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We consider a thermofield approach to analyze the evolution of an open quantum system coupled to an
environment at finite temperature. In this approach, the finite-temperature environment is exactly mapped onto
two virtual environments at zero temperature. These two environments are then unitarily transformed into two
different chains of oscillators, leading to a one-dimensional structure that can be numerically studied using
tensor network techniques. Compared to previous approaches using a single chain mapping, our strategy offers
the advantage of an exact description of the initial state at arbitrary temperatures, which results in a gain in
computational efficiency and a reduced truncation error.
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I. INTRODUCTION

In the past few decades, many different techniques have
been developed to analyze the dynamics of quantum systems
coupled to an environment, i.e., open quantum systems
(OQSs). Some of these are based on deriving a master
equation (ME), which evolves the reduced density operator
of the OQS by tracing out the environment degrees of
freedom [1,2], and some others are based on the stochastic
Schrödinger equations (SSEs), which evolve the OQS wave
function conditioned by a continuous [3–5] or discrete [6,7]
stochastic process. Both approaches are suitable for weak
system-environment couplings, which generally lead to a
large separation between system and environment time scales.
Although such a large separation often occurs in quantum
optics, it does not necessarily occur in other scenarios, such
as soft- or condensed-matter systems, or in quantum biology.
In these situations, other approaches are more appropriate,
such as the path-integral Monte Carlo method [8], which in
some parameter regimes is nevertheless hindered by the sign
problem, potentially affecting the convergence of the method
at relatively short times (see, for instance, [9]).

An alternative is to solve the total system dynamics with
exact diagonalization methods, but this is difficult due to the
large number of degrees of freedom in the environment. Hence,
a wise selection of the relevant states of the full system is
of primary importance, and this can be done, for instance,
by discarding states with low probability, as in the density
matrix approach [10] (closely related to the density-matrix
renormalization group), or by considering relevant only those
states generated during the evolution, as done in the variational
approach [11,12].

Apart from exact diagonalization, the total system dynamics
can be solved based on performing first a unitary transforma-
tion of the environment that maps it onto a one-dimensional
structure. The numerical renormalization-group approach
[13–18], for instance, is based on (logarithmic) coarse graining
of the continuous environment spectral function in energy
space. The resulting discretized environment can then be
mapped onto a semi-infinite tight-binding chain [19] with
exponentially decreasing couplings. As proposed in [20–
22] (see also [23] for a discussion), the mapping can also

be performed analytically without previous discretization of
the environment. Even when the couplings do not decay
exponentially, it is typically possible to describe the system
dynamics until its decay or relaxation time using a truncated
chain of finite length. The total system can now be modeled
as a matrix product state (MPS), and it is then possible to use
tensor network techniques to simulate the unitary evolution
of the total system [24–27]. The approach can also deal with
an environment at finite temperature, using matrix product
operators [28,29].

In this paper, we present an alternative formulation of the
latter method to calculate MPS dynamics with initial thermal
states. Our method is based on the thermofield approach
proposed in [30–32] (see [33] for an excellent review). In
this approach, the environmental Hilbert space is mirrored
or doubled, and then a thermal Bogoliubov transformation
is performed. As a result, the real environment in a thermal
state is transformed into two virtual environments in a vacuum
state [see Fig. 1(b)], known in the literature as the thermofield
vacuum. The expectation value of any operator of the real
environment in the thermofield vacuum coincides with its
expectation value in the thermal state. The only excitations
appearing in the environment will be those that are dynamically
created through the interaction, and the dynamics of the
resulting transformed system can be simulated using MPS.

The thermofield approach has been considered in the
framework of SSEs of OQSs (see, for instance, [3,4]), but
most of its applications are in the context of quantum field
theory and general relativity [34,35].

II. THERMOFIELD DYNAMICS

Let us consider an environment of harmonic oscillators,
with annihilation (creation) operators bk (b†k) and frequencies
ωk , to which the OQS couples with strengths gk . The complete
Hamiltonian can be written as

Htot = HS + HB +
∑

k

gk(L†bk + b
†
kL), (1)

where HS is the Hamiltonian of the OQS, HB = ∑
k ωkb

†
kbk ,

and L is the coupling operator acting on the OQS Hilbert
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space. We can introduce an auxiliary, decoupled environment,
characterized by annihilation (creation) operators ck (c†k), and
write the total Hamiltonian as

Ĥtot = Htot −
∑

k

ωkc
†
kck. (2)

Assuming now that both environments are initially in a thermal
state at inverse temperature β, we apply a thermal Bogoliubov
transformation,

a1k = e−iGbke
iG = cosh(θk)bk − sinh(θk)c†k,

(3)
a2k = e−iGcke

iG = cosh(θk)ck − sinh(θk)b†k.

Here, G = i
∑

k θk(b†kc
†
k − ckbk), with θk being a function of

the temperature such that

cosh(θk) =
√

1 + nk,
(4)

sinh(θk) = √
nk,

where nk = 1/(eβωk − 1) is the number of excitations in mode
k. In terms of these new modes,

H̃tot = HS +
∑

k

ωk(a†
1ka1k − a

†
2ka2k) +

∑
k

g1k(L†a1k + a
†
1kL)

+
∑

k

g2k(La2k + a
†
2kL

†), (5)

where g1k = gk cosh(θk) and g2k = gk sinh(θk). The thermal
vacuum can be written in terms of the vacuum for bk and ck

modes, |�0〉, as

|�〉 = e−iG|�0〉. (6)

The thermal vacuum can be written in alternative ways
that further enlighten its physical meaning: First, it can be
written as

|�〉 = e−S/2e
∑

k b
†
kc

†
k |�0〉, (7)

in terms of the quantity S = −∑
k[b†kbk log sinh2(θk) −

bkb
†
k log cosh2(θk)], which can be interpreted as the entropy

operator for the physical (original) environment [33] since
the thermofield vacuum is the state that minimizes the
thermodynamic potential 〈�|(− 1

β
S + H )|�〉. Second, up to

normalization, we can write

|�〉 ∝ e−βHB/2|I 〉, (8)

with |I 〉 = ∑
n |n〉b|n〉c being the maximally entangled state

between the real and the auxiliary environments, defined in
terms of their energy eigenstates, |n〉b, |n〉c. The thermal
state of the original environment is thus ρB = Traux[|�〉〈�|],
and it can be approximated by a matrix product operator
(MPO) by evolving the maximally entangled state in imaginary
time [28,29]. In contrast, the present approach is based on
directly calculating the dynamics of the whole system under
the Hamiltonian (5), using the thermofield vacuum as a
(pure) initial state for both reservoirs. Although this state is
annihilated by a1k and a2k , the number of physical particles
has a nonvanishing expectation value nk = 〈�|b†kbk|�〉 =
sinh2(θk). Hence, solving the dynamics of the initial prob-
lem (1) with an initial condition ρ tot

0 = ρS
0 ⊗ ρB , with ρS

0 being
the initial state of the system, is equivalent to solving the

FIG. 1. (Color online) (a) The initial problem described with (1)
of an OQS coupled to a harmonic oscillator reservoir at finite
temperature. (b) The thermofield-transformed problem (2), in which
the finite temperature of the reservoir is encoded in two different
reservoirs at zero temperature. (c) The chain representation of the
latter.

dynamics with (5) but considering ρ tot
0 = ρS

0 ⊗ |�〉〈�| [see
Figs. 1(a) and 1(b), respectively].

We have described in detail the thermofield transformation
for bosonic environments, but a similar Bogoliubov trans-
formation can be proposed for fermionic reservoirs. In that
case [33] we have

a1k = e−iGbke
iG = cos(θk)bk − sin(θk)c†k,

(9)
a2k = e−iGcke

iG = cos(θk)ck + sin(θk)b†k.

With this transformation, the Hamiltonian (2) is transformed
into (5).

III. CHAIN REPRESENTATION

The Hamiltonian (5) represents an OQS interacting with
two independent environments, which have operators a1k

and a2k , respectively. The whole problem can be mapped
into a one-dimensional structure with the schematic form in
Fig. 1(c). In general, the environment oscillators in (1) form a
quasicontinuum, so that the Hamiltonian (1) can be rewritten
as

H = HS +
∫ 1

0
dkg(k)[b(k)L† + Lb(k)†]

+
∫ 1

0
dkω(k)b(k)†b(k), (10)

where b(k) [b†(k)] is the continuous counterpart of bk (b†k),
g(k) is the continuous counterpart of the coupling strength gk ,
and ω(k) is the continuous counterpart of the dispersion ωk . In
addition, we have rescaled the integrals, such that ω(1) =
ωmax, i.e., the frequency cutoff of the environment. When
the environment is in a Gaussian state, ω(k) and g(k) enter
the description of the OQS only through the spectral density,
J (ω(k)) = g2(k)D(ω(k)), where D(ω(k)) = |∂ω(k)/∂k|−1 is
the photonic density of states (DOS).

One can reproduce the same spectral density by introducing
a new dispersion ω̂(k) = ω0k (with ω0 being an arbitrary
constant that may be taken as 1), such that D( ˆω(k)) = ω0,
and a new coupling ĝ(k), such that ĝ(k) = √

J (ω(k)). In terms
of these new quantities, the continuum representation of (5)

052116-2



THERMOFIELD-BASED CHAIN-MAPPING APPROACH FOR . . . PHYSICAL REVIEW A 92, 052116 (2015)

reads

H̃tot = HS +
∫ 1

0
dkk(a†

1ka1k − a
†
2ka2k)

+
∫ 1

0
dk[ĝ1(k)(L†a1k + a

†
1kL) + ĝ2(k)(La2k + a

†
2kL

†)].

Thus, the spectral densities of each of the two new (trans-
formed) environments are

J1(k) = ĝ2
1(k) =

∑
k

[1 + n(ω̂(k))]J (ω̂(k)),

(11)
J2(k) = ĝ2

2(k) = n(ω̂(k))J (ω̂(k)),

where we have defined n(ω̂(k)) as the number of excitations
in the mode with frequency ω̂(k), i.e., the continuous version
of the Planck distribution nk . Then, using the unitary transfor-
mation discussed in [20,21], new bosonic operators Bn and Cn

can be defined for each reservoir, such that

a1k =
∑

n

U1n(k)Bn, a2k =
∑

n

U2n(k)Cn, (12)

where Ujn(k) = gj (k)πjn(k)/ρnj (j = 1,2). Here, πjn(k) are
monic orthogonal polynomials that obey∫ 1

0
dkJj (k)πj,n(k)πj,m(k) = ρ2

nj δnm, (13)

with ρ2
nj = ∫ 1

0 dkJj (k)π2
j,n(k) [21,22]. Hence, the proposed

transformation is also orthogonal,
∫

dkU ∗
jnUjm = δnm. The

transformed Hamiltonian can be written as H̃ ch
tot = HS +

H ch
B + H̃ ch

int , with the interaction of the system with the first
harmonic oscillator of each chain given by

H̃ ch
int = g1(L†B0 + B

†
0L) + g2(LC0 + C

†
0L

†), (14)

with gj = ρj0, and the Hamiltonian of the two chains given
by

H̃ ch
B =

∑
n=0,...,M

(α1,nB
†
nBn − α2,nC

†
nCn

+√
β1,n+1B

†
n+1Bn − √

β2,n+1C
†
n+1Cn + H.c.). (15)

In order to perform the mapping, the recurrence relation of the
orthogonal polynomials have been used, namely,

πj,n+1(k) = (k − αj,n)πj,n(k) − βj,nπj,n−1(k), (16)

with πj,−1(k) = 0, πj,0(k) = 1, and n = 0, . . . ,M − 1. The
coefficients of this recurrence, αj,n and βj,n, can be obtained
with standard numerical routines [36]. Hence, the resulting
Hamiltonian describes two tight-binding chains to which the
system is coupled. The thermofield vacuum is also annihilated
by the new modes Bn and Cn, so that the dynamics of the
whole system can be simulated using MPS time-evolution
methods from an initial state with zero occupancy of each of
these modes (see the Appendix for details on the numerical
method). Note that a similar mapping can be applied in the
case of a finite discrete environment by means of a standard
Lanczos tridiagonalization.

The thermofield approach presented here provides sev-
eral advantages with respect to applying previous strategies
[20–22] to a bath at finite temperature. First, the thermal

state of the bath at arbitrary temperature corresponds in our
representation to a vacuum state (i.e., the thermal vacuum),
which therefore does not contain any initial excitation, which
gives rise to a potentially better scaling of the local basis
dimension needed in the MPS formulation. Second, this
thermal vacuum is a product state, and therefore, it has an exact
MPS representation with bond dimension D = 1. In terms
of the transformed set of modes for the chain representation
proposed in [20–22], the thermal state is a global operator, for
which a MPO approximation needs to be computed, using a
finite bond dimension, which introduces both a computational
overhead and an additional source of error.

In addition, the method provides new physical insight into
the problem. In particular, the difference in the total occupation
between the two chains gives the deviation of the environment
state from its thermal distribution, namely,

N (t) =
∑

k

(〈�|b†k(t)bk(t)|�〉 − 〈�|c†k(t)ck(t)|�〉)

= N1(t) − N2(t), (17)

where the auxiliary reservoir remains always in the thermal
state, such that 〈c†k(t)ck(t)〉 = nk at all times, and we have
defined

N1(t) =
∑

n

〈�0|B†
n(t)Bn(t)|�0〉

=
∑

k

〈�0|a†
1k(t)a1k(t)|�0〉,

(18)
N2(t) =

∑
n

〈�0|C†
n(t)Cn(t)|�0〉

=
∑

k

〈�0|a†
2k(t)a2k(t)|�0〉.

Thus, the larger the population imbalance is between the two
transformed environments, the larger the deviation from the
initial thermal state is. In this regard, note that N (t) can acquire
negative values when the open system absorbs energy from the
environment.

IV. NUMERICAL EXAMPLES

In the following, we present numerical results to illustrate
this approach in different examples. The numerical errors in
our simulations arise from the various truncation parameters
and can thus be controlled by varying them. In the first place,
the finite bond dimension D of the MPS representing the time-
dependent states introduces a truncation error. Its magnitude
can be estimated by comparing results with increasing values
of D. The chain representation for the environments we
study in this section is, in principle, semi-infinite. In practice,
nevertheless, one can work with a finite chain, thus truncating
also the number of environmental modes included in the
evolution. Again, the effect of this truncation can be controlled
by repeating the simulation with longer chains. Finally, to
deal with bosonic environments in the MPS formalism, it is
necessary to approximate them with finite-dimensional Hilbert
spaces. Although more accurate methods exist [37], a standard
technique is to simply truncate the occupation number per
bosonic mode to a certain maximum value.
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In our simulations, we vary the values of the truncation
parameters described above until the variations induced by
them are negligible compared to the effects we wish to study,
and we present the results already converged in that way.

A. A spin in a bosonic field

Let us consider a spin-1/2 system coupled to a bosonic
environment with spectral density given by the Caldeira and
Leggett model [38,39],

J (ω) = ηωse−ω/ωc , (19)

with 0 < s < 1 in the sub-Ohmic case and s > 1 in the super-
Ohmic. Roughly speaking, the constant η gives the coupling
strength between the system and environment. The exponential
factor in (19) provides a smooth cutoff for the spectral
density, modulated by a frequency cutoff ωc. This general
model provides a good approximation for spectral densities
appearing in many different problems, like an impurity in
a photonic crystal [40,41], quantum impurity models [42],
and solid-state devices at low temperatures such as supercon-
ducting qubits [43], quantum dots [44], and nanomechanical
oscillators [45], to name just a few examples.

In the following, we shall consider natural units in which
� = 1, and the Boltzmann constant kB = 1. As a first check
we consider a solvable example, with HS = 1

2ωSσz and L =
σz in (1). Here, ωS is the system rotating frequency, and
σj (j = x,y,z) are the standard Pauli matrices describing
spin-1/2 systems. For an initial state |ψ0〉 = a|0〉 + b|1〉, the
expectation value of any system operator A can be analytically
calculated [46],

〈A(t)〉 = e−2φt {|a|2eiωS t + |b|2e−iωS t }, (20)

with φt=
∫ t

0 dτ
∫ τ

0 dsRe[αT (τ−s)], αT (t)=∑
k g2

k [coth
(ωkβ

2 ) cos (ωkt) − i sin (ωkt)].
To simulate the problem numerically using MPS we need

to truncate the maximum occupation number of the bosonic
modes and the length of the chains corresponding to the
transformed environment. We compare the numerical solution
to the exact one for A = σx in Fig. 2 and observe very good
agreement for all considered spectral densities, couplings, and
temperatures for a relatively small bond dimension and length
of each chain M .

In the following, we consider a problem that is not exactly
solvable by choosing L = σx and compare the solutions of our
method with those corresponding to a master equation up to
second order in the system-environment coupling parameter g,

dρs(t)

dt
= −i[HS,ρs(t)] +

∫ t

0
dτα∗

2 (t − τ )[L†,ρs(t)L(τ − t)]

+
∫ t

0
dτα2(t − τ )[L†(τ − t)ρs(t),L]

+
∫ t

0
dτα1(t − τ )[L(τ − t)ρs(t),L

†]

+
∫ t

0
dτα∗

1 (t − τ )[L,ρs(t)L(τ − t)†] + O(g3),

(21)
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FIG. 2. (Color online) Evolution of the mean value of 〈σx(t)〉 for
a = b = 1/

√
2 for η = 0.1 and ωS = 0. The top panels correspond

to the Ohmic model (s = 1) for β = 5 (left) and β = 1 (right). The
bottom panels correspond to a sub-Ohmic model with s = 1/2 (left)
and a super-Ohmic model with s = 3/2 (right), both for β = 1. The
exact solution is given by the solid black curves. For the MPS, we
consider a varying M: purple, green, and blue curves with purple
squares, green triangles, and blue circles correspond to M = 2,10,40
respectively, in all plots. The last plot includes a curve with orange
diamonds with M = 120. Bond dimension is D = 20, and maximum
occupation numbers in the harmonic oscillator basis is n = 3.

with α1(t − τ ) = ∑
k g2

k (nk + 1)e−iωk (t−τ ), α2(t − τ ) =∑
λ g2

knke
iωk(t−τ ), and L(t) = eiHStLe−iHS t .

To derive this equation, the Born approximation has also
been assumed. This ME neglects the system-environment
correlations and considers that the latter remains in the
thermal equilibrium state ρB during the interaction, so that
ρtot(t) ≈ ρs(t) ⊗ ρB .

As shown in Fig. 3, the ME and the MPS coincide
quite reasonably at weak couplings. However, as shown
in Fig. 4, for stronger couplings the ME does not give
an accurate description of the dynamics. Indeed, the MPS
results describe comparatively a much slower decay for the two

0 2 4 6 8
-1

-0.5

0

0.5

1

FIG. 3. (Color online) Comparison of ME (solid curves) with
MPS results for 〈σx(t)〉 considering η = 0.01, ωS = 0.1, and M =
100 for both chains. We consider β = 10 (blue squares), β = 50
(orange triangles) and β = 1000 (red circles). We observe that the
MPS results are converged with maximum population per oscillator
n = 4.
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σ

x
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)

FIG. 4. (Color online) Evolution of 〈σx(t)〉 for (top) β = 10 (with
maximum bond dimension D = 40) and (bottom) β = 50 (with D =
20) for η = 0.1, ωS = 0.1, and M = 100 for both chains. The solid
black curve corresponds to the solution for the ME. Considering n1 the
dimension of the first two oscillators in the chain and n2 the dimension
of the following ones, the curves with green squares correspond to
(n1 = 5,n2 = 4), and the ones with blue diamonds correspond to
(n1 = 6,n2 = 5) (bottom panel) and (n1 = 7,n2 = 6) (top panel). The
curve with orange triangles in the top panel corresponds to (n1 =
8,n2 = 7).

temperature values considered here. Also, the computational
cost of the MPS in the strong-coupling regime is much
higher than at weak coupling. Nevertheless, the difference
of the present scheme is that the excitations involved in
the numerical resolution are just those that are dynamically
generated due to the interaction with the OQS. This is in clear
contrast to traditional methods in which the initial state of the
environment is thermal, and therefore, it already has a finite
initial occupation in the environment basis.

B. A quantum dot coupled to an electronic reservoir

As noted above, our proposal is valid also for fermionic
environments. To illustrate this, we consider the Anderson
impurity model [47], which constitutes one of the most relevant
basis models in condensed matter [15,48,49] and quantum
chemistry [50]. The model describes a quantum dot (QD)
coupled to an electronic reservoir at a finite temperature with
a Hamiltonian H = HS + HB + Hhy. Here,

HS =
∑

σ

(
V nσ + U

2
nσnσ̄

)
(22)

is the Hamiltonian of the quantum dot, which is represented
using the Anderson impurity model with an on-site Coulomb
repulsion U and an on-site energy V . In addition, the operator
nσ = d†

σ dσ measures the number of electrons with spin σ =
↑,↓ at the dot. We consider that the QD is connected to the
reservoir through a hybridization term

Hhy = −t
∑
k;σ

gk(d†
σ bk + H.c.), (23)

which is a sum of bilinear terms wherein d
†
iσ (diσ ) creates

(annihilates) an electron at the dot with spin σ and b
†
k

(bk) creates (annihilates) an electron with arbitrary spin
and momentum k in the reservoir. Hence, the interaction

0 2 4 6 8 10
0

0.5

1
0 2 4 6 8 10

0

0.5

1

FIG. 5. (Color online) Evolution of 〈n↑〉 (green triangles) and
〈n↓〉 (purple squares) for the ME (solid lines) and the t-DMRG
(symbols). We have considered (top) β = 1 and (bottom) β = 10 with
U = 0.2, V = −U/2, ωc = 15, t = 0.01, and M = 100 oscillators
in the chain.

Hamiltonian has a form similar to the one in (1), but redefining
L = −t

∑
σ dσ . For simplicity, we have considered that both

spins σ couple equally to the reservoir. The Hamiltonian of
the environment is HB = ∑

k ωkb
†
kbk .

After the thermofield transformation, the former Hamilto-
nian is written in terms of H̃B = ∑

k ωk(a†
1ka1k − a

†
2ka2k) and

an interaction Hamiltonian of the form (5) with couplings
g1k = −tgk

√
1 + fk and g2k = −tgk

√
fk , with fk = [1 +

exp(βωk)]−1. We consider a spectral density of sub-Ohmic
type, with s = 0.5 in Eq. (19).

Comparing the MPS results to those of the ME, as shown
in Fig. 5, we find initial agreement, as expected, but then
the results start to differ considerably even at relatively weak
couplings. Due to the limited size of the fermionic basis,
the MPS converges to the exact result with relatively small
computational resources.

V. CONCLUSIONS AND OUTLOOK

Based on a thermofield approach, our formalism allows us
to efficiently integrate the dynamics of an OQS coupled to a
thermal reservoir, either bosonic or fermionic, in a pure-state
formalism, without previously preparing the thermal state
with imaginary-time evolution. The approach is based on
performing an analytical (thermal Bogoliubov) transformation
over the (physical) environment and an auxiliary one. Provided
the thermal state of the original environment is known,
more concretely, that the quantities nk can be analytically or
numerically computed, our approach can be used to solve
thermalization problems of OQS using only zero-temperature
(pure-state) MPS.
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APPENDIX: NUMERICAL METHOD

The thermofield transformation described in this paper
can be used in combination with any method to solve one-
dimensional problems. Particularly suited are, nevertheless,
methods based on the matrix product state (MPS) approxima-
tion. Although extensive literature exists about these methods
(see, e.g., [25,26]), for the sake of completeness, we compile
in this Appendix the main ingredients of the approach used for
our numerical results.

A MPS for a system of N sites with finite physical
dimensions d1, d2, . . . ,dN , is a state of the form

|�〉 =
d1∑
i1

d2∑
i2

· · ·
dN∑

iN=1

tr
(
A

i1
1 · · ·AiN

N

)|i1, . . . ,iN 〉, (A1)

where {|ik〉}dk−1
i=0 is the local basis of site k. Ai

k are D-
dimensional matrices, whose dimension D, known as bond
dimension, determines the number of parameters in the ansatz.
The MPS ansatz is extremely successful for the approximation
of ground states and low-lying excitations of local Hamilto-
nians [27,51], and it can also be used to simulate real-time
evolution [24,52], such as that required by the problem we
discuss.

To explore the potential of the thermofield representation,
we have applied the MPS ansatz to the global state of the
system plus the double chain that represents the vacuum. The
whole system has the geometry of a chain, with nearest-
neighbor hopping terms among modes Cn and Bn, on the
left and right of the central site that represents the two-level
system, respectively. Although the exact mapping introduces
semi-infinite chains of B and C modes, we can truncate them
to a finite length N . This allows us to reliably study the
evolution until finite-size effects appear. An analysis of the
truncation error bounds and the optimality of the present chain
representation have been recently derived in [23,53]

Dealing with bosonic degrees of freedom requires the
truncation of the physical dimension of each bosonic mode
in order to keep the local physical dimensions finite and
to allow the application of the MPS ansatz. Although more
sophisticated methods exist [54], we observe that in our case
simply truncating the maximum occupation number of each
bosonic mode to nmax = 3 − 8 suffices to observe convergence
in our simulations. This can be explained by the fact that the
initial state we consider is the vacuum of all bosonic modes and
the only excitations injected in the bath are the ones coming
from the system, so that states where some bosonic mode is
highly occupied make only a small contribution to the physical
states that we want to describe.

In the case of a fermionic system, the truncation of the
bath modes is not necessary, as these modes are represented
exactly with a local basis of dimension 2. In particular, in that
case we apply a Jordan-Wigner transformation [55] to map the

fermionic system to a spin chain. In this case, we consider a
system with two fermionic modes (e.g., a fermion with spin),
which can be represented as a central site with dimension 4 in
our chain.

The initial state in our problem, i.e., the vacuum of
the thermofield representation, is simply a tensor product
of the vacuum for each individual mode times the initial state
of the system and thus has an exact MPS representation with
bond dimension D = 1.

To simulate the time evolution of the full system, we
use standard tensor network techniques [24,28], in which the
time evolution operator, U = exp (−iH t), is approximated by
dividing the total time in small steps δ. In order to evolve the
MPS ansatz, for each step the corresponding evolution operator
needs to be approximated by a MPO [56]. This is achieved in
our case by a fourth-order Suzuki-Trotter decomposition [57],
in which the Hamiltonian is written as a sum of even and odd
terms. The exponential of the sum is then approximated as a
product of several exponentials of the individual terms, which
have exact MPO expressions [56]. The action of each of these
MPOs on the MPS state is approximated by a new MPS. Since
the exact application of the MPO would, in general, make the
bond dimension of the state grow, the resulting MPS needs to
be truncated to the maximum allowed bond dimension D. We
do this using a global optimization, as introduced in [28], and
iterate the procedure until the desired time is reached.

This method has different sources of error, each controlled
by a truncation parameter. In general, the precision of the
results can be estimated by computing and comparing results
with different parameters until sufficient convergence is found.

First of all, the truncation of the thermofield mapping to
finite chains of length N introduces a finite-size effect. Since
we are interested in the dynamics of the system and thus look
at only local observables in the center of the complete chain,
such effects will appear only after long times, and we find
that taking N ≈ 100 suffices to determine the behavior of the
system in all cases of interest.

Second, the discrete time step δ in the Suzuki-Trotter
decomposition corresponds to applying an approximation of
the evolution operator, instead of the exact one. This error,
however, only grows linearly with time, and it is easily
reducible by using a higher-order Suzuki-Trotter expansion,
as we do here.

Finally, the maximum bond dimension used in the numeri-
cal simulations D introduces a truncation error.

In our study, we run the simulations using different values
of D and estimate the error by comparing the corresponding
results. As mentioned above, in the case of bosonic baths, there
is an additional truncation parameter given by the maximum
occupation allowed for bosonic modes. The results presented
in this paper correspond to choices of parameters such that the
errors coming from all these sources are much smaller than
the effects we want to discuss.
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