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We examine the accuracy of an intrinsically one-dimensional (1D) quantum electrodynamics to predict
accurately the forces and charges of a three-dimensional (3D) system that has a high degree of symmetry
and therefore depends effectively only on a single coordinate. As a test case we analyze two charged capacitor
plates that are infinitely extended along two coordinate directions. Using the lowest-order fine-structure correction
to the photon propagator we compute the vacuum’s induced charge polarization density and show that the force
between the charged plates is increased. Although a one-dimensional theory cannot take the transverse character
of the virtual (force-mediating) photons into account, nevertheless it predicts, in lowest order of the fine-structure
constant, the Coulomb force law between the plates correctly. However, the quantum correction to the classical
result is slightly different between the 1D and 3D theories with the polarization charge density induced from the
vacuum underestimated by the 1D approach.
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I. INTRODUCTION

Spatially constrained models have been used rather suc-
cessfully in basically all areas of physics. Due to their
restricted degrees of freedom they usually are computationally
more feasible than their 3D counterparts and often provide a
conceptually easier access to exploring complicated dynamics.
A good example is the strong-field ionization physics of
atoms and molecules, where spatially constrained models have
provided us with a wealth of qualitative information about the
details of the multielectron ionization paths [1], the associated
generation of higher harmonics [2], and various stabilization
phenomena [3]. Here the spatial dependence of the atomic 1D
binding potentials was chosen to mimic the energy spectra of
their real 3D counterparts [4]. On a more fundamental level,
the so-called 1D quantum field theories have been used widely
[5–7] to overcome problems usually associated with mass and
charge renormalization, to tackle conceptual difficulties and
also to test the feasibility of new numerical approaches [8].
For example, 1D field theories have been used rather recently
to study the electron-positron pair creation process induced
by a supercritical external field with full space-time resolution
[9–12]. In lowest-order perturbation theory, one-dimensional
quantum electrodynamics predicts some peculiar features
such as a position-independent Coulomb force between two
1D charges. However, this theory is obviously not able to
take accurately into account the transverse character of the
photons. In fact, a magnetic field cannot play any role in a
one-dimensional world. The most prominent example of a
spatially reduced field theory is possibly the Schwinger model
of QED [13], where as an additional approximation it was
assumed that the fermionic mass vanishes. As a result, this
model becomes an interacting quantum field theory that can
be studied nonperturbatively.

To the best of our knowledge, we are not aware of
any quantitative study that compares the predictions of 1D
quantum electrodynamics directly with its 3D counterpart for
exactly the same physical system. In order to do so we use a test

system of charges that has a spatial symmetry in the x1 − x2

plane such that any macroscopic observable depends at most
on the (x3 ≡)z direction. We can then apply the 3D theory to
this highly symmetric system and compare the corresponding
fields, forces, and induced charges with the predictions of
a theory, that is intrinsically one dimensional. The latter is
defined and obtained from the fundamental form of the 3D
theory by neglecting any derivative with respect to x1 and x2

from the very beginning.
This paper is organized as follows. In Sec. II, we introduce

the model system of two plane parallel capacitor plates and
use classical electrodynamics to compute the Coulomb forces
and charges from the one- and three-dimensional approaches.
In Sec. III, we use 3D QED to derive the analytical expressions
for the corrections of these forces due to the occurrence
of the vacuum’s polarization charges close to the plates. In
Sec. IV, we derive the one-dimensional QED and apply it to
the two-plate system. For a better structure, we have shifted the
mathematically more complete derivations to the Appendices.
In Sec. V, we compare directly the predictions of the 1D and 3D
approaches. Section VI summarizes this work and motivates
several future studies.

II. CLASSICAL TWO-PLATE SYSTEM

To have a concrete quantitative example for our analysis,
we examine two plane parallel plates that are separated by a
distance denoted by d. We assume that each plate has a width
of 2w and is infinitely extended along the x1 and x2 directions
as seen in Fig. 1. For simplicity, we also assume that the three-
dimensional (unperturbed) charge density (measured in C/m3)
is constant on each plate, described by the density ρ(�r) =
q/(2w)[−Uw(z + d/2 + w) + Uw(z − d/2 − w)], where we
denote by Uw(z) the rectangular unit step function, defined as
Uw(z) ≡ 1 for |z| < w and Uw(z) ≡ 0 for w < |z|. Here we
denote with q ≡ Q0/L

2 the (positive) two-dimensional charge
density. Both the total charge Q0 and the area L2 of each plate
are infinite, but the density q (measured in C/m2) is finite. In
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FIG. 1. Sketch of the infinitely extended plane-parallel capacitor
plates with width 2w each and edge-to-edge spacing d . The parameter
q is the (two-dimensional) charge density (charge per unit area in the
x1 − x2 direction). We also sketch the vacuum’s induced polarization
charges.

our analysis, we assume that the total charge Q0 on the right
plate is chosen to be independent of the width 2w along the z

direction, Q0 = ∫
dx1dx2

∫ d/2+2w

d/2 dz q/(2w) = qL2.
Before we apply quantum field theory, let us first neglect any

effect of the vacuum’s polarizability and, as an introduction,
use the classical Maxwell equations to derive the force per
unit area between the plates. Since in a classical treatment
neither the force nor the energy associated with the two-plate
system depend on w, we can assume in this section the
limit w = 0. If we neglect the left plate for a moment, the
scalar potential φ(�r) associated with the (positively charged)
right plate located at z = d/2 can be obtained from the
stationary Maxwell equation −∇2φ(�r) = 4πkeρ(�r), where
the associated charge density is ρ(�r) = qδ(z − d/2). We
abbreviate Coulomb’s constant as ke ≡ 1/(4πε0), which is
related to the vacuum’s permittivity ε0. We obtain φ(�r) =
−2πkeq|z − d/2|, where we choose the convention that the
potential vanishes at the center, φ(x1,x2,z = d/2) = 0. The
associated electric field for the right plate itself follows as
E(�r) = −∇φ(�r) = 2πkeq(z − d/2)/|z − d/2| and is constant
outside the plate.

We note that the combined electric field of both plates (at
z = ±d/2) vanishes outside the plates, |z| > d/2, and takes
the constant (negative) value −4πkeq between the plates. The
fact that the electric field vanishes outside the plates seems
to suggest naively that it should be impossible to induce any
polarization charges outside the plates. Interestingly, we will
argue in the discussion below that this conjecture is incorrect
when the effect of the quantum vacuum is accurately taken
into account.

The (negative) work it takes to move the left plate (of
finite but large area L2) with charge density −q from location
z = −∞ to z = −d/2 is therefore V (d) = ∫

d3r(−q)δ(z +
d/2)φ(r) = 2πkeq

2dL2, leading to a finite attractive force per
area of magnitude F (d)/L2 = ∂dV (d)/L2 = 2πkeq

2 between
the two plates. Note that this classical Coulomb force F (d)
does not depend on the separation d between the plates.

Let us now introduce an intrinsically 1D description from
a classical perspective. In the more general context of QED
this description will be derived slightly differently and more
rigorously in Sec. IV. For simplicity, we assume here that
the corresponding 1D Maxwell equation for the 1D potential
takes the same functional form as its 3D counterpart, except
that we have removed the derivatives with respect to the two
extraneous coordinates x1 and x2, leading to −∂2

z φ1D(z) =
4πkeqδ(z − d/2). We note that in this particular (preliminary)
approach to a 1D theory, the potential φ1D(z) (with the
subscript 1D rather than the superscript 1D of Sec. IV and
Appendix C) and φ(�r) would have the same units of J/C.
As expected, we obtain φ1D(z) = −2πkeq|z − d/2| as in the
3D theory. However, the corresponding 1D interaction energy
between the one-dimensional point charges V1D(d) defined
here as V1D(d) ≡ ∫

dz(−q)δ(z + d/2)φ1D(z) = 2πkeq
2d has

different units (J/m2) than V (d) (J ) due to the lack of the
factor L2 that we have to include in all 1D energies and forces
to become comparable to the real 3D system.

While the classical finding that the 1D and 3D approach
predict the same Coulomb force law F (d)/L2 = −2πkeq

2

remains valid also in a more rigorous quantum description (to
the lowest order in the fine-structure constant), we will show
below that in order to derive a consistent 1D quantum theory
from the 3D theory, the potentials φ1D(z) and φ(�r) are required
to take different units.

III. 3D QED FOR THE PLATE SYSTEM

Let us first compute the effect of the vacuum’s polarization
density and the electric field for a single (positively charged)
plate centered at z = 0. In this context we note that even
the sign of the charges induced from the vacuum seems to
be controversial in the literature [14–16]. The lowest-order
correction term to the Feynman photon propagator can be
obtained from the diagram shown in Fig. 7 in Appendix B.

Although the natural unit system is intuitive and typically
used in quantum field theory, we keep here the SI units as
we believe that they better illustrate the differences between a
1D and a 3D theory. This is especially true, as the derivations
contain Green’s functions whose effective singular source term
is usually chosen to have different units than the real physical
sources for the fields.

Using dimensional regularization and also charge renor-
malization, we show in Appendices A and B that the modified
photon propagator D′

F due to the vacuum polarization for the
3D system takes the form [17–20]

D′
Fμν(k) = DFμν(k)(1 + α[P (k2) − P (0)]), (3.1)

where α ≡ kee
2/(�c), c is the speed of light, and � is Planck’s

constant. The remaining (unitless) integral is defined as

P (k2) − P (0) = 2

π

∫ 1

0
dβ β(1 − β)ln

[
1 − β(1 − β)k2λ2

C

]
,

(3.2)
where λC ≡ �/(mc) = 3.86 × 10−13 m is the electron’s re-
duced Compton wavelength and m is the mass of the electron.
A rather lengthy computation, which we review in Appendix B,
leads to the Uehling potential [21] for a general three-
dimensional charge configuration given by the density ρ(�r ′).
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It takes the form

φ(�r) = ke

∫
d3r ′ ρ(�r ′)

|�r − �r ′|

×
[

1 + α

3π

∫ ∞

1
dτ f (τ )e−2τ |�r−�r ′|/λC

]
, (3.3)

where we introduced the abbreviation f (τ ) ≡
(2/τ 2 + 1/τ 4)

√
τ 2 − 1. The Compton wavelength

characterizes the relevant length scale of the polarization
charge cloud.

We can apply Eq. (3.3) to our (positively charged) plate
(of width 2w and centered around z = 0) for which the (un-
perturbed) charge density is given by ρ(�r ′) = q/(2w)Uw(z′).
The first (classical) term in Eq. (3.3), which is the corre-
sponding unperturbed Coulomb potential φ(0) for the plate,
can be evaluated in cylindrical coordinates as φ(0)(�r) =
2πke

∫
dr ′dz′r ′ρ(z′)/

√
r ′2 + (z − z′)2 and leads to

φ(0)(�r) = −2πkeq
z2 + w2

2w
Uw(z) − 2πkeq|z|[1 − Uw(z)].

(3.4)
The second term of Eq. (3.3) (due to the vacuum polarization)
leads to

φ(1)(�r) = −2πkeλ
2
C

α

12π

q

2w

∫ ∞

1
dτ

f (τ )

τ 2

× [−2 + e2τ (z−w)/λC + e−2τ (z+w)/λC ]Uw(z)

+ 2πkeλ
2
C

α

12π

q

2w

∫ ∞

1
dτ

f (τ )

τ 2
e−2τ |z|/λC

× [e2τw/λC − e−2τw/λC ][1 − Uw(z)]. (3.5)

This result can be effectively interpreted as a polarization
charge density due to the vacuum polarization correction,
which can be determined from the classical Maxwell equation
as ρpol(�r) = −(4πke)−1∇2φ(1)(�r). We obtain

ρpol(�r) = α

6π

q

2w

∫ ∞

1
dτ f (τ )

× [e2τ (z−w)/λC + e−2τ (z+w)/λC ]Uw(z)

− α

6π

q

2w

∫ ∞

1
dτ f (τ )e−2τ |z|/λC

× [e2τw/λC − e−2τw/λC ][1 − Uw(z)]. (3.6)

One can easily see that the total amount of the induced charge
vanishes

∫
d3r ρpol(�r) = −(4πke)−1

∫
d3r ∇2φ(1)(�r) = 0, if

the potential falls off rapidly enough as the distance from the
plate goes to ∞, which it does. We also note that the vacuum
also seems to modify the charge distribution inside the plate
itself (−w < z < w) in addition to the induced negative charge
cloud around the plate.

If we switch for a moment to an isolated point charge, the
situation is very similar. Here the corrections to the Coulomb
potential fall off exponentially so that the full potential
(including quantum corrections) still falls off asymptotically
as φ(r) = eke/r for r → ∞ for a given physical charge e. In
order for the potential of the modified charge distribution to
have this property, the actual charge located at r = 0 has to be
larger than e such that the sum of the central charge and the
negative charges around it amount to e.

As a side issue, we note that this static screening situation
may be different than a hypothetical case where we would
start with a given central charge and only afterwards turn on
(artificially) the coupling to the vacuum. In this time-dependent
polarization scenario it is possible that the central charge
actually remains the same and only negative polarization
charges are induced around it [22–25]. In this particular
dynamical polarization scenario, the total charge close to the
original charge would decrease.

If we now return to the case of the plate, we can compute
the extra amount of charge due to the polarization on the plate
itself from Eq. (3.6)

Qpol ≡
∫

dx1dx2

∫ w

−w

dz ρpol(�r)

= α

12π
qL2 λC

w

∫ ∞

1
dτ

f (τ )

τ
[1 − e−4τw/λC ]. (3.7)

In contrast to the unperturbed total charge Q0 ≡ qL2, it is
interesting to see that the induced positive charge on the
plate itself Qpol increases monotonically as we decrease the
width 2w. In other words, in the limit of an infinitesimally
narrow plate (w → 0), we have Qpol → ∞ even for a finite
L, which makes a quantitative analysis more difficult. The
same behavior is also observed for a 3D point charge,
where the induced polarization charge on top of the original
(unperturbed) finite positive charge is also infinite.

In the opposite (and more intuitive) limit where w 	 λC the
argument of the exponential is sufficiently large and negative
so that we can use

∫ ∞
1 dτ f (τ )/τ = 9π/16 and approximate

the total induced (positive) charge on the plate itself as

Qpol = 3α

64
qL2 λC

w
for w 	 λC. (3.8)

Next we return to the two-plate system. We assume that
the first (positively charged) plate is now centered at z =
d/2, while the left (negatively charged) plate is centered at
z = −d/2, as sketched in Fig. 1. We take the limit w → 0
for simplicity of the final analytical expressions. Similar to
the classical case, the total energy lost to move the left plate
from minus infinity to location z = −d/2 can be evaluated as
V (d) = ∫

d3r ρ(r)[φ(0)(r) + φ(1)(r)], where φ(r) and ρ(r) are
given by Eqs. (3.4), (3.5), and (3.6). In order to be consistent
with the order O(α) of our computation of ρpol(r), we neglect
the interaction between the induced charges. We obtain

V (d)

L2
= 2πkeq

2d − 2πkeq
2 5λCα

6π

∫ ∞

1
dτ

f (τ )

τ
e−2τd/λC .

(3.9)

The final attractive force per area of F (d)/L2 = −∂dV (d)/L2

between the two plates can now be computed as

F (d)

L2
= −2πkeq

2

[
1 + 5α

3π

∫ ∞

1
dτ f (τ )e−2τd/λC

]
. (3.10)

We discuss the distance dependence of this modified
Coulomb force law for the two plates in Sec. V in more detail.
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IV. 1D QED FOR THE PLATE SYSTEM

In Eq. (C21) of Appendix C we have derived the one-
dimensional potential φ(1D)(z) [now with a superscript 1D to
distinguish it from the φ1D(z) of Sec. II] for a general 1D
charge distribution ρ(z′) as

φ(1D)(z) = 2πke

∫
dz′ρ(z′)

[
−|z − z′| + α(1D)λ3

C

×
∫ ∞

1
dτ f (1d)(τ )e−2τ |z−z′ |/λC

]
, (4.1)

where we have introduced the abbreviation f (1D)(τ ) ≡
1/(τ 5

√
τ 2 − 1) and α(1D) for the effective fine-structure

constant of 1D. The (unitless) function f (1D)(τ ) plays a
similar role as f (τ ) in the 3D case. In order to make the
quantitative connection with a three-dimensional plate (of
width 2w and charge density q) located at z = 0, we assume
that the 1D density used in Eq. (4.1) is given by ρ(1D)(z′) =
q/(2w)Uw(z′)L. Here the additional factor L is required by
the 3D to 1D translation rules between the charges as outlined
in Appendix C. As a result, ρ(r ′) (for 3D) and ρ(1D)(z′) (for
1D) have different units. While (except for the factor of L)
the first (classical) part of the potential φ(1D,0)(z) in Eq. (4.1)
is identical to that of the infinite plate given in Eq. (3.4), i.e.,
φ(1D,0)(z) = Lφ(0)(r), the second (vacuum polarization) part is
different and becomes

φ(1D,1)(z) = −πkeα
(1D)λ4

C

q

2w
L

∫ ∞

1
dτ

f (1D)(τ )

τ

× [−2 + e2τ (z−w)/λC + e−2τ (w+z)/λC ]Uw(z)

−πkeα
(1D)λ4

C

q

2w
L

∫ ∞

1
dτ

f (1D)(τ )

τ

× [e−2τw/λC − e2τw/λC ]e−2τ |z|/λC [1 − Uw(z)].

(4.2)

The corresponding contribution to the charge density due to the
vacuum polarization can be calculated again from the classical
(Maxwell equation) as ρ

(1D)
pol (z) = −(4πke)−1∂2

z φ(1D,1)(z). We
obtain

ρ
(1D)
pol (z) = α(1D)λ2

C

q

2w
L

∫ ∞

1
dτ τ f (1D)(τ )

× [e2τ (z−w)/λC + e−2τ (w+z)/λC ]Uw(z)

−α(1D)λ2
C

q

2w
L

∫ ∞

1
dτ τ f (1D)(τ )

× [e2τw/λC − e−2τw/λC ]e−2τ |z|/λC [1 − Uw(z)].

(4.3)

Before we can compare these predictions with the result of the
3D theory, we have to determine first the unknown value of the
1D fine-structure constant α(1D) ≡ ke(e(1D))2/(�c). We propose
here to determine this constant (and therefore the fundamental
charge e(1D) of one-dimensional QED) by requiring that the
total induced 1D charge [Q(1D)

pol ≡ ∫ w

−w
dz ρ

(1D)
pol (z)] on the

plate (when multiplied by L) has to match the corresponding
total induced charge obtained from the 3D theory [Qpol ≡∫ w

−w
dz ρpol(z)L2]. If we then compare Eq. (3.7) with the spatial

FIG. 2. Numerical value of the fine-structure constant α(1D) (in
units of α/λ2

C) for one-dimensional QED as a function of the width
2w of the plate, based on the requirement that the total induced
polarization charge from the vacuum on the plate should be identical
for the 1D and 3D QED.

integral over Eq. (4.3) this equality simplifies to

α

6π

∫ ∞

1
dτ

f (τ )

τ
(1 − e−4τw/λC )

= α(1D)λ2
C

∫ ∞

1
dτ f (1D)(τ )(1 − e−4τw/λC ). (4.4)

Using this required equality, we can obtain the value of the 1D
fine-structure constant α(1D) as a function of α, the Compton
wavelength λC , and the plate width w.

We have graphed in Fig. 2 the parameter α(1D) according
to Eq. (4.4) as a function of w and find that it approaches a
constant value if the plate’s width w is larger than λC , which is
a natural limit for a physical plate. We note that the left portion
of the graph (w 
 λC) is potentially outside the range of
validity of the underlying theory, as we retained only diagrams
corresponding to large separations as discussed in Appendix B.

In the limit of small (λC/w) we can neglect the two
exponentials in Eq. (4.4) and use

∫ ∞
1 dτ f (τ )/τ = 9π/16 and

similarly
∫ ∞

1 dτ f (1D)(τ ) = 3π/16. As a result, we obtain

α(1D) = α

2πλ2
C

. (4.5)

We note that our required match in Eq. (4.5) determines also
the value of the charge of the fundamental particle of the 1D
QED world as e(1D) = e/(λC

√
2π ) = 1.66 × 10−7 C/m.

Knowing the value for the constant α(1D), we can finally
compare the predictions of the 1D theory quantitatively with
the results from the actual 3D approach. For example, similarly
as in Sec. III, we can now compute the total energy per area
between the two plates (again in the limit w → 0) from this
1D QED theory as

V (1D)(d)

L2
= 2πkeq

2d − 3πkeq
2α(1D)λ3

C

×
∫ ∞

1
dτ f (1D)(τ )e−2τd/λC (4.6)
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FIG. 3. Ratio between the induced polarized charge Qpol and the
initial charge Q0 as a function of the width of the plate w. The solid
line is obtained from the 3D QED approach and the dashed line is
the result of the 1D calculation. The unperturbed density of the plate
was q = 1.602 × 10−4 C/m2.

and correspondingly the total force per unit area between the
two plates can be computed leading to

F (1D)(d)

L2

= −2πkeq
2

[
1 + 3α(1D)λ2

C

∫ ∞

1
dτ f (1D)(τ )τ e−2τd/λC

]
.

(4.7)

V. DISCUSSION

In this section we will compare directly the differences
between the two approaches. The charge renormalization and
the subsequent fixing of the corresponding charge of the
positronic elementary particle in 1D have guaranteed that the
total induced charge per area on each plate is identical in both
approaches for w 	 λC .

First, let us discuss the ratio of the induced charge Qpol

and the unperturbed charge Q0 as a function of the width of
the plate w in Fig. 3. The qualitative behavior obtained from
the 1D and 3D theories match rather well if the plate is not
too narrow. Both approaches predict the same decrease of the
polarization charge with increasing width w. The difference
between the two curves becomes apparent only for very narrow
plates w/λC < 1, where the 3D theory predicts an infinite Qpol

as w/λC → 0, while the 1D polarization charge remains finite.
We note that the 1D theory underestimates the polarization
charge for narrow plates.

In Fig. 4, we analyze the spatial dependence of the
polarization charge for a plate centered at z = 0 and width
2w = 10λC . While the total induced charge Qpol is finite
(unless w/λC → 0) for both theories, we see that the 3D
theory predicts an infinite discontinuity between the induced
charge densities ρpol(z) at the edges of the plate z = ±w. In
the 1D approach, however, this discontinuity is finite. Both
approaches predict the same spatial scale proportional to λC at
which the polarization charge density falls off as the distance
from each edge increases.

FIG. 4. Polarization charge density ρpol(z) measured in C/m2

around the positive charged plate according to the three-dimensional
(solid line) and the one-dimensional theory (dashed line) as a
function of the position z. The unperturbed density of the plate
was q = 1.602 × 10−4 C/m2 and the plate has a width of 2w =
1.213 × 10−11 m.

In Fig. 5, we return to the two-plate geometry and discuss
the modification to the usual classical Coulomb force law,
derived in Sec. II as F/L2 = −2πkeq

2. We have compared
numerically the modification of the force between the plates
according to Eqs. (3.10) and (4.7) as a function of the spacing d

for the two theories. For the (arbitrary) parameters used in the
figure (q = 1.6 × 10−4 C/m2) the spacing-independent force
(per unit area) between the plates would be 1450 N/m2 in the
absence of any polarization.

We show in Fig. 5 only the correction to the attractive clas-
sical force F (1D)(d)/L2 = −2πkeq

2. We see from Eqs. (4.7)
and (3.10) that this correction increases the amount of the
attractive force. Had we chosen two equally charged plates we
would have also observed that the vacuum would increase the
repulsive force.

The effect of the polarization charges on the force
is obviously largest for small plate spacing d when the

FIG. 5. Correction to the force per unit area (in N/m2) between
the two oppositely charged capacitor plates according to the three-
dimensional (solid line) and the one-dimensional theory (dashed line)
as a function of the distance d between them. The unperturbed density
of each plate is q = ±1.6 × 10−4 C/m2 and each plate has a width
of 2w = 1.213 × 10−11 m. For comparison, the classical force is
1450 N/m2.

052115-5



Q. Z. LV, N. D. CHRISTENSEN, Q. SU, AND R. GROBE PHYSICAL REVIEW A 92, 052115 (2015)

polarization charge clouds of both plates overlap the most.
For example, the 3D theory of Eq. (3.10) predicts an infinite
force correction for d = 0 [as

∫ ∞
1 dτ f (τ ) → ∞], while the

1D theory predicts a finite value according to Eq. (4.7),
6πkeq

2α(1D)λ2
C

∫ ∞
1 dτ f (1D)(τ )τ . However, it should be kept

in mind that the Uehling potential and our calculations are only
strictly valid for distances on the order of or greater than λC .

For large plate spacings the 1D theory overestimates the
correction to the force, while due to its finite limit for d = 0,
it underestimates it for d → 0. For a possible experimental
test it is important to point out, the ratio of the correction to
the force and the classical force is independent of the charge
density q and amounts to 5α/(3π )

∫ ∞
1 dτ f (τ )exp(−2τd/λC).

This ratio decreases from infinity (for d = 0) to 0.14% for
d/λC = 0.5.

The nearly straight lines in the figure for d/λC > 1
also suggest that it is possible to approximate the correc-
tion to the force by simple exponential functions of the
distance. If we approximate

∫ ∞
1 dτ f (τ )exp(−2τd/λC) as

0.64 exp(−2.421d/λC) and
∫ ∞

1 dτ f (1d)(τ )τ exp(−2τd/λC)
as 0.6 exp(−2.127d/λC), we would obtain simpler expressions
for the correction force due to the polarization

Fpol(d)

L2
= −2πkeq

2 5α

3π
0.64 e−2.421d/λC , (5.1)

F
(1D)
pol (d)

L2
= −2πkeq

2 3α

2π
0.60 e−2.127d/λC (5.2)

VI. SUMMARY AND OPEN QUESTIONS

The purpose of this work was threefold: to rigorously derive
a 1D theory of QED, to test it for a real system with high
spatial symmetry, and to examine if it would be experimentally
feasible to use a macroscopic system such as a two plane
parallel capacitor system to measure the quantum correction
to the classical Coulomb force between the two plates due to
the vacuum polarization. Even though any 1D theory is not
able to describe the intrinsically transverse nature of the force
mediating photons, it is surprising that (in the absence of any
vacuum polarization) the 1D and 3D approaches predict an
identical force. This agreement is related mathematically to
the fact that the unperturbed 3D Feyman photon propagator
DFμν(x) when integrated over the extraneous coordinates x1

and x2 is identical to the corresponding 1D propagator of the
1D theory. That is, these propagators have the property that∫

dx1dx2DFμν(x) = D
(1D)
Fμν(x), (6.1)∫

dx1dx2SF (x) = S
(1D)
F (x), (6.2)

where we have introduced our notation and derived the form
of the photon and electron propagators DFμν(x) and SF (x) in
Appendix A.

The first-order (in the fine-structure constant) correc-
tion to the photon propagator is related to the product
DFμρTr[V ρSF V σSF ]DFσν . The difference between this and
the analogous product based on the corresponding 1D prop-
agators is partly due to the fact that the integral (

∫
dx1dx2)

over a product is different than the product of individual

integrals. While according to Eqs. (6.1) and (6.2) the two basic
1D propagators can be obtained directly by integrating the
corresponding 3D propagators over the extra two coordinates,
this simple mapping between the 1D and 3D quantities cannot
be generalized to more complicated expressions for diagrams
that contain several vertices. According to the Feynman rules,
any higher-order diagrams can be obtained by computing
multiple integrals of various convolutions of these two basic
propagators (and the vertices) over all possible permitted
momenta (or equivalently coordinates). If the resulting di-
agram was then integrated over the extra two coordinates,
it would not reduce to the corresponding diagram obtained
from an intrinsic 1D theory. This is related to the fact that the
convolution integral integrated over the extra two coordinates
is not the same as the convolution integral over two functions,
each of which were integrated over the extra coordinates. Or
equivalently, in general, an average (=integral over the two
extra coordinates) over a product of functions is not the same
as the product of the respective averages. It is therefore not
possible to expect that the 1D modified photon propagator
(see our case) agrees with the 3D modified propagator when
simply integrated over the extra coordinates.

Nevertheless, our final comparison suggests that the differ-
ence in our particular case of two sufficiently wide plates is not
too large. The natural question then might be if it is possible to
construct a 1D theory that compensates for these differences
and is able to agree completely at the next-to-leading order
level with the 3D theory for systems of high (x1,x2) symmetry.
Perhaps it is possible to analyze the magnitude and effect of
the terms that are thrown away in the 1D Lagrangian and find a
way to add compensating terms to the 1D Lagrangian without
ruining its 1D computational benefits.

There also remains an interesting conceptual question of
the induced polarization density in the region outside the two
plates of opposite charge. According to classical electrody-
namics the electric field outside the two infinite plates is zero.
If the occurrence of any polarization charge cloud requires the
presence of a nonvanishing electric field, then this classical
theory would not predict any polarization charges outside the
plates. However, as we have seen, quantum electrodynamics
does predict (possibly virtual) charges outside the plates. This
means that any illustrative picture that an electric field is
required to induce charges from the vacuum might not really
be helpful to explain the occurrence of virtual charges outside
the plates.

Moreover, it is presently not fully understood by us whether
the vacuum correction is the result of the polarization of the
vacuum by induced charges. To emphasize this point, we note
that we obtained the vacuum charge density by taking the
quantum calculation of the potential at next-to-leading order
and forcing it back into a purely classical theory, which only
corresponds to leading order. It is not clear to us that this
effective picture actually corresponds with Nature. On the
other hand, in principle, one could obtain the same result by
computing the vacuum expectation value of the charge density
operator directly [26–30]. This seems to lend support to the
idea of an actual physical vacuum charge density. However,
more work is required to resolve this puzzle.

Furthermore, while the whole concept of the vacuum’s
polarizabilty is based on a viewpoint that is based on the
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existence of virtual charges, we point out that there are
also proposed formalisms based on dressed particle states
[31–35] that do not require any virtual or bare particles. It
would be very interesting to examine in future work how
the vacuum’s polarizability would manifest itself in such
alternative theoretical frameworks. But due to the challenging
nature of this work, it is a long-term hope for us.

The effect of the force between two conducting plates due
to the mode structure of the electromagnetic vacuum has been
predicted [36–41] and experimentally confirmed first [42] for
the Casimir effect. In contrast to our case here, the two plates
experiencing the Casimir force are uncharged and the force can
be rather significant and even cause unwanted challenges in the
manufacturing of small scale nanoelectromechanical materials
[43–51]. The effect of charges (such as highly charged ions)
on the structure of the vacuum has been observed only in
spectroscopic measurements asssociated with the energy shifts
of certain energy levels. In our macroscopic system of two
charged parallel plates, on the other hand, the amount of
the quantum corrected force due to the polarization charges
can be controlled by the amount of charge placed on the
plates. Nevertheless, the correction to the usual (plate-spacing
independent) Coulomb force is only significant for extremely
short distances on the order of the electron’s Compton
wavelength, making a direct experimental measurement of the
force unfeasible for present technology.
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APPENDIX A: FEYNMAN RULES OF QED IN SI UNITS

As the final goals of our Feynman-rules based perturbative
QED calculation are physical observables with SI units, we
must first translate those rules from the so-called natural
units of textbooks into SI units. Although this process is
straightforward, there are subtleties involving factors of � and
c that must be carefully worked out for correct diagrammatic
rules. In particular, in contrast to the situation of natural
units, where the coefficient of the interaction terms of the
Lagrangian are the same in its spatial and momentum form
(equal to the bare charge eb), in SI units, on the other hand,
the Fourier transform of the Lagrangian from a spatial form
to a momentum form introduces factors of � and c. Moreover,
the subtlety arises because the vertices and propagators are
not observable, and unlike in the case of observables where
the units of the observable determine the appropriate factors

of � and c, we have no such guidance here. For this reason, we
give a complete derivation of the Feynman rules of QED in SI
units in this appendix. We furthermore note that, to the best
of our knowledge, the SI form of the Feynman rules for QED
cannot be found in the literature. Our derivation is based on the
functional derivative, which is an equivalent alternative to the
Wick contractions method found in some textbooks. Below,
we will show that the vertex is given by

Vμ = −i
eb

�
γμ (A1)

and the propagators are given, in the Feynman gauge, by

SF (k) = i

γ μkμ − mc/�
, (A2)

DFμν(k) = −i
4πke�

c

ημν

k2
. (A3)

From these expressions, we see that the unit of the fermion
propagator SF (k) is m (= meter), while the photon propagator
DFμν(k) is measured in (J s m/C)2. Here we have used
the convention xμ ≡ (ct,�r) = (ct,x,y,z), ∂μ ≡ (∂ct ,∂x,∂y,∂z),
and kμ ≡ (ω/c,�k), where we are actually working in wave
number space rather than momentum space but the two are
related by a factor of � as usual (we will often use the
word momentum in place of wave number in this article).
As a side note, we remark that their Fourier transforms,
defined as DFμν(x) = ∫

d4k/(2π )4DFμν(k)exp(−ik · x) and
SF (x) = ∫

d4k/(2π )4SF (k)exp(−ik · x), are the correspond-
ing Green’s functions for the equations ∂α∂αDFμν(x) =
i(4πke�/c)ημνδ

4(x) and (iγ μ∂μ − mc/�)SF (x) = iδ4(x).
These Green’s functions can be used to solve the coupled
classical Maxwell-Dirac equations, obtained from the Euler-
Lagrange equations for the fields:

(i�γ μ∂μ − mc)ψ(x) = −ebγ
μAμ(x)ψ(x), (A4)

∂ν∂νAμ(x) = eb4πke

c
ψ̄(x)γμψ(x). (A5)

We begin with the Lagrangian of QED, which as a function
of the three quantum fields ψ, ψ̄ , and Aν(x) = (φ/c, �A), takes
the form

L(x) = c ψ̄(x)
(
i�γ μ∂μ − mc

)
ψ(x)

− ebc ψ̄(x)γ μAμ(x)ψ(x)

− c2

8πke

Aμ(x)(∂μ∂ν − ημν∂
2)Aν(x), (A6)

where we have defined the photon field to have the usual
units of standard electromagnetic textbooks, resulting in the
factor of ke in the free photon field part of the Lagrangian.
Changing the field operators to their wave number representa-
tion according to the definition of the Fourier transformation
ψ(x) = ∫

d4k/(2π )4ψ(k)exp(−ik · x), the total action S ≡∫
dt d3x L(x) = c−1

∫
d4x L(x) can be written as the sum of
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three parts. The first part takes the form

S1

�
= 1

c

∫
d4x c ψ̄(x)

(
iγ μ∂μ − mc

�

)
ψ(x) =

∫
d4x

∫
d4k1

(2π )4
ψ̄(k1)eik1·x

(
iγ μ∂μ − mc

�

) ∫
d4k2

(2π )4
ψ(k2)e−ik2·x

=
∫

d4x

∫
d4k1

(2π )4
ψ̄(k1)eik1·x

(
γ μk2μ − mc

�

) ∫
d4k2

(2π )4
ψ(k2)e−ik2·x

=
∫

d4k1d
4k2

(2π )8
ψ̄(k1)

(
γ μk2μ − mc

�

)
ψ(k2)(2π )4δ4(k2 − k1) =

∫
d4k

(2π )4
ψ̄(k)

(
γ μkμ − mc

�

)
ψ(k). (A7)

The inverse of the operator between ψ̄ and ψ times i gives us the propagator i(γ μkμ − mc/�)−1 ≡ SF (k). Similarly, for the
Maxwell part we obtain

S2

�
= −1

c

∫
d4x

c2

8πke�
Aμ(x)

(
∂μ∂ν − ημν∂

2
)
Aν(x)

= −
∫

d4x
c

8πke�

∫
d4k1

(2π )4
Aμ(k1)e−ik1·x(∂μ∂ν − ημν∂

2
) ∫

d4k2

(2π )4
Aν(k2)e−ik2·x

= c

8πke�

∫
d4k1d

4k2

(2π )8
Aμ(k1)

(
k2μk2ν − ημνk

2
2

)
Aν(k2)(2π )4δ4(k1 + k2)

=
∫

d4k

(2π )4

1

2
Aμ(−k)

c

4πke�

(
kμkν − ημνk

2
)
Aν(k). (A8)

Although the operator between the photon fields cannot be directly inverted, after gauge fixing using the Fadeev-Poppov
procedure, it can, giving the following propagator (after multiplying by i) DFμν(k) = −i(4πke�/c)ημν/k2, in the Feynman
gauge. Similarly the interaction part of the action is given by

S3

�
= −1

c

∫
d4x ψ̄(x)

ceb

�
γ μAμ(x)ψ(x) = −

∫
d4x

∫
d4k1

(2π )4
ψ̄(k1)eik1·x eb

�
γ μ

∫
d4k2

(2π )4
Aμ(x)e−ik2·x

∫
d4k3

(2π )4
ψ(k3)e−ik3·x

=
∫

d4k1d
4k2d

4k3

(2π )12
ψ̄(k1)

−eb

�
γ μAμ(k2)ψ(k3)(2π )4δ4(k3 + k2 − k1). (A9)

We extract the vertex operator after functionally differentiating S3/� with respect to the three fields and multiplying by i giving
us V μ = −iebγ

μ/�,

δS3

δψ(k3)δAμ(k2)δψ̄(k1)
= −eb

�
γ μ(2π )4δ4(k3 + k2 − k1). (A10)

APPENDIX B: ORDER-α QUANTUM CORRECTION
TO THE ELECTRIC POTENTIAL

In this section, we would like to calculate the leading-order
correction to the electric potential of a charged particle. This
is a standard textbook calculation [16] and we only outline
the derivation here, focusing on aspects that will be important
in our 1D calculation. In Fig. 6, we list all nine one-loop
diagrams that potentially contribute at next-to-leading order
to the interaction between the charge carriers. For reference,
we also include the leading-order (tree-level) diagram as
Fig. 6(a). In order to understand the contributions from these
diagrams, we begin by noting that we are interested in the
long-range behavior of the electric potential (distances on
the order of or greater than the Compton wavelength of
the electron). In Fourier-transformed space, this corresponds
with very low energy being transferred between the charge
carriers in the parallel plate. In this limit, the diagrams in
Figs. 6(b)–6(d) exactly cancel (there are also bremsstrahlung
diagrams which are important for this cancellation which will
not be important in our calculation). This exact cancellation
is due to the Ward identity which is a consequence of the
QED gauge symmetry. The same cancellation occurs at long

range for the diagrams in Figs. 6(e)–6(g). (These diagrams are
only important for short-range interactions.) The diagrams in
Figs. 6(i)–6(j) are finite, but are suppressed by the mass of
the electron. As a result, these diagrams are only important
at short range (smaller than the Compton wavelength) when
the energy exchanged between the charge carriers is greater
than mc2. This leaves us with only the diagram in Fig. 6(h),
which does contribute at long range as well as at short
range.

Since the quantum correction to the long-range potential
is dominated by the diagram in Fig. 6(h), we now focus on
just this diagram and the leading order diagram in Fig. 6(a).
We see that they can both be combined into one diagram
with a modified photon propagator as shown in Fig. 7. We can
construct the modified photon propagator from these diagrams
by writing

D
′μν

F (k) = D
μν

F (k) + D
μσ

F (k)[i�σλ(k)]Dλν
F (k), (B1)

where D
′μν

F (k) represents the modified photon propagator,
D

μν

F (k) is the leading-order photon propagator from Appendix
A, and i�σλ(k), called the polarization tensor, is the result
of the loop, which we will calculate now. We take the loop
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FIG. 6. Leading-order diagram (a) and one-loop diagrams (b)–(j) that contribute to the electric potential between charge carriers in the
two plates. In the long-range limit (low-energy transfer limit) we consider, the potential is dominated by diagrams (a) and (h). The wavy lines
represent photons and the straight lines represent electrons.

momentum p to be oriented in the direction of the arrow
on the loop, while we choose the propagator momentum k

to travel along the lower half of the loop to the other side.
The polarization tensor is then determined, following standard
Feynman rules, by following the fermion loop around in the
opposite direction of the arrows writing down factors as we
go. We obtain

i�σλ(k) = −
∫

d4p

(2π )4
Tr[VσSF (p)VλSF (p + k)], (B2)

where the minus sign comes from having a loop
of fermions and the trace is over Dirac γ matrices.

Unfortunately the integral over p does not converge.
However, it turns out that the singularity can be absorbed
into the definition of the unobservable bare coupling constant
eb. In order to do this, the integral must first be regularized,
typically by dimensional regularization, which preserves the
Ward identities. This is done by replacing the four-dimensional
integral by the limit of a (4 − ε)-dimensional integral as
ε → 0. However, the ε → 0 limit is taken after absorbing the
potentially infinite terms into the bare coupling eb. With this,
after taking the trace, combining the denominators and making
a change of integration variables, the polarization tensor can
be put in the form

�σλ(k) = 4ie2
b

�2

∫ 1

0
dβ

∫
d4−εp

(2π )4−ε

2pσpλ − p2ησλ − 2β(1 − β)kσ kλ + β(1 − β)k2ησλ + (m2c2/�
2)ησλ

(p2 + β(1 − β)k2 − m2c2/�2)2
. (B3)

The analytical form of these integrals can be looked up in
standard references such as [16] giving us

�σλ(k) = − 8e2
b

(4π�)2
(ησλk

2 − kσ kλ)

×
∫ 1

0
dβ β(1−β)

[
2

ε
−γ+ln

(
4π

�

)
+O(ε)

]
, (B4)

where � = m2c2/�
2 − β(1 − β)k2. As a test of our expres-

sion, we immediately see that kσ�σλ(k) = 0, as required by
the Ward identities. To simplify our notation we define P (k2),
where we have factored out the bare coupling, �σλ(k) ≡
eb/(4π�

2)(ησλk
2 − kσ kλ)P (k2). As a result, the modified

propagator takes the form

D′
Fμν(k) = −i

4πke�

c

ημν

k2
− i

e2
b

4π�2

× (ημνk
2 − kμkν)P (k2)

(
4πke�k2

c

)2

. (B5)

In our parallel plate capacitor, the ends of this propagator
will be connected to the charge carriers in the two plates
(the straight lines on the two sides in Fig. 6) in terms
such as ū(p + k)γ μu(p)D′

Fμν(k). When the kμkν term of the
modified photon propagator combines with the γ matrix, we
will get ū(p + k)[γ μ(pμ + kμ) − γ μpμ]u(p). However, since
ū(p + k)γ μ(pμ + kμ) = ū(p + k)m and γ μpμu(p) = mu(p)
(these are the Euler-Lagrange equations for the Dirac spinor
in momentum space), we see that the contribution from kμkν

vanishes. This is part of a larger Ward identity that states that
at the one-loop level we are working at, the kμkν piece does
not contribute to any physical observables. Therefore, we can
drop it and we find

D′
Fμν(k) = DFμν(k)

[
1 + e2

bke

�c
P (k2)

]
, (B6)

where we remind the reader that DFμν(k) =
−i(4πke�/c)ημν/k2. In this form, we see that the result of this
quantum correction is nothing but a momentum-dependent
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FIG. 7. Modified photon propagator at one loop. It is the modified photon propagator that will contribute to the long-range electric potential.
The wavy line with the shaded circle on the left represents the combined effects of the tree-level photon propagator shown as the first term on
the right and the one-loop correction to the photon propagator shown as the second term on the right.

correction factor due to quantum one-loop effects. In order
to determine the (so far) unknown value of the bare coupling
parameter eb, we need a specific experimentally measureable
case as a reference. We will convert the modified Feynman
propagator to a potential associated with a general bare source
at long range. We will introduce this bare source current as
jν
b (k) = ebj

ν
t (k), where we have factored out the bare charge

and note that we assume the remaining jν
t (k) is spatially

localized. For example, a point charge at rest would be given
by jν

t (k) = c2πδ(k0)ην0. In order to do this, we will use
Green’s function to give the quantum corrected potential
associated with the bare charge as

A′
μ(k) = −i

1

�c
D′

Fμν(k)ebj
ν
t (k). (B7)

We then obtain

A′
μ(k) = −i

1

�c
DFμν(k)

[
1 + e2

bke

�c
P (k2)

]
ebj

ν
t (k). (B8)

The corresponding (experimentally verified at long range)
classical potential for a physical charge given by jν(k) =
ejν

t (k), where it is important that jν
t (k) is the same as above

and e = 1.6 × 10−19 C is the measured value of the positron
charge, is

Aμ(k) = −i
1

�c
DFμν(k)ejν

t (k). (B9)

In order for the long-range behavior of the potential to be the
same in these two theories, we must equate the limit as k → 0
of Eqs. (B8) and (B9),

lim
k→0

A′
μ(k) = lim

k→0
Aμ(k), (B10)

and, therefore, we find

e = eb

[
1 + e2

bke

�c
P (0)

]
. (B11)

If we multiply both sides by
√

ke/(�c), we have

α1/2 = α
1/2
b [1 + αbP (0)], (B12)

where we have defined the unitless α ≡ e2ke/(�c) and αb ≡
e2
bke/(�c). Note that α � 1/137 is the fine-structure constant

of 3D QED. Solving this equation order by order in α1/2, we
find up to order α3/2 [and removing the factor ke/(�c) on both
sides]

eb = e[1 − αP (0)]. (B13)

We note that formally P (0) is infinite and therefore eb is also
infinite. We can now insert this expression back into Eq. (B8)
to obtain the renormalized potential for other values of k,

A′
μ(k) = −i

1

�c
DFμν(k)(1 + α[P (k2) − P (0)])jν(k). (B14)

Here, we see that physically observable quantities do not
depend on P (k2) alone, but on the difference P (k2) − P (0),

P (k2) − P (0) = 2

π

∫ 1

0
dβ β(1 − β)ln

[
1 − β(1 − β)k2λ2

C

]
,

(B15)
where λC ≡ �/(mc) (= 3.85 × 10−13 m) is the Compton
wavelength. We note that this is finite in the limit ε → 0,
which is technically due to the cancellation of the 2/ε terms.

Now that we have the modified potential in momentum
space, we would like to Fourier transform it back to position
space. In particular, we would like to consider the potential
due to a point charge at rest jν(x) = ecην0δ3(�r). Plugging this
in, we obtain

A′
μ(k) = −i

1

�c
D′

Fμν(k)
∫

d4x eik·xj ν(x)

= −i
e

�
D′

Fμ0(k)(2π )δ(k0). (B16)

Fourier transforming this result gives

φ(�r) = −i
ec

�

∫
d4k

(2π )4
D′

F00(k)(2π )δ(k0)e−ik·x

= −i
ec

�

∫
d3k

(2π )3
D′

F00(�k)e−i�k·�r

= 4πkee

∫
d3k

(2π )3

1
�k2

(
1 + 2α

π

∫ 1

0
dβ β(1 − β)

× ln
[
1 + β(1 − β)�k2λ2

C

])
e−i�k·�r . (B17)

The integral of the first term is 1/(4πr) giving the standard
classical Coulomb potential kee/r . In order to integrate the
second term, we convert to spherical coordinates and integrate
over the angles to obtain

δφ(r) = −i
keeα

π2r

∫ ∞

−∞

dq

q
(eiqr − e−iqr )

×
∫ 1

0
dβ β(1 − β)ln

[
1 + β(1 − β)q2λ2

C

]
, (B18)

where q = |�k| and we have used the fact that the integrand
is even in q to write the integral

∫ ∞
0 as 1

2

∫ ∞
−∞. In order to

complete the integral over q, we analytically continue the
integrand to the complex q plane. We note that there are no
poles in the integrand (both the numerator and denominator
go to zero as q → 0), but there is a branch cut beginning at
q = ±i/[λC

√
β(1 − β)] and continuing up to q → ±i∞. We

will split this integral into the two pieces

I± =
∫ ∞

−∞

dq

q
e±iqr

∫ 1

0
dβ β(1 − β)ln

[
1 + β(1 − β)q2λ2

C

]
.

(B19)
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For each, we will add to this integral the half circle at complex
infinity in the upper half plane for I+ and in the lower half
plane for I−. This contributes nothing to the integral because
of the suppression in the exp(±iqr) term. However, when we
reach the branch cut, we will need to integrate down the branch
cut towards the origin until we reach the end and then back up
the branch cut on the other side. Since these contour integrals
will not enclose any poles, they will be zero showing that our
original integrals I± are equal to minus the integrals around
the branch cuts. Since the real part of the integrand is the
same on the two sides of the branch cut, they will cancel. The
imaginary part of the logarithm, on the other hand, will differ
by 2π between the two sides of the branch cut, giving us

I± = ±2iπ

∫ ∞

2/λC

dq

q
e−qr

∫ 1
2 [1+

√
1−4/(λCq)2]

1
2 [1−

√
1−4/(λCq)2]

dβ β(1 − β),

(B20)
where we have only integrated over the imaginary part of the
logarithm. Performing the β integral and plugging back into
δφ(r) gives us

δφ(r) = kee

r

α

3π

∫ ∞

2/λC

dq

q
e−qr

[
2 +

(
2

λCq

)2
]√

1 − 4

λ2
Cq2

.

(B21)

Finally, making the change of variables q = 2τ/λC and
including the leading-order expression again gives us

φ(r) = kee

r

[
1 + α

3π

∫ ∞

1
dτ f (τ )e−2τr/λC

]
, (B22)

where we have defined

f (τ ) ≡
(

2

τ 2
+ 1

τ 4

)√
τ 2 − 1. (B23)

This agrees with the well-known form of the Uehling potential
[21,26–30]. We see that the second term in the Uehling
potential is higher order in the coupling constant (e3) than
the the Coulomb term (order e), so that this corresponds with
a perturbation in the electric charge, as expected. We have
derived the potential for a point charge but the generalization
to a charge density is clear

φ(r) = ke

∫
d3r ′ ρ(�r ′)

|�r − �r ′|

×
[

1 + α

3π

∫ ∞

1
dτ f (τ )e−2τ |�r−�r ′|/λC

]
. (B24)

APPENDIX C: ONE-DIMENSIONAL QED

In this section, we begin by defining what we mean by
a 1D theory. We do not mean that we start from scratch
with one dimension of space (and one dimension of time)
and construct field theory. What we mean in this article is
that we begin with a fundamental three-dimensional theory
(plus time) and reduce the theory by removing the dependence
on two of the dimensions. Without loss of generality, let’s
suppose that the dimensions we will drop are the x1 and x2

dimensions and we will now use the notation x = (ct,z). We
reduce the Lagrangian by dropping all derivatives with respect
to x1 and x2, dropping all dependence on x1 and x2 in the

fields, dropping the fields A1(x) and A2(x), and removing
dependence on the Dirac γ matrices γ 1 and γ 2. While the
omission of these two components of the vector potential
might not lead to a serious discrepancy between the 1D and
3D theories in the present context, it might be inappropriate
for dynamical problems, even if the system has a very high
degree of spatial symmetry. This does not necessarily imply
that to retain the two components in a 1D theory would better
approximate the 3D theory. Further quantitative comparisons
are required. We are also guided in the way we formulate
this theory by keeping the same value and units for the speed
of light c, the electron mass m and Coulomb’s constant ke.
We can accomplish this by defining our 1D fields with an
absorbed factor of L, where L2 = ∫

dx1dx2 is the infinite area
along the x1 and x2 directions. So, ψ (1D)(ct,z) = Lψ(ct,z),
where ψ(ct,z) is the 3D field with the dependence on x1 and
x2 dropped. We still define ψ̄ (1D) = ψ (1D)†γ 0 as in the 3D
theory. We also define A(1D)μ(ct,z) = LAμ(ct,z), where we
have dropped dependence on x1 and x2 and multiplied by L

and the index μ only takes the values 0 and 3. We will assume
that all Lorentz indices will only take the values 0 and 3 for
the rest of this section. We then find that our 1D Lagrangian
is given by multiplying the orginal 3D Lagrangian (where all
derivatives or momenta along the x1 and x2 directions were
ommited) by a factor of L2, leading to

L(1D)(x)

= cψ̄ (1D)(i�γ μ∂μ − mc)ψ (1D) − κbcψ̄
(1D)γ μA(1D)

μ ψ (1D)

− c2

8πke

A(1D)μ(∂μ∂ν − ημν∂
2)A(1D)ν . (C1)

In addition to the redefinition of the fields, we have also
introduced a new coupling constant κb = eb/L. All other
constants remain the same. The action is given by the inte-
gralS (1D) = ∫

dt dzL(1D) = c−1
∫

d2x L(1D) and the Feynman
rules are obtained by the same procedure as in Appendix A
giving

V (1D)
μ = −i

κb

�
γμ, (C2)

S
(1D)
F (k) = i

γ μkμ − mc/�
, (C3)

D
(1D)
Fμν = −i

4πke�

c

ημν

k2
, (C4)

where the main differences (beyond a restriction of the Lorentz
indices to 0 and 3) are the replacement of eb with κb, the
implicit momentum conserving delta function is now only
over two dimensions (2π )4δ4(

∑
k) → (2π )2δ2(

∑
k) and we

use the property that any kμkν contribution to the propagator
will not contribute to any physical observables at the order of
perturbation theory we are working. As expected, the propa-
gators are the Green’s functions that satisfy ∂α∂αDFμν(x) =
i(4πke�/c)ημνδ

4(x) and (iγ μ∂μ − mc/�)SF (x) = iδ4(x). We
note that the units for the vertex, given by κb/�, are C/J, the
units for the electromagnetic field A(1D)μ are J s/C and the units
for the fermion field are m−1/2.

Any 3D system whose charge distribution depends only
on the z direction must naturally be infinitely extended along
the x1 as well as the x2 direction. As a result, all total forces

052115-11



Q. Z. LV, N. D. CHRISTENSEN, Q. SU, AND R. GROBE PHYSICAL REVIEW A 92, 052115 (2015)

F and energies V are infinite, but one can still compute the
corresponding (finite) two-dimensional densities such as F/L2

or V/L2, where we are denoting the (in principle infinite) area
by the quantity L2. For example, as we have seen in the main
text, the (finite) charge density of a plate can be characterized
by q, measured in units of C/m2.

In addition to the new quantities defined with superscripts
(1D), we also need to articulate translation rules in order to
compare the 1D and 3D observables quantitatively. The total
1D charge [defined as

∫
dz ρ(1D)(z)] needs to be multiplied by

L and the electric field [defined as (−∂zφ
(1D))/q(1D)] needs to

be multiplied by L2 to predict the corresponding quantitities
in the 3D world. With these rules, forces will have the usual
units of N.

We would now like to calculate the correction to the
Coulomb potential using our 1D theory in order to compare
with the predictions of the full 3D theory. We assume that we

can still neglect all the diagrams of Fig. 6 except Figs. 6(a)
and 6(h). Combining these two diagrams as in Appendix B,
we calculate a modified propagator for the photon

D
(1D)′μν

F (k) = D
(1D)μν

F (k) + D
(1D)μσ

F (k)
[
i�

(1D)
σλ (k)

]
D

(1D)λν
F (k).

(C5)
Using our 1D Feynman rules, we obtain

i�
(1D)
σλ (k) = −

∫
d2p

(2π )2
Tr

[
V (1D)

σ S
(1D)
F (p)V (1D)

λ S
(1D)
F (p + k)

]
.

(C6)
This integral is formally logarithmically divergent and we
must regularize it to proceed. We will again use dimensional
regularization as it preserves the Ward identities. We change
the integration from d2p to d2−εp, trace the γ matrices,
combine the propagator denominators, and change variables
to obtain

�
(1D)
σλ (k) = 4iκ2

b

�2

∫ 1

0
dβ

∫
d2−εp

(2π )2−ε

2pσ pλ − p2ησλ − 2β(1 − β)kσ kλ + β(1 − β)k2ησλ + ησλm
2c2/�

2

(p2 + β(1 − β)k2 − m2c2/�2)2
, (C7)

which is very similar to Eq. (B3) although we will find that the
result of this integration will be very different. Looking these
integrals up in a standard reference [16], we obtain

�
(1D)
σλ (k) = − 2κ2

b

π�2
(k2ησλ − kσ kλ)

×
∫ 1

0
dβ

β(1 − β)

m2c2/�2 − β(1 − β)k2
. (C8)

In this case, because of the smaller dimension, the result
is independent of ε. All formally divergent terms (in the
limit of ε → 0) exactly cancel. This is because we used a
regularization scheme that preserved the Ward identities and
the Ward identities demanded that the result be proportional
to k2ησλ − kσ kλ. After factoring this out of the regularized
integral, it was reduced from a logarithmically divergent
integral

∫
d2p/p2 to a convergent integral

∫
d2p/p4. (In the

3D theory, on the other hand, the integral was reduced from a
quadratically divergent integral

∫
d4p/p2 to a logarithmically

divergent integral
∫

d4p/p4 so that a 1/ε pole remained
after the regularization.) In order to simplify our notation,
we again introduce a function we call P (1D)(k2), where we
have factored out the bare coupling constant �

(1D)
σλ (k) ≡

κ2
b /(4π�

2)(ησλk
2 − kσ kλ)P (1D)(k2). We also note that the kσ kλ

term will not contribute to any physical observables at this
order in the coupling constant and so drop it as we did in
Appendix B. With these two simplifications, we can write the
next-to-leading-order photon propagator as

D
(1D)′
Fμν (k) = D

(1D)
Fμν(k)

[
1 + κ2

b ke

�c
P (1D)(k2)

]
. (C9)

We next need to determine the value of the bare coupling
κb by relating it to a known coupling. We do this by following
the same procedure as in the previous section. We convert the
modified Feynman propagator to a potential associated with
a general bare source at long range. We again introduce a
bare source current as j

(1D)ν
b (k) = κbj

(1D)ν
t (k), where we have

factored out the bare charge κb and note that we assume the
remaining jν

t (k) is spatially localized in the one dimension. For
example, a “point charge” at rest would be given by jν

t (x) =
cην0δ(z). As in the previous section, we use Green’s function
to give the quantum corrected potential associated with the
bare charge as

A(1D)′
μ (k) = −i

1

�c
D

(1D)′
Fμν (k)κbj

(1D)ν
t (k) (C10)

from which we obtain

A(1D)′
μ (k) = −i

1

�c
D

(1D)
Fμν(k)

[
1 + κ2

b ke

�c
P (1D)(k2)

]
κbj

(1D)ν
t (k).

(C11)
The corresponding classical potential for a physical charge
given by j (1D)ν(k) = e(1D)j

(1D)ν
t (k), where e(1D) is not yet

known in contrast to the 3D charge, is

A(1D)
μ (k) = −i

1

�c
D

(1D)
Fμν(k)κbj

(1D)ν
t (k). (C12)

In order for the long-range behavior of the potential to be the
same in these two theories, we must equate the limit as k → 0
of Eqs. (C11) and (C12)

lim
k→0

A(1D)′
μ (k) = lim

k→0
A(1D)

μ (k). (C13)

As in the previous section, this results in the relationship

e(1D) = κb

[
1 + κ2

b

ke

c�
P (1D)(0)

]
. (C14)

Solving this order by order in e(1D) to second order, as we did
in the previous section, we obtain

κb = e(1D)[1 − α(1D)P (1D)(0)
]
, (C15)

where we have defined α(1D) ≡ ke[e(1D)]2/(�c). We note that,
in contrast to the 3D theory, here, κb is finite since P (1D)(0)
is finite. Plugging this expression for κb back into the Green’s
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function, we obtain

A(1D)′
μ (k) = −i

1

�c
D

(1D)
Fμν(k)

× (
1 + α(1D)

[
P (1D)(k2) − P (1D)(0)

])
j (1D)ν(k),

(C16)

where

P (1D)(k2) − P (1D)(0) = −8λ2
C

∫ 1

0
dβ

β2(1 − β)2k2λ2
C

1 − β(1 − β)k2λ2
C

,

(C17)

where we have again used the Compton wavelength λC =
�/(mc).

Now that we have the complete 1D Green’s function, we
would like to apply it to the specific case of a 1D “point charge,”
namely j (1D)ν(x) = e(1D)cην0δ(z). Plugging this in, we have

A(1D)′
μ (k) = −i

e(1D)

�
D

(1D)′
Fμ0 (k)(2π )δ(k0). (C18)

Fourier transforming this result gives

φ(1D)(z) = 4πkee
(1D)

∫
dkz

2π

1

k2
z

×
[
1 + 8α(1D)λ2

C

∫ 1

0
dβ

β2(1 − β)2k2
zλ

2
C

1 + β(1 − β)k2
zλ

2
C

]
e−ikzz.

(C19)

The first term gives −2πkee
(1D)|z| plus an infinite constant that

does not depend on z. The z-dependent term is expected from
the classical equations of motion. Since the z-independent
piece does not affect the electric field and the choice of a
zero of the potential is not important here, we have dropped

the infinite z-independent constant
∫

dk k−2. This is similar to
the arbitrary constant obtained when solving −∂2

z φ(1D)(z) =
4πkeqδ(z). The second integral can be performed by ana-
lytically continuing kz to the complex plane and adding the
half circle at complex infinity in the upper half plane for
z < 0 and in the lower half plane for z > 0 which contributes
nothing due to the suppression of the exp(−ikzz) term. We
note that there are simple poles in the integrand at the values
kz = ±i/[λC

√
β(1 − β)]. The integral gives 2πi times the

residue enclosed in the contour giving us

δφ(1D)(z) = 16πkee
(1D)α(1D)λ3

C

×
∫ 1

0
dβ[β(1 − β)]3/2e−|z|/[λC

√
β(1−β)]. (C20)

Finally, we note that the integrand is symmetric between the
two halves β = 0 to 1/2 and β = 1/2 to 1 so we replace
the

∫ 1
0 dβ integral with 2

∫ 1
1/2 dβ. We also make a change of

variables 2τ = 1/
√

β(1 − β) to obtain

φ(1D)(z) = 2πkee
(1D)

×
[
−|z| + α(1D)λ3

C

∫ ∞

1
dτ f (1D)(τ )e−2τ |z|/λC

]
,

(C21)
where

f (1D)(τ ) ≡ 1

τ 5
√

τ 2 − 1
. (C22)

The generalization of this to a charge distribution is then

φ(1D)(z) = 2πke

∫
dz′ρ(z′)

[
− |z − z′| + α(1D)λ3

C

×
∫ ∞

1
dτ f (1D)(τ )e−2τ |z−z′ |/λC

]
. (C23)
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