq. (12),

τT,sym = τT,i + τT,d ≡ τT,+ + τT,−

= 1

2

[
1

Ip + δz

+ 1

(Ip − δz)

]
= Ip

4ZeffF
, (18)

where the first term τT,i = τT,+ corresponds to the first step,
where the electron is shaken up and moved to the entrance xe,−
(or xa for Fa) that takes the times 1/(2E−) = [2(Ip + δz)]−1.
The second term τT,d = τT,− corresponds to the actual T-time,
or the time it takes the electron to move from xe,− to xe,+,
overcome the barrier, and be shaken off to the continuum,
with a time delay 1/(2E+) = [2(Ip − δz)]−1 due to the barrier
relative to the atomic-field strength Fa , where δz = 0 and
τT,d = (2Ip)−1.

For F = Fa , as already mentioned, the second or shakeoff
step immediately follows the first or shakeup step and the two
steps are not strictly separated. For F < Fa the two steps of
the tunneling process are well separated. They happen with
opposite directions at the time scale; the first step is less time
consuming since F causes a smaller disturbance relative to Fa ,
and the the electron does not move far from its initial position
for a small F , xe,− < xa , whereas the second step happens with
a time delay, xe,+ > xa , relative to the ionization at atomic-
field strength. So far, our theoretical model is assisted with an
explanation through a physical reasoning. In the following we
show and discuss our result for the He atom with a comparison
to the experiment [32,33,37].

IV. RESULT AND DISCUSSION

In Fig. 2 we show the results of Eq. (10), the unsymmetrical
τT,unsy, and Eq. (12), the symmetrical T-time τT,sym. The results
for τT,d Eq. (14) and again the symmetrical (or total) T-time
τT,sym of Eq. (18) are shown in Fig. 3. Note that Eq. (18) is
identical with Eq. (12), whereas Eq. (14) is the second term
of Eq. (18) or (12), which is the actual T-time, i.e., the time
needed to pass the barrier region (xe,− → xe,+) and escape
at xe,+ to the continuum, and most likely that is the T-time
measured in the experiment, as explained in the next paragraph.
The results are for the He atom in a comparison with the
experimental result of [32,33,37]. The experimental data and
the error bars in the figure were kindly sent by Landsman
[37]. We plotted the relations (10), (12), (14), and (18) at the
values of the field strength at the maximum of the elliptically
polarized laser pulse (λ = 735, elliptical parameter ε = 0.87,

FIG. 2. (Color online) T-time τT,unsy [Eq. (10)] and τT,sym

[Eq. (12)] for two Zeff models [41] and [42]. Time is in attosecond
units vs laser-field strength in atomic units, corresponding to the
tunneling ionization of the He atom in strong field (compare Fig. 3).
Experimental values were kindly sent by Landsman [37].

F = F0/
√

1 + ε2) used by the experiment exactly as given
in [37].

The experiment. Concerning the experiment by the group
of Keller et al. [37], the time delay due the barrier is measured
indirectly, t

expt
T = (θm−θC )

ω
, where ω is the laser frequency, θm

the angular offset of the center of angular distribution, and θC

a correction due to the Coulomb force of the ion calculated by
classical-trajectory simulation [32,33,37–39]. Unfortunately,
in this experiment the beginning of the interaction between the
laser field and the bound electron cannot be directly observed
or exactly determined.

FIG. 3. (Color online) T-time τT,d [Eq. (14)] and τT,sym [Eq. (18)]
for two different Zeff models as in Fig. 2. Note that Eq. (18) is
identical to Eq. (12) [see Fig. 2], with units as in Fig. 2. T-time
corresponds to the tunneling ionization of the He atom in strong
field, in excellent agreement with the experimental result [32,33,37].
Experimental values as in Fig. 2.
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The time zero t
expt
0 is one of the assumptions of the model,

which is used to interpret the data. Consequently, in the
experiment it is not possible to distinguish between the instant
of the interaction t0 = 0 and the instant when the electron
enters the barrier region, say tT ,l [40]. The assumption implies
that t

expt
0 , the moment when the laser-field points along the

major axis, is consistent with the time “zero-time-calibration,”
say t simul

0 , of a model based on classical-trajectory simulation
to interpret the data t simul

0 = t
expt
0 . It is likely (in our opinion and

according to our communication [40]) that t
expt
0 (the moment

when the laser field points along the major axis, as assumed
in the experiment) differs from the instant of (starting) the
interaction with the laser field t0 = 0. On the other hand, it is
difficult to identify t

expt
0 with tT ,i = τT,i , which is the instant

of the orientation along the laser-field direction (in our model
the moment of entering the barrier region).

However, arguing that the probability of tunneling is highest
when the barrier is shortest, corresponding to t

expt
0 [40],

suggests that the data from the measurement are comparable
to the time delay caused by the barrier (the time spent in
the classical forbidden region [40]), which means that t

expt
T

corresponds to or (approximately) equals the actual T-time
delay of our model, t

expt
T ≈ τT,d .

Discussion and comparison to the experiment. In Fig. 2,
the upper two curves are the unsymmetrical T-time τT,unsy,
Eq. (10), for two different models of the effective nuclear
charge Zeff that the tunneling electron experiences during the
tunneling process. Accordingly, the lower two curves are the
symmetrical T-time, τT,sym [Eq. (12)], for the two different
models of Zeff . We mention that Eq. (15) (not plotted) gives a
closer result to Eqs. (12) and (18). The two different effective
charge models are from Kullie [41], with Zeff,K = 1.375, and
Clementi and Raimondi [42], with Zeff,C = 1.6875. In Fig. 2
we see that our τT,unsy is not close to the experimental data,
whereas τT,sym is close for both models of the Zeff . However,
we notice (see discussion further below) that the first term in
Eqs. (12) and (18) is much smaller than the second τT,i < τT,d

for small F (relative to Fa).
Concerning Zeff , we see for a small field strength F � 0.05

that τT,sym, with Zeff,K, is closer to the experimental data (and
especially for τT,d , see discussion of Fig. 3 below). The reason
is that the Zeff,K model is a H-atom-like model, based on the
assumption that the first electron of the He atom occupies the
1s orbital [with probability density |�(r)|2], which screens
the nuclear charge and the second electron is treated as an
active electron or a “valence” electron [41] similar to that
done in the SAE approximation. This is a good approximation
when the tunneling electron moves far from the left atomic
core (He+) or when the barrier width is large (xe,+ > 15 a.u.),
hence the better agreement, and possibly this is important for
smaller field strength in the region, where γK ≈ 1. In the range
of larger field strength, multielectron effects are expected and
the model Zeff,C based on the Hartree-Fock calculation is more
reliable, where the electron moves not far from the left atomic
core (small barrier width) and hence the better agreement in
this region.

Now we look to Fig. 3, where τT,sym Eq. (18) and τT,d

Eq. (14) are shown. Equation (18) is the same as Eq. (12)
(shown in Fig. 2). For the τT,d we see an excellent agreement

with the experiment. As already discussed, τT,d corresponds
to the T-time measured in the experiment, that is, the time
(interval) needed to pass the barrier (the classically forbidden)
region between the entrance to the exit point and escape to
the continuum with a shakeoff, or between the instant of
orientation at xe,− and the instant of ionization at xe,+, which
corresponds to the time spent in the classically forbidden
region. Concerning Zeff in Fig. 3, we readily see for τT,d the
same behavior as in Fig. 2 for τT,sym. For small F � 0.055 a.u.,
Zeff,K gives better agreement with the experiment, whereas for
larger field strength Zeff,C is more reliable, where multielectron
effects are expected due to the decreasing width of the barrier
and the tunneling electron is closer to the first one when it
tunnels through the barrier region. It is likely that a model
depending on the x coordinate Zeff(x; xe,+) will achieve a
better agreement that smoothly fits the two regions. Moreover,
when taking Zeff,C we get Fa = 0.115 a.u., which is a good
estimation in regard to the experimental data and the trends of
the curves in Fig. 3.

In Fig. 3 we see that the difference between the total or
symmetrical T-time τT,sym and the (actual) T-time τT,d is small,
because the second term τT,d in Eq. (18) incorporates the time
delay caused by the barrier and is the main time contribution of
the tunneling process for a large barrier, whereas the first part
τT,i , is due to the shakeup of the electron by the field moving it
from its initial position to the entrance xe,−, which is small for
a small F . For large field strength the two parts become closer
because the barrier width decreases δz/F = (xe,+ − xe,−) → 0
and for the appearance intensity (δz = 0) they become equal.

In Fig. 4 we plot our result τT,d Eq. (14) together with the
FPI and Larmor Clock (LC) results of [37] (data were kindly
sent by Landsman and Hofmann). In Fig. 4, the FPI is in a
good agreement with our result, and the difference between
the two results is smaller than the experimental error bars.
Indeed, we expect that the FPI would agree better for large field
strength F > 0.055 a.u. with the lower curve (Zeff,C , green).

FIG. 4. (Color online) T-time τT,d Eq. (14) for two different
Zeff models as in Fig. 2 together with the FPI and Larmor clock
results [37] and the experimental result [32,33]. Experimental values,
the FPI, and Larmor result were kindly sent by Landsman and
Hofmann [37].
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For small field strength, FPI is more or less close to both
curves (green, blue), but our upper curve (Zeff,K , blue) tends
to be in a better agreement with the experimental data. An
important point is that our model and result(s) estimate a real
T-time (time delay or time interval) of a single particle similar
to the LC time; it is not distributive or that of an ensemble
(although indeterminately in regard to the uncertainty relation)
and we make no assumption about the path of the particle
inside the barrier, whereas the FPI treatment is probabilistic
and/or distributive and makes use of all possible (classical)
paths inside the barrier that have a traversal tunneling time
τ = τ0. Furthermore, Landsman et al. [37] uses the time τ0,
which is determined by the measurement to coarse grain the
FPI distribution of the T-times to achieve the desired results,
whereas Sokolovski [11], [1] (Chap. 7) claims (in regard to
his FPI description) that no real time is associated with the
tunneling. We think that the two views (our result and the
FPI of Landsman et al. [37]) are rather complementary, as it
is usual in quantum mechanics: wave-particle or individual
(single particle)-statistical (distributive), etc. The result of the
LC should, in principle, agree better with our result, but the data
of Landsman et al. [12,37,38] show that the agreement is good
only for F ≈ 0.05–0.1 a.u.; hence, the LC values are inferior
for F < 0.05 a.u. The same holds for F > 0.1 a.u. Although
the difference to our result here is smaller than the error bars,
the trends of the LC curve for a large field strength looks
somewhat too flat. In general, the LC curve is flat compared to
the other curves and tends to disagree with the experimental
data for a small field strength F < 0.05 a.u.

In Fig. 5 we show the tunneling time τT,d versus the
barrier width dB(F ). τT,d shows a linear dependence on the
barrier width dB(F ) in the region F = 0.04–0.11 a.u. and a
limit 1/(2Ip) at dB(Fa) = 0. The other limit for very large
barrier width (F → 0,δz → Ip) is ≈ Ip

4ZeffF
= τT,sym, which is

straightforward because, for very large barrier, τT,d � τT,i ⇒
τT,d ≈ τT,sym. We note, as seen in Fig. 5, that the time spent by
a particle (a photon) to traverse the same barrier width with the
speed of light is much smaller than the T-time of an electron
in the He atom.

FIG. 5. (Color online) T-time τT,d [Eq. (14)] vs barrier width
dB (F ) [Eq. (13)] for two different Zeff models as in Fig. 2. The
lines at the bottom of the figure show the time spent by a particle (a
photon) traversing the same barrier at the speed of light.

Further discussion. At the limit F = Fa of the subatomic-
field strength the tunneling process is out and an ionization
process called “above the barrier decay” is beginning [20].
For superatomic-field strength F > Fa , δz becomes imaginary
(and so the crossing points, compare Eq. (7), but still a real
xm = √

Zeff/F ), which indicates that the real part 1
2Ip

of
τT,d or τT,i , is the limit for a “real” time tunnel-ionization
process. Indeed, in this case the atomic potential is heavily
disturbed and the imaginary part of the time τT,d is then
due to the release or the escape of the electron [at xm(F )]
from a lower energy level than −Ip (and possibly escaping
with a high velocity), where the ionization happens mainly
by a shakeoff step [28] (Chap. 9). Here we see the clear
difference between the quantum mechanical and the classical
clocks [3,29]. Classically, we can make the interaction time
with the system arbitrarily small, the real part of the time can
be made arbitrary small, and an imaginary part is absent. In
quantum mechanics the tunneling-ionization time has a real
part limit τT,d = 1/(2Ip); an imaginary part arises when the
field strength is larger than the atomic-field strength Fa , in
terms τT,i and τT,d .

However, in our treatment, although τT,i and τT,d both
have an imaginary part when F > Fa , we get a real total or
symmetrical T-time τ

T ,sym = Ip

4ZeffF
for ionization processes

with an arbitrary field strength. It becomes very small for
very large field strengths and probably loses its validity in
this regime, suspecting a break of some symmetry, nonlinear
effects arise, and the interaction becomes physically a different
character. It certainly also loses its validity in the multiphoton
regime, i.e., for large Keldysh parameter γ � 1, where
F  Fa . It is apparent from τ

T ,sym [Eqs. (12) and (18)] that
the T-time has no imaginary part when the symmetry of
the time is considered, i.e., when assuming the maximally
symmetrical (or quasi-self-adjoint) property discussed in detail
by Olkhovsky et al. [30]. It is now the question to what extent
the above relation Ip

4ZeffF
preserves its validity for F > Fa (or

for small F  Fa , where γK � 1), where or what is or are
the limit(s) of its validity? A break of some symmetry for
F � Fa (or F  Fa) can probably give a hint to answer this
question. Finally, we mention that for F > Fa or intensities
I > Ia Stark-shift, relativistic, and nonlinear effects become
large, the perturbation theory breaks down (which is valid for
small parameter ξ = F

Fa
[28]), and several regions appear at

intensities larger than the appearance intensity Ia , such as the
critical Ic and the saturation Is intensities, Is > Ic > Ia , where
multiple ionization occurs [28] (Chaps. 7 and 9).

V. CONCLUSION

We presented in this work an analysis for the tunneling
time and the tunneling process in attosecond experiments and
found an accurate and simple relation to calculate the tunneling
time for the important case of the He atom, where reliable
experimental data is available. Our result (especially the T-
time τT,d ) was shown to be in excellent agreement with the
experiment [32,33,37] and with the FPI treatment of [37],
although for small field strengths our result of Zeff,K tends
to agree better with the experiment. Note that in Figs. 2–5
we use for the evaluation of our result the same values of the
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field strengths used by the experiment, i.e., the field strength at
the maximum; see [12,37,38]. The T-time in our treatment is
dynamical or intrinsic type of time and represents a quantum
clock, i.e., to observe the time form within the system and
consider the quantum nature of the (bound) particle, in contrast
to the classical Keldysh time which is external (or parametric),
where we indicated two of its failures to treat the T-time in our
(study) case. Further investigation and more details will be
given in [34].

Further, we suggest a model of a shutter to the tunneling
process in attosecond experiment, and we think the experiment
together with our tunneling model (Secs. II B, II C, and III A)
offers a realization of the Bohr-Einstein’s photon-box GE,
with the electron as a particle instead of the photon and
with the uncertainty being determined from the (Coulomb)
atomic potential instead of the gravitational potential. Our
treatment suggests that a symmetry (maximally symmetrical
or quasi-self-adjoint) [30] assumption to calculate the T-time
is important and gives a hint to the search for a time operator
in the tunneling process and maybe for a general time operator
in quantum mechanics. Our result uses two models of the
effective charge Zeff of the left core He+ that the tunneling
electron experiences. The Zeff,K = 1.375 of Kullie [41], which
is based on a model similar to that of the SAE, is better for
a small field strength F � 0.055 a.u. [barrier width dB(F ) >

14 a.u.], whereas Zeff,C = 1.6875 of Clementi et al. [42] is
more reliable for larger field strengths because it is based on
the Hartree-Fock calculation, and that is justified when the
multielectron effects are not negligible.
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APPENDIX

(1) The maximum position of the barrier, xm(F ) =√
Zeff/F . This follows immediately from the fact that xm is

determined by the maximum of the effective potential energy
for arbitrary field strength, and that is the intersection point of
the two potentials, V (x) = −Zeff

x
and −x F (see Fig. 1); then

−Zeff

x
= −x ⇒ xm(F ) =

√
Zeff/F . (A1)

Otherwise (to both sides), one of the two potentials
(−Zeff

x
or − xF ) slopes down more quickly than the other

slopes up [which can be easily gathered from Fig. 1 and
Eq. (6)], leading to Veff(x) < Veff(xm) for x �= xm.

(2) The classical exit point xe,c. xe,c is determined by
neglecting the atomic potential [35],

v2
e − v2

0 = 0 − 2Ip = −2F (xe − x0) ⇒ xe,c = Ip

F
, (A2)

where xe ≈ (xe − x0), x0 ≈ 0 is the initial point of the electron,
and assuming that the electron moves along the x axis direction
[21,22].

(3) The “classical” T-time, τT,c. We show that the first
order of Eq. (10) is equal to the T-time τT,c, which results from
using xe,c, the classical exit point, to calculate the uncertainty
�E form �V (xe,c). Expanding Eq. (10) in terms of η = ( 4F

I 2
p

),

we get immediately that the first order equals τT,c, the T-time
at the classical exit point xe,c; then

O1(τT,unsy) = Ip

2F
= 1

2

1

�Ec

= τT,c, (A3)

where �Ec = | −1
xe,c

| (classically, Zeff = 1).
(4) The Keldysh T-time, τk . The calculation of Keldysh

T-time is based on the assumption that l ≈ xe,c, where xe,c is
given in Eq. (A2), l is defined as length or the width of the
barrier, and the average velocity v of the electron to pass the
barrier is classically determined, v = (vf − v0)/2 = √

2Ip/2,
where vf = ve is the velocity at the exit point,

τk = l

v
= xe,c

v
= Ip

F

2√
2Ip

=
√

2Ip

F
. (A4)

(5) Delay time and lifetime. Some authors define or claim
that the T-time (in an attosecond experiment) is the lifetime
of the electron in a metastable state or the time for which the
electron detained in the barrier or the well. This speciously
seems to be similar to the delay time caused by the barrier that
we calculated in our model, which we do and cannot define
it as the lifetime because the concept of the lifetime, which is
borrowed from the atomic physics in the perturbation regime,
is rather misleading in the regime of strong-field or attosecond
science. The electron does not “occupy” a metastable state
and become detained in the well, or “wait,” until the barrier is
opened, but it moves along a preferred direction far from the
nucleus and escapes to the continuum or to a “quasi” energy
level. That means the delay time in our model is a different
concept from the lifetime of a metastable state. Indeed,
Orlando et al. [27] used the later concept, the Mandelstam-
Tamm relation, which is usually (and almost exclusively) used
to calculate the lifetime. Their result was in disagreement with
the experimental finding of Eckle et al. [33,37].
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[42] E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686
(1963).

052118-10

http://dx.doi.org/10.1016/S0370-1573(01)00092-8
http://dx.doi.org/10.1016/S0370-1573(01)00092-8
http://dx.doi.org/10.1016/S0370-1573(01)00092-8
http://dx.doi.org/10.1016/S0370-1573(01)00092-8
http://dx.doi.org/10.1103/PhysRevLett.93.170401
http://dx.doi.org/10.1103/PhysRevLett.93.170401
http://dx.doi.org/10.1103/PhysRevLett.93.170401
http://dx.doi.org/10.1103/PhysRevLett.93.170401
http://dx.doi.org/10.1103/PhysRevA.50.1240
http://dx.doi.org/10.1103/PhysRevA.50.1240
http://dx.doi.org/10.1103/PhysRevA.50.1240
http://dx.doi.org/10.1103/PhysRevA.50.1240
http://dx.doi.org/10.1103/PhysRevA.42.6512
http://dx.doi.org/10.1103/PhysRevA.42.6512
http://dx.doi.org/10.1103/PhysRevA.42.6512
http://dx.doi.org/10.1103/PhysRevA.42.6512
http://dx.doi.org/10.1088/0953-4075/47/20/204024
http://dx.doi.org/10.1088/0953-4075/47/20/204024
http://dx.doi.org/10.1088/0953-4075/47/20/204024
http://dx.doi.org/10.1088/0953-4075/47/20/204024
http://dx.doi.org/10.1103/PhysRevLett.63.2212
http://dx.doi.org/10.1103/PhysRevLett.63.2212
http://dx.doi.org/10.1103/PhysRevLett.63.2212
http://dx.doi.org/10.1103/PhysRevLett.63.2212
http://dx.doi.org/10.1364/JOSAB.8.000858
http://dx.doi.org/10.1364/JOSAB.8.000858
http://dx.doi.org/10.1364/JOSAB.8.000858
http://dx.doi.org/10.1364/JOSAB.8.000858
http://dx.doi.org/10.1103/PhysRevA.60.1341
http://dx.doi.org/10.1103/PhysRevA.60.1341
http://dx.doi.org/10.1103/PhysRevA.60.1341
http://dx.doi.org/10.1103/PhysRevA.60.1341
http://dx.doi.org/10.1088/0953-4075/38/15/001
http://dx.doi.org/10.1088/0953-4075/38/15/001
http://dx.doi.org/10.1088/0953-4075/38/15/001
http://dx.doi.org/10.1088/0953-4075/38/15/001
http://dx.doi.org/10.1007/BF01436671
http://dx.doi.org/10.1007/BF01436671
http://dx.doi.org/10.1007/BF01436671
http://dx.doi.org/10.1007/BF01436671
http://dx.doi.org/10.1016/0022-4073(92)90085-I
http://dx.doi.org/10.1016/0022-4073(92)90085-I
http://dx.doi.org/10.1016/0022-4073(92)90085-I
http://dx.doi.org/10.1016/0022-4073(92)90085-I
http://dx.doi.org/10.1016/j.chemphys.2012.01.028
http://dx.doi.org/10.1016/j.chemphys.2012.01.028
http://dx.doi.org/10.1016/j.chemphys.2012.01.028
http://dx.doi.org/10.1016/j.chemphys.2012.01.028
http://dx.doi.org/10.1070/PU1998v041n05ABEH000393
http://dx.doi.org/10.1070/PU1998v041n05ABEH000393
http://dx.doi.org/10.1070/PU1998v041n05ABEH000393
http://dx.doi.org/10.1070/PU1998v041n05ABEH000393
http://dx.doi.org/10.1103/PhysRevLett.110.153004
http://dx.doi.org/10.1103/PhysRevLett.110.153004
http://dx.doi.org/10.1103/PhysRevLett.110.153004
http://dx.doi.org/10.1103/PhysRevLett.110.153004
http://dx.doi.org/10.1103/PhysRevA.88.063421
http://dx.doi.org/10.1103/PhysRevA.88.063421
http://dx.doi.org/10.1103/PhysRevA.88.063421
http://dx.doi.org/10.1103/PhysRevA.88.063421
http://dx.doi.org/10.1088/0022-3700/6/4/011
http://dx.doi.org/10.1088/0022-3700/6/4/011
http://dx.doi.org/10.1088/0022-3700/6/4/011
http://dx.doi.org/10.1088/0022-3700/6/4/011
http://dx.doi.org/10.1103/PhysRevA.22.1786
http://dx.doi.org/10.1103/PhysRevA.22.1786
http://dx.doi.org/10.1103/PhysRevA.22.1786
http://dx.doi.org/10.1103/PhysRevA.22.1786
http://arxiv.org/abs/arXiv:1402.5620
http://dx.doi.org/10.1103/PhysRevA.89.014102
http://dx.doi.org/10.1103/PhysRevA.89.014102
http://dx.doi.org/10.1103/PhysRevA.89.014102
http://dx.doi.org/10.1103/PhysRevA.89.014102
http://dx.doi.org/10.1088/0953-4075/47/20/204002
http://dx.doi.org/10.1088/0953-4075/47/20/204002
http://dx.doi.org/10.1088/0953-4075/47/20/204002
http://dx.doi.org/10.1088/0953-4075/47/20/204002
http://dx.doi.org/10.1103/PhysRev.122.1649
http://dx.doi.org/10.1103/PhysRev.122.1649
http://dx.doi.org/10.1103/PhysRev.122.1649
http://dx.doi.org/10.1103/PhysRev.122.1649
http://dx.doi.org/10.1155/2009/859710
http://dx.doi.org/10.1155/2009/859710
http://dx.doi.org/10.1155/2009/859710
http://dx.doi.org/10.1155/2009/859710
http://dx.doi.org/10.1016/j.physrep.2004.06.001
http://dx.doi.org/10.1016/j.physrep.2004.06.001
http://dx.doi.org/10.1016/j.physrep.2004.06.001
http://dx.doi.org/10.1016/j.physrep.2004.06.001
http://dx.doi.org/10.1007/BF02753666
http://dx.doi.org/10.1007/BF02753666
http://dx.doi.org/10.1007/BF02753666
http://dx.doi.org/10.1007/BF02753666
http://dx.doi.org/10.1126/science.1163439
http://dx.doi.org/10.1126/science.1163439
http://dx.doi.org/10.1126/science.1163439
http://dx.doi.org/10.1126/science.1163439
http://dx.doi.org/10.1038/nphys982
http://dx.doi.org/10.1038/nphys982
http://dx.doi.org/10.1038/nphys982
http://dx.doi.org/10.1038/nphys982
http://dx.doi.org/10.1080/0950034042000275360
http://dx.doi.org/10.1080/0950034042000275360
http://dx.doi.org/10.1080/0950034042000275360
http://dx.doi.org/10.1080/0950034042000275360
http://dx.doi.org/10.1364/OPTICA.1.000343
http://dx.doi.org/10.1364/OPTICA.1.000343
http://dx.doi.org/10.1364/OPTICA.1.000343
http://dx.doi.org/10.1364/OPTICA.1.000343
http://dx.doi.org/10.1016/j.physrep.2014.09.002
http://dx.doi.org/10.1016/j.physrep.2014.09.002
http://dx.doi.org/10.1016/j.physrep.2014.09.002
http://dx.doi.org/10.1016/j.physrep.2014.09.002
http://dx.doi.org/10.1088/0953-4075/46/12/125601
http://dx.doi.org/10.1088/0953-4075/46/12/125601
http://dx.doi.org/10.1088/0953-4075/46/12/125601
http://dx.doi.org/10.1088/0953-4075/46/12/125601
http://dx.doi.org/10.1063/1.1733573
http://dx.doi.org/10.1063/1.1733573
http://dx.doi.org/10.1063/1.1733573
http://dx.doi.org/10.1063/1.1733573



