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Protocol for detection of nonsecular conversion through coherent nanooptical spectroscopy
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The theoretical description of dynamics in open quantum systems becomes very demanding upon inclusion of
non-Markovian effects. To simplify the computational implementation for density matrix equations of motion, the
secular approximation is often applied. An experimental verification of its validity though remains difficult due to
uncertainties in the system parameters and the absence of qualitatively distinct features. In this paper, we present
the proposal for an experimental detection protocol sensitive to nonsecular processes neglected in the secular
approximation. The protocol uses a combination of multidimensional coherent spectroscopy and nanoplasmonics.
It allows for studies of nonsecular processes in various systems and provides a tool to experimentally verify the
validity of the secular approximation. We apply this protocol to a system of CdSe/ZnS nanostructures and discuss
the particular features originating from nonsecular processes on the resulting two-dimensional spectra.
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I. INTRODUCTION

Open quantum systems are coupled to an external bath
with many degrees of freedom, leading to dissipation of
energy and potentially introducing non-Markovian effects in
the system dynamics. In general, a full quantum-mechanical
description of the system and its environment is unfeasible [1].
Therefore, various theoretical descriptions of time dynamics
in the presence of system-bath couplings emerged, like
POP (partial ordering prescription) and COP (chronologi-
cal ordering prescription) [2–5], Nakajima-Zwanzig [1,6,7],
time-convolutionless theory (TCL) [1,8–11], hierarchy equa-
tions [12,13], quantum kinetics [14,15], and others [16,17]. A
large reduction of the computational effort is achieved through
the often implicitly applied secular approximation [1,18,19].
The validity of this approximation was rarely a subject
of theoretical investigations though [18,20]. In fact, it was
shown that applying the secular approximation can reduce
non-Markovianity [21,22], makes false or unphysical pre-
dictions [23–27], is unsuitable in description of coherence
effects [28], entanglement dynamics [18,29], and breaks
conservation laws [30] in special cases.

As the main result of this paper, we present a protocol for
detection of nonsecular processes (i.e., processes neglected in
the secular approximation) separately from secular processes.
Experimental application of this protocol allows for measure-
ment of nonsecular processes in various systems (quantum
dots, biological molecules, etc.), and thus provides information
about coherence transfer and non-Markovian effects.

The general idea of the protocol is the preparation of
the system in a coherence |A〉〈B| between two different
excited-state manifolds A and B (cf. Fig. 1, left). It is essential
to excite these manifolds with disjoint selection rules (possible
transitions with disjoint selection rules include horizontal
vs vertical polarization, spin up vs spin down, magnetic
vs nonmagnetic, dipole vs quadruple, etc.). Since secular
processes do not convert coherences into populations (and vice
versa), we will show that secular relaxation processes between
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these manifolds can be filtered out by a multidimensional
spectroscopy setup with a measurement of populations |A〉〈A|
and |B〉〈B| at the end (Fig. 1, gray box). Consequently, the
measured signal contains only nonsecular processes. In this
paper, we illustrate the detection of nonsecular processes
between a dipole-allowed (bright) and quadrupole-allowed
(dark) excited-state manifold.

To illustrate the secular approximation, we write down the
equation of motion (EOM) of the density matrix ρ(t) in second
order Born-Markov approximation (also known as the Redfield
equation) in the interaction picture:

∂tρij (t) =
∑
kl

ei(ωij −ωkl )tRij,kl ρkl(t). (1)

Here, Rij,kl is the (time-independent) Redfield tensor [31,32]
and ωij = ωi − ωj is the energy difference between states i

and j . Providing the system is nondegenerate, the secular and
nonsecular terms can be easily distinguished through their
dominant time dependence. The secular approximation can be
seen as a coarse-time average [27,29,33]; contributions with
fast oscillating exponent can be neglected, so that only terms
with ωij − ωkl = 0 in Eq. (1) remain. Consequently the EOMs
for populations ρii and coherences ρij (i �= j ) decouple into

∂tρii(t) =
∑

k

Rii,kk ρkk(t),

(2)
∂tρij (t) = Rij,ij ρij (t),

which gives the secular Redfield equation. The oscillating
terms with nonvanishing exponent (discussed above) are
the contributions from nonsecular processes. They describe
transfer processes between different coherences and couplings
between coherences and populations.

To detect these processes, we propose a combina-
tion between multidimensional coherent spectroscopy and
nanoplasmonics. After successful application in vibra-
tional spectroscopy [34–37], multidimensional coherent spec-
troscopy [38–44] advanced to a valuable tool for character-
ization of the electronic structure, giving access to informa-
tion about, e.g., coupling between states [45–51], biexciton
structure [52,53], and reconstruction of delocalized wave
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FIG. 1. (Color online) Principle of the detection protocol.
Through a particular pulse sequence, the system is prepared in
a coherence |A〉〈B| between two excited-state manifolds A and
B. Only nonsecular processes are able to convert the coherences
into populations |A〉〈A| and |B〉〈B| in either manifold. By only
measuring the resulting populations, secular processes are filtered
out. Conversion into other coherences |A′〉〈B ′| are in principle also
possible, but cannot be detected.

functions [54–56]. Its range of applications reaches from semi-
conductors [47,57,58] to biological complexes [45,59–66].
Recent advances in coherent multidimensional spectroscopy
also allow for high spatiotemporal control [67–69].

In contrast to the more common choice of four-wave-
mixing spectroscopy in combination with heterodyne de-
tection using three exciting pulses and a local oscillator
pulse [41–43], we use four phase-controlled excitation pulses
with subsequent photoelectron measurement through pho-
toemission electron microscopy (PEEM) [67]. In principle,
heterodyne and fluorescence detection processes are equally
possible. PEEM, however, allows for high spatial resolution
and is thus advantageous for detecting single systems [67–71].

The pulse sequence used for detection is presented in
Fig. 2. The color of the pulse differentiates between the
addressed excited-state manifolds. Variation of the time delays
τk between the pulses and subsequent measurement with
PEEM provides a two-dimensional spectrum similar to a
photon-echo signal [43].

The protocol proposed in this paper is not restricted to
the simple Markovian Redfield theory depicted in Eq. (1),
but is also applicable to more elaborate theoretical treat-
ments of relaxation, like POP and COP [2–5], TCL [8–
10], hierarchy equations [12,13], and other quantum kinetic
equations [14,15]. For non-Markovian theories, the effects of
nonsecular processes are expected to play a more significant
role. Thus, the detection protocol is especially suited for

FIG. 2. (Color online) Schematic representation of the incoming
laser pulses for the detection protocol. The pulses are centered around
the times tk , with time differences between the pulses τk = tk+1 − tk .
For detection via phase cycling, each pulse has to have a defined
phase shift φk with respect to all other pulses. The first and fourth
pulse are exciting bright transitions (light red), whereas the second
and third pulse are exciting dark transitions (dark blue).

investigation of nonsecular conversion processes over a broad
range of nanostructures (quantum dots, biological molecules,
etc.).

To open the possibility for excitation of the bright and
dark state manifold we utilize nanoplasmonics, which exploits
surface plasmon polaritons in metallic nanoscopic structures
to generate localized electric-field enhancements [72–76].
These field enhancements may allow for increased coupling
to quantum dots [77–79]. Furthermore, field gradients lead
to higher-order light-matter interaction beyond the dipole
approximation [80].

The second and third pulses in the pulse sequence (Fig. 2)
excite dark states, whereas the other pulses excite bright
states. To describe excitation of dark states, the system has to
be treated by a light-matter interaction including quadrupole
transitions [81]:

He-L = −
∫

d r ψ†(r)

[
μ · E(r0,t) + Q

2
: ∇E(r0,t)

]
ψ(r).

(3)

Dipole transitions (with the dipole operator μ) are mediated
through constant electric fields E in space, whereas quadrupole
interactions (with the quadrupole operator Q) require an
electric-field gradient ∇E. A : B represents the Frobenius
inner product [82], defined in Eq. (11).

In this paper, we also present a possible way of an all-
optical dynamical switching between fields and field gradients
through a plasmonic dolmen structure [74,83–87]. Through
variation of the polarization direction of the incoming light
pulse a controlled switching between the bright and dark
state excitation can be achieved. The choice of the plasmonic
dolmen structure becomes apparent in Sec. II C. However,
other means for dynamical switching are also imaginable,
like switching between electric and magnetic dipoles [88] or
switching between heavy-hole and light-hole excitation [89]
through structured beams.

To illustrate the method, we will apply the detection
protocol to an example system and discuss the resulting
spectra. Therefore we choose a spherical CdSe quantum dot
(QD) embedded in a ZnS nanorod (NR) as presented in Sec. II.
For demonstration purposes, we treat the relaxation by a simple
Markovian Redfield model. This system is used to illustrate a
possible experimental design and provides qualitative results
within the right order of magnitude, though it does not have the
claim for high quantitative accuracy. Readers only interested
in the spectroscopic protocol can proceed to Sec. III for the
general theory, and the subsequent Sec. IV for the results.

II. MODEL SYSTEM

The spectroscopic experiment is described by the Hamilto-
nian

H (t) = H0 + He-ph + He-L(t). (4)

The unperturbed system is described by H0, which includes
the ground state and optically excited states. The excited states
form bound electron-hole pairs through Coulomb interaction:
excitons and biexcitons. Between these states, relaxation oc-
curs through exciton-phonon interaction He-ph. The excitation
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of states through laser pulses is given by the light-matter
interaction He-L(t). Some of the states can be excited by dipole
transitions, called bright states in the following. Contrary,
dark states are forbidden by optical dipole-transition selection
rules. However, the dark states considered in this paper can be
excited through higher-order contributions to the light-matter
interaction caused by quadrupole transitions.

A. Exciton system

For demonstration of the detection protocol, we simulate
the signal caused by a single spherical CdSe QD embedded
in a ZnS nanorod (NR). In systems with spherical symmetry
of the electronic and phononic system, nonsecular conversion
between bright and dark states does not occur due to angular
momentum selection rules. Therefore, we investigate the
NR system, where the symmetry is broken by cylindrical
phonon modes. The QD is positioned centrally in the NR. We
assume a growth direction along the y direction. The whole
nanostructure is surrounded by the plasmonic dolmen structure
as sketched in Fig. 4. The parameters used in the simulation
are summarized in Table I.

We describe the electronic single-particle wave function of
the QD under assumption of the envelope approximation [95],

ψi,λ(r) = ϕi,λ(r)uσi

λ (r), (5)

with the band index λ = {v,c}, the energy level i, spin index
σi = {+,−}, the envelope wave function ϕi,λ(r), and the Bloch
wave function u

σi

λ (r) for wave vectors k = 0. For calculating
ϕi,λ(r), we treat the QD as a spherical potential well with finite
barriers and radius R. The depth of the confinement potential
is determined by the valence-band offset Vv , conduction-band
offset Vc, and band gap εg between CdSe and the surrounding
ZnS [91,93].

A single optical excitation creates an electron-hole pair
in the QD, forming an exciton through Coulomb interaction.

TABLE I. Computational parameters for CdSe and ZnS. The
excitonic wave functions in the CdSe QD of radius R were computed
with help of the effective masses of electrons m∗

e and holes m∗
h,

band gap εg , and valence- and conduction-band offset Vv and Vc. For
the exciton-phonon interaction using the expressions from [90], the
effective masses m∗

e and m∗
h of ZnS, the dielectric constant ε0 and ε∞,

energy of transverse optical phonons ωTO, lattice constants a and c

were used. R and d are radius and length of the NR.

CdSe ZnS

m∗
e = 0.12me

a m∗
e = 0.27me

a

m∗
h = −0.9me

a m∗
h = −1.4me

a

εg = 1.75 eVa ε0 = 8.3b

Vv = −0.6 eVc ε∞ = 5.2b

Vc = 1.39 eVc ωTO = 34 meVd

R = 3.0 nm a = 0.38 nma

c = 0.62 nma

R = 4.0 nm
d = 20 nm

aReference [91].
bReference [92].
cReference [93].
dReference [94].

FIG. 3. (Color online) Level scheme of the lowest excitonic and
biexcitonic states. Solid arrows indicate dipole-allowed transitions
and dashed arrows dipole-forbidden transitions. The relevant optical
transition elements for each excitation are labeled accordingly. The
small dashed arrows indicate possible conversion processes.

Double excitations lead to the formation of biexcitons with
slightly shifted binding energies. The Hamiltonian for the sys-
tem consists of an electronic and phononic part, respectively:

H0 =
∑
m

εm|m〉〈m| +
∑

q

�ωqb
†
qbq. (6)

Its derivation and the definition of the excited states |m〉 are
given in Appendix A. The phononic part of H0 describes opti-
cal vibrational modes of the NR with energy ωq , with bosonic
creation and annihilation operators b

†
q,bq . The energy of the

ground state |g〉 is chosen to be zero. The exciton energies
εm are obtained from the Hamiltonian of the envelope wave
function within the effective-mass approximation including
Coulomb shifts.

For the simulation, we considered only the lowest excitonic
and biexcitonic levels, as shown in the level scheme, Fig. 3.
The excitonic manifold consists of a bright state |eb〉 with an
electron in the 1s state and a heavy hole in the 1s state. The
three degenerate dark excitons |ed〉 are in a 1s-electron and
1p-hole state. All excitonic states have an additional twofold
spin degeneracy. The biexcitonic manifold is constructed from
these excitonic states. It includes one bright state |fbb〉, nine
dark states |fdd〉, and six mixed states |fbd〉.

B. Exciton-light interaction

The crucial part of the proposed detection protocol is
a controlled switching between bright state excitations [via
dipole matrix element μ in Eq. (3)] and dark state excitations
(via quadrupole matrix element Q) in the QD.

The usual assumption for describing light interaction with
QDs is a spatially constant electric field since its wavelength
is much larger than the nanostructure. Electric-field gradients
and thus quadrupole excitations are negligible [96]. This is
incorporated in the dipole approximation, where only dipole
transitions are considered in the description of semiclassical
exciton-light interaction.

In Sec. II C, we present the plasmonic dolmen structure,
which can create localized field gradients and enables us to
achieve a switching between bright and dark state excitations.
To describe the interaction with the QD for this case, we
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have to extend the interaction Hamiltonian beyond the dipole
approximation. Therefore, we consider the semiclassical light-
matter interaction given in Eq. (3) where the full electric
field E(r,t) is already expanded up to first order to account
for dipole and the quadrupole transitions, respectively [81].
The dipole operator is given by μ = e r and the quadrupole
operator Q = e r ◦ r . Here, a ◦ b = (aibj ) denotes the dyadic
product.

The detection protocol uses four ultrashort light pulses as
depicted in Fig. 2. Therefore, we split the electric field into
four nonoverlapping pulses, which we factorize into its spatial
and temporal part:

E(r0,t) =
4∑

k=1

Eνk

r (r0)Ek
t (t − tk),

Ek
t (t − tk) = Ẽk(t − tk)e−iωk(t−tk )+iφk (7)

+ Ẽ∗
k (t − tk)e+iωk (t−tk )−iφk ,

with envelopes Ẽk(t − tk) centered at time tk . The spatial
component Eνk

r (r0) is calculated in a scattering simulation
of the plasmonic dolmen structure for cw excitation (see
Sec. II C). This factorization is valid as long as the field
distribution is largely independent of the excitation frequency
within the pulse bandwidth.

We assume that each pulse interacts with frequency ωk

resonantly with the system, and has a defined phase shift φk

with respect to the other pulses. The index k labels the pulses
and νk = {x,y} their polarization direction. In Appendix B, we
apply the envelope approximation, to obtain the light-matter
interaction Hamiltonian

He-L = −
4∑

k=1

∑
mn

interband

M̃νk

mnE
k
t (t − tk)|m〉〈n|, (8)

where we introduced the coupling

M̃νk

mn = μmn · Eνk

r (r0) + Qmn : ∇S Eνk

r (r0). (9)

Here, ∇S E = 1/2(∇E + ∇ET ) is the symmetrized tensor
of the field gradient. The considered field coupling ele-
ments M̃νk

mn only induce interband transitions, thus M̃νk
emen

=
M̃νk

fmfn
= 0. Direct excitation from the ground state to the

biexciton manifold is also forbidden, M̃νk

fmg = 0, since each
light interaction only creates one electron-hole pair. The
coupling for biexcitons |fij 〉 consisting of the excitons |ei〉
and |ej 〉 is defined over the excitonic coupling elements
M̃νk

fij ek
= δkiM̃νk

ej g
+ δkjM̃νk

eig
.

In the following, we focus on the excitonic coupling
elements, given through

μemg = e Semgdσem
cv ,

Qemg = e dσem
cv ◦ memg.

(10)

e is the electron charge. The Frobenius inner product is defined
as [82]

A : B =
∑
ij

AijBij . (11)

The microscopic dipole element dσem
cv is given through

dσem
cv = dσem ∗

vc =
∫

UC

d r ′ uσem ∗
c (r ′) r ′ uσem

v (r ′)δσemσen
. (12)

The overlap Semg and dipole matrix element memg of the
electron and hole envelope wave functions ϕem,c(r) and
ϕem,v(r) are respectively

Semg = S∗
gem

=
∫

d r ϕ∗
em,c(r)ϕem,v(r),

(13)
memg = m∗

gem
=

∫
d r ϕ∗

em,c(r)rϕem,v(r).

Since the envelope wave functions ϕm,λ(r) have a set parity, we
get opposite selection rules for Smn (no parity change) and mmn

(parity change). As a consequence, μmn and Qmn have disjoint
subsets of allowed transitions. μmn leads to dipole-allowed
bright transitions, indicated by the solid red line in the level
scheme Fig. 3. Qmn acts on the other subset of dipole-forbidden
dark transitions, denoted by dashed blue lines.

C. Plasmonic dolmen

In the preceding section, we presented the foundation
for nanostructures interacting with electric-field gradients.
However the question remains how to create such field
distributions. Plasmonic structures are generally known to
create strong electric fields and field gradients [97–99], and
are good candidates for excitation of quadrupole transitions.
For our objective though, two additional requirements on the
plasmonic structure are necessary. First, dipole and quadrupole
transitions have to be excited selectively, meaning, a dipolar
excitation has to have a negligible quadrupole contribution
and vice versa. And second, there has to be a simple way of
switching dynamically between both types of excitation.

For plasmonic structures with high symmetry, a selective
switching between fields and field gradients cannot be accom-
plished. We demonstrate the feasibility of the protocol for
bright and dark state excitation using a plasmonic structure
known from the literature as plasmonic dolmen [74,83–
87], which is often studied in the context of Fano reso-
nances [83,100]. However, other plasmonic structures, like
plasmonic trimers [101], might be equally suitable for the
protocol. As depicted in Fig. 4, the dolmen structure consists
of a single bar, which supports dipolar plasmonic modes.
Perpendicular to it are two parallel bars supporting nonradia-
tive quadrupolar plasmonic modes. A y-polarized light pulse
incoming perpendicular to the dolmen structure (along the z

axis; compare Fig. 4) couples to the parallel bars, thus exciting
dipolar plasmonic modes. Light polarized along the x axis
will excite a dipolar mode in the single bar, which couples
into the parallel bars and excites quadrupolar plasmon modes.
(It should be noted that dipolar and quadrupolar plasmonic
modes should not be confused with the dipole and quadrupole
excitations in the QD mediated by fields or field gradients at
the position of the QD.)

As the discussion in this section will show, through
careful placement within the plasmonic dolmen structure, a
nanostructure or molecule experiences predominantly dipole
or quadrupole excitations, which can be switched through the
polarization of the incoming light pulse.
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FIG. 4. (Color online) Sketch of the plasmonic dolmen structure
(a) in three dimensions with the placement and direction of the
QD/NR indicated in light red at r0. (b) Top view with all relevant
dimensions. The coordinate system is centered in the middle of
the structure. The dimensions of the dolmen structure and material
parameters (corresponding to gold [84]) used in the simulations are
shown in (c).

For a small thickness h of the plasmonic structure, retar-
dation effects can be neglected. Due to the symmetry of the
structure, suitable points for switching between bright and dark
state excitation are expected to be along the y axis centered in
the structure x = z = 0.

The strength of the light-matter coupling in the QD depends
on the overlap Smn and dipole elements mmn of the enve-
lope wave functions, Eq. (13), and through the microscopic
dipole element dσm

cv [Eq. (12)] also on the lattice orienta-
tion. We assume a lattice growth direction of the QD along
the y axis, so that the microscopic dipole element is d±

cv =

1/
√

2(1,0, ± i) for spin-up and spin-down states, respectively
[102,103].

To analyze the switching properties of the dolmen structure,
we performed FEM simulations [104] of steady-state scat-
tering under cw excitation. With the obtained scattered field
amplitudes and gradients, we computed the corresponding
dipole-field coupling μebg · Eνk

r and quadrupole-field coupling
Qedg : ∇S Eνk

r across the structure. In the following, we will
compare the absolute value of both field couplings for both
polarization directions νk = {x,y} of the incoming light pulse.
We look at the excitation of spin-up states exemplarily, thus
d+

cv = 1/
√

2(1,0, + i). The distribution of dipole-field and
quadrupole-field coupling in the y − z plane in the middle
of the structure (x = 0) is depicted in Figs. 5(a)–5(d). The
laser energy of 2.0 eV used in the simulation corresponds to
the QD transition energy. In Figs. 5(a) and 5(b), the dipole-
field couplings |μebg · Ex

r | and |μebg · Ey
r | are compared.

One can see an efficient excitation of spin-up states around
r0 = (0,−38 nm,0) for x-polarized light [Fig. 5(a)]. Upon
changing the polarization to a y-polarized beam, the dipole-
field coupling vanishes altogether along the y axis (b).

The comparison of the quadrupole-field couplings across
the structure shows the opposite picture. |Qedg : ∇S Ex

r |
[Fig. 5(c)] has a negligible contribution at r0, whereas for y

polarization, |Qedg : ∇S Ey
r | [Fig. 5(d)] has its highest contri-

bution. From this behavior of the dipole-field and quadrupole-
field couplings, we conclude an effective switching between
bright and dark state excitation for a QD placed at r0. The
position and size of the QD at r0 is displayed as a gray dot.
The switching is mediated through changing the polarization
of the incoming light pulse between νk = x (dipole excitation)
and νk = y (quadrupole excitation).

As a consequence for the coherent spectroscopy setup, the
electric field for reproducing the pulse sequence from Fig. 2
with Eq. (7) becomes

E(r0,t) = Ex
r (r0)E1

t (t − t1) + Ey
r (r0)E2

t (t − t2)

+ Ey
r (r0)E3

t (t − t3) + Ex
r (r0)E4

t (t − t4). (14)

FIG. 5. (Color online) Left side: Comparison between (a) |μebg · Ex
r | and (b) |μebg · Ey

r | in the y − z plane of the dolmen structure. Right
side: Comparison between (c) |Qedg : ∇S Ex

r | and (d) |Qedg : ∇S Ey
r | in the y − z plane. The microscopic dipole matrix element d+

cv corresponds
to spin-up excitation. An enhancement of dipole transitions for x-polarized light (a) can be seen around r0 = (0,−38 nm,0), which gets
suppressed upon excitation with y-polarized light (b). Whereas the quadrupole excitation is negligible for x-polarized light (c), an enhancement
of quadrupole excitations is visible around r0 in y polarization (d). The position and size of the QD at r0 is marked as a gray dot.
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We define a switching quality of the plasmonic structure,
obtained from the field-coupling values in r0 extracted from
the simulation:

ηx =
∣∣μebg · Ex

r

∣∣∣∣Qedg : ∇S Ex
r

∣∣ = 530,

(15)

η−1
y =

∣∣Qedg : ∇S Ey
r
∣∣∣∣μebg · Ey

r
∣∣ = 39.

ηx indicates quadrupole transition suppression compared to
dipole transitions for x-polarized light. η−1

y expresses the
suppression of dipole transitions for y-polarized light. An
analysis of the plasmonic dolmen structure for spin-down
excitation, d−

cv = 1/
√

2(1,0,−i), would show a similar picture
for the switching point r0 and the switching quality ηνk

.
As will be discussed in Sec. IV, the better the switching

quality, the better is the detection of nonsecular processes.
For ηx = η−1

y = ∞ (i.e., Qmn : ∇S Ex
r = μmn · Ey

r = 0), it
becomes perfect. This is in realistic cases not feasible. The
switching quality may get modified through the spatial extent
of the wave function in the QD. In our setup, the electronic
wave function is mostly centered in the QD, so that the effective
radius of interaction is smaller than the QD depicted in Fig. 5.
In the case of larger nanostructures, a weighted average over
the electric-field distribution with the excitonic wave function
has to be performed, which must be taken into consideration
for experimental application.

Magnetic dipole interactions have a negligible influence
on the switching properties of the dolmen structure in r0

(calculation not included in the paper). For x-polarized
light, they introduce an error comparable to the negligible
electric quadrupole contribution, whereas for y-polarized
light, the magnetic dipole interaction is about as strong as the
(suppressed) electric dipole interaction and thus not relevant.
Therefore, magnetic dipole interactions introduce only an
additional minor error in the resulting spectra.

D. Exciton-phonon relaxation

For demonstration of the detection protocol, we consider the
most simple relaxation theory of exciton-phonon interaction in
the model system. Therefore, we derive the relaxation Green
function in Born-Markov approximation in the following.

We take into account an exciton-phonon interaction Hamil-
tonian nondiagonal in the excitonic states:

He-ph = �

∑
mn

intraband

∑
q

(
gmn

q b†q + gnm∗
q bq

)|m〉〈n|. (16)

The detailed microscopic derivation and the form of the
exciton-phonon coupling element gmn

q is given in Appendix C.
The phonon energies are too small to induce interband tran-
sitions, so it is sufficient to include in the sum only intraband
combinations of states like |em〉〈en| and |fm〉〈fn|. The ground
state is not affected by phonon relaxation. We only consider
optical-phonon modes for the cylindrical ZnS NR, since
acoustic modes do not have enough energy to bridge the energy
difference between the excited states. The modes were com-
puted under the assumption that the perturbation by the CdSe
QD within the NR is negligible. The multi-index q in the sum

accounts for all quantum numbers of longitudinal optical (q =
{n,l,m}) and side-surface optical (q = {n,m}) phonons [90].

To obtain the relaxation Green function G(t), we solve the
von-Neumann equation for the phonon-coupling Hamiltonian,
Eq. (16), in the interaction picture:

∂tρ(t) = − i

�
[He-ph(t),ρ(t)] = Le-ph(t)ρ(t). (17)

We introduced the Liouvillian (or superoperator) through
Le-phρ = −i/�[He-ph,ρ]. The EOM for the density matrix
elements ρij (t) = 〈i|ρ(t)|j 〉 in Born-Markov approximation
becomes

∂tρij (t) =
∫ ∞

0
dτ tr{(Le-ph(t−τ )Le-ph(t)|j 〉〈i|)ρtot(t)}. (18)

The trace involves a summation over system and bath degrees
of freedom, which we evaluate in the bath approximation
ρtot(t) = ρ(t) ⊗ ρB . The expectation values of bath variables
are 〈b†pbq〉B = trB{b†pbqρB} = δpqn(ωq) with the Bose distri-
bution n(ω) = (e�ω/(kBT ) − 1)−1, which we evaluate at T =
80 K. Thus, we obtain the Redfield equation

∂tρij =
∑
kl

eiωil tRik
kl ρlj + eiωlj tR

jk∗
kl ρil

− ei(ωik+ωlj )t
(
R

lj

ik + Rki∗
j l

)
ρkl, (19)

∂tρig =
∑
kl

eiωil tRik
kl ρlg

with

R
ij

kl = −π
(
J

ij

kl (ωkl)n(ωkl)θ (ωkl)+J kl
ij (ωlk)(1+n(ωlk))θ (ωlk)

)
+ γ

pd

ij δikδjl(1 − δij ). (20)

In above expression, we introduced the spectral density
J

ij

kl (ω) = ∑
q g

ij
q glk∗

q δ(ω − ωq). We included pure-dephasing

processes between interband coherences through γ
pd

ij ≡ γ
pd

ji .

For T = 80 K, it is given by �γ
pd
eg = �γ

pd

f e = 5 meV, γ
pd

fg =
2γ

pd
eg [105] for the respective excitonic and biexcitonic

manifolds e and f . The relaxation Green function G(t,t0) is
the solution to Eq. (19) through ρ(t) = G(t,t0)ρ(t0).

Secular approximation

We now apply the secular approximation to Eq. (19).
Through this approximation, the involved relaxation time
scales are well reproduced, though some non-Markovian
and coherence effects may disappear [18]. As was already
discussed in the Introduction, the EOM of the density
matrix (19) is decomposed into oscillating and nonoscillating
terms. The former ones will eventually average out. Therefore
only nonoscillating, resonant terms are kept in the secular
approximation:

∂tρij =
[ ∑

k

(
Rik

ki + R
jk∗
kj

) − (
R

jj

ii + Rii∗
jj

)]
ρij

− δij

∑
k(�=i)

(
Rki

ik + Rki∗
ik

)
ρkk, (21)

∂tρig =
∑

k

Rik
ki ρig.
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As a result, the EOM for populations i = j decouple from
the coherences i �= j , simplifying the computational effort
considerably.

The construction of the secular Redfield equation, Eq. (21),
is only valid for nondegenerate systems [106]. Nevertheless we
can apply it to our degenerate model system since we are only
interested in the detection of nonsecular conversion between
the bright and dark state manifolds. These two sets of states
are not degenerate so that the form of Eq. (21) holds. An appli-
cation considering nonoscillating terms within each manifold
would introduce additional nonsecular processes only within
the respective manifold, possibly leading to faster dephasing
and a weaker signal. As was verified in additional simulations,
including these terms in our model has a negligible impact
on the final spectra. Therefore, the discussion of the results in
secular approximation takes place using Eq. (21).

III. DETECTION METHOD

In this section, we present the detection protocol for
nonsecular conversion processes. The protocol consists of
four incoming light pulses, interacting with the system; and
subsequent detection through photoemission of an electron.
Similar to polarization-selective 2D spectroscopy [47], we
vary the polarization of the incoming light pulses. The po-
larization of the first and fourth pulses is ν1 = ν4 = x, leading
to excitation of bright states. The second and third pulses
excite dark states through a y-polarized beam, ν2 = ν3 = y

[cf. Eq. (14) and Fig. 2]. The special choice of the polarization
directions prevents the system from forming excited-state
populations, ultimately resulting in the suppression of secular
processes. Similar detection protocols involving heterodyne or
fluorescence detection can be formulated in a similar way.

In the following, we will derive the signal created by the
detection protocol. Therefore, we formulate the protocol in a
general fashion, so that it is independent of the specific system
and Green function. Instead of bright and dark state manifolds,
it can also be applied to other properties of nanostructures,
which are independently optically excitable (e.g., study of
coherence transfer in spin-flip processes with spin-up and
spin-down excitation through left and right circularly polarized
light). This leaves a broad range of applications for this
detection protocol of nonsecular conversion processes.

We consider a measurement through PEEM [67–71]. After
interaction with the fourth pulse, the excited electron (popula-
tion) will be ionized through an additional high-energy pulse.
Through knowledge of the ionization energy, one obtains the
kinetic energy of the electron and can deduce the excited-state
energies. We will not include the photoionization process of
PEEM in our discussion, but rather focus on evaluating the
electron density within a small ionization energy window.
We set this window around the excited-state manifolds. We
start with the time evolution of the density matrix ρ(t). In the
interaction picture with respect to H0, the system is driven by
the exciton-phonon and exciton-light interaction:

∂tρ(t) = − i

�
[He-ph(t) + He-L(t),ρ(t)]

= [Le-ph(t) + Le-L(t)]ρ(t). (22)

The general solution to above equation is given as the
propagator U (t,t0) through

ρ(t) = U (t,t0)ρ(t0). (23)

Using the Feynman disentanglement theorem [107], we
separate the phonon interaction from the light interaction:

U (t,t0) = G(t,t0)T exp

(∫ t

t0

dt ′ G(t0,t
′)Le−L(t ′)G(t ′,t0)

)
,

(24)
so that we are able to treat the electric field in perturbation
theory with respect to Le-L for arbitrary Green functions
G(t,t0). The propagator G(t,t0) was already computed in the
previous section for the model system within the Redfield
theory. Since He-ph is not explicitly time dependent, we
can replace in the following G(t ′j+1,t

′
j ) → G(τ ′

j ), using the
time differences τ ′

j = t ′j+1 − t ′j . T denotes the chronological
time-ordering operator.

The pulse sequence, Eq. (7), consists of four ultrashort
pulses as is shown in Fig. 2. We assume the system to be
excited resonantly by the light pulses, thus the application
of the rotating wave approximation (RWA) is justified. Con-
sequently, each quantum pathway can be identified through
a defined phase dependence φ = ±φ1 ± φ2 ± φ3 ± φ4 [108].
Through phase cycling, the signal can be filtered for a single
phase combination and thus for particular quantum pathways.
Therefore, the experiment will be repeated for different phase
combinations. Through linear combination, specific pathways
and thus specific spectroscopic signals are selected [40,43].
We use the phase combination of the photon-echo signal
φs = −φ1 + φ2 + φ3 − φ4 [40].

The first occurrence of this particular phase combination in
the Dyson series of the propagator (24) is in the fourth-order
expansion in the electric field:

ρ(4)(t) =
∫ t

t0

dt ′4 G(τ ′
4)Le-L(t ′4)

∫ t ′4

t0

dt ′3 G(τ ′
3)Le−L(t ′3)

×
∫ t ′3

t0

dt ′2 G(τ ′
2)Le-L(t ′2)

∫ t ′2

t0

dt ′1 G(τ ′
1)Le-L(t ′1)ρ0(t ′1).

(25)

To evaluate the density matrix elements ρ
(4)
ij (t) = 〈i|ρ(4)(t)|j 〉,

we note that the action of the relaxation Green function G(τ )
in Hilbert space is

G(τ )|k〉〈l| =
∑
ij

|i〉〈j |Gij,kl(τ ). (26)

The pulses are short compared to the relaxation times, so we
can replace the time argument in G(τ ′

j ) by the pulse delay
times: G(τ ′

j ) → G(τj ). With Eq. (8) and the RWA, we can
evaluate the Liouvillians Le−L in Eq. (25). Each resulting term
is called Liouville pathway and can be written as a double-
sided Feynman diagram [43].

The detected PEEM signal is proportional to the total
electron density within an ionization energy window, which
is given by the sum over the diagonal elements of the system
density matrix:

ne =
∑
m

ρemem
+ 2

∑
m

ρfmfm
. (27)
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I II

III IV

FIG. 6. (Color online) Double-sided Feynman diagrams for the
remaining Liouville pathways in the PEEM measurement with
the phase-cycling condition φs = −φ1 + φ2 + φ3 − φ4. The photon-
ionization process is not depicted. The diagrams correspond to (I)
GSB, (II) ESE, (III) and (IV) ESA. Coloring of the light pulses
corresponds to bright (light red) and dark (dark blue) state excitation.

This expression is only valid for undoped semiconductor
systems, where the excitonic state |em〉 consists of one
electron-hole pair and the biexcitonic state |fm〉 of two
electron-hole pairs (hence the factor 2 in the second term). For
systems with different carrier numbers in exciton and biexciton
states, as in molecules or doped semiconductors, Eq. (27) has
to be modified by the actual number of electrons present in
states within ionization energy range.

Besides being able to detect signals with high spatial
resolution, the photoelectron measurement with PEEM has the
advantage that the ground state ρgg will not be probed. This
reduces the actual number of contributing pathways in the
signal [Eq. (27)] to 4, in contrast to other four-pulse methods.
Their corresponding Feynman diagrams are depicted in Fig. 6.

Diagram I in Fig. 6 corresponds to the ground-state bleach-
ing process (GSB), describing the formation of a depopulated
ground state after the first pulse. The second diagram in Fig. 6
depicts the excited-state emission process (ESE), inducing a
stimulated emission of the excited state through the third pulse.
The remaining two pathways III and IV constitute excited-state
absorption processes (ESA), where the third interaction leads
to further absorption and formation of biexcitons. The fourth
pathway interferes destructively with all other pathways due to
an overall opposite sign. The respective analytic expressions
for the diagrams are given in Appendix D.

The Fourier transformed electric pulses are given through
Ẽk(ωk) = ∫

dt Ẽk(t)e−iωkt . To achieve the excitation of bright
and dark states corresponding to the pulse sequence in Fig. 2,
the polarization of the pulses has to be replaced according to
Eq. (14) by ν1 = ν4 = x and ν2 = ν3 = y.

For the derivation of Eqs. (D1)–(D4), we assumed the
system to be initially in the ground state ρ0(t ′1) = ρ(t0) =

|g〉〈g|, as well as no overlap of the pulses, which allowed
us to extend the integration boundaries to ±∞ in Eq. (25).

IV. DISCUSSION AND RESULTS

We now present how nonsecular conversion processes
between the bright and dark state manifolds for the example
system can be observed in 2D spectra. A controlled excitation
of each manifold is achieved by interaction with either electric
fields or field gradients. They can be generated through
switching the polarization direction of the incoming light pulse
interacting with the plasmonic dolmen structure. The chosen
pulse sequence creates coherences between the two excited-
state manifolds. Nonsecular processes convert the coherences
into excited-state populations. After the pulse sequence,
secular processes are filtered out by solely measuring the
excited-state populations with PEEM. With the help of the four
pathways, Eqs. (D1)–(D4), we compute the electron density
ne measured in PEEM, Eq. (27). Through Fourier transform
with respect to the two delay times τ1 and τ3,

ne(τ4,�3,τ2,�1) =
∫ ∞

−∞
dτ3dτ1 ne(τ4,τ3,τ2,τ1)e−i�3τ3−i�1τ1 ,

(28)
we obtain a two-dimensional spectrum. It shows on the �1 axis
the excited-state coherences during the delay time τ1, and on
the �3 axis the coherences during τ3, respectively. Before we
compare the 2D spectra for our setup with and without secular
approximation, we discuss an idealized case of switching
between dipole and quadrupole excitation. The concept of
the detection protocol can be illustrated most intuitively in the
case of ideal switching.

A. Ideal switching

We assume a switching quality of ηx = η−1
y = ∞, opposed

to the finite values obtained in the simulation of the plasmonic
dolmen structure, Eq. (15). Hence we have Qmn : ∇S Ex

r =
μmn · Ey

r = 0, so that the transition element for x-polarized
light is given by a pure dipole coupling M̃x

mn = μmn · Ex
r , and

for y-polarized light by a pure quadrupole coupling M̃y
mn =

Qmn : ∇S Ey
r . The chosen pulse sequence [Eq. (14) and Fig. 2]

yields only a signal when nonsecular processes are present.
Thus in the ideal case we expect the signal to vanish in secular
approximation. This can be best explained through Feynman
diagrams. In the following, we discuss one process occurring
in pathway III and visualize it in the secular and nonsecular
case in Fig. 7.

As is illustrated by Eq. (21), in the secular approximation
only diagonal elements of the density matrix are coupled to
each other. Nondiagonal states, the coherences, solely dephase
with time. However, in Fig. 7(a), only coherences are created.
Since the bright and dark coherences cannot be converted into
populations or other coherences in the secular approximation,
the stimulated emission of bright states induced by the fourth
pulse is forbidden by selection rules. Therefore the pathway
is zero. A similar analysis can be carried out for all possible
processes contributing to the diagrams in Fig. 6, leading to an
overall vanishing signal in the secular approximation.

Considering the same scattering process including nonsec-
ular terms, conversion between coherences through exciton-
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(a) (b)

FIG. 7. (Color online) Feynman diagram for pathway III (a) in
secular approximation and (b) including nonsecular dynamics. The
labeling of the states corresponds to the formation of peak A in the
2D spectra (Figs. 8 and 9). Conversion between states in the secular
approximation (a) is restricted to population relaxation, prohibiting
the stimulated emission at t4 and leading to a vanishing signal in
PEEM. In (b), nonsecular conversion from ρfdd eb

→ ρfbbeb
during τ3

produces a measurable signal (indicated by a color gradient from dark
blue to light red during τ3).

phonon processes becomes possible. In Fig. 7(b), a potential
process is the conversion between ρfddeb

and ρfbbeb
during τ3.

The system eventually reaches an exciton population, which
will generate a signal in PEEM. The peak positions in the 2D
spectrum give insight into the particular nonsecular scattering
processes occurring within the nanostructure.

In the following, we will discuss the nonsecular 2D
spectrum for the model system in the ideal switching case
in order to draw conclusions about the involved processes. In
Fig. 8, the 2D spectrum |ne(0,�3,τ2,�1)| for two delay times
τ2 = 72 fs and τ2 = 94 fs is shown. On both energy axes, the
energies ωmn = ωm − ωn of the involved coherences are also
indicated. The scale of the plots is adjusted by the function
F(x) = arcsinh(x/x0) to highlight small and large features
equally [49].

There are two prominent features (peaks A and B) visible in
the spectra, both located at the excitation energy of the bright
state ωgeb

on the �1 axis (caused by the first pulse in the pulse
sequence, which excites a bright state coherence oscillating
with the respective energy).

The location of peak A on the �3 axis corresponds to the
coherence ρfddeb

as indicated in Fig. 8. It is generated by the
ESA pathways III and IV at time t3 (after the third pulse).

The interpretation of peak B is more involved. Three
coherences are contributing to this peak: two biexciton-exciton
coherences ρfbbeb

and ρfbded
, as well as an exciton-ground

state coherence ρebg (compare Fig. 8). All three peaks are
located within the exciton linewidth, so that they can only be
distinguished indirectly through interference. The excitonic
coherence will destructively interfere with the biexcitonic
coherences due to an opposite sign between pathways IV and
I–III. The oscillatory behavior of this interference can be seen
by comparing Figs. 8(a) and (b).

In contrast to peak A at ωfddeb
, whose corresponding

coherence is created by the pulse at t3 and requires nonsecular
conversion after t3, peak B is the outcome of nonsecular
conversion at times before interaction with the pulse at t4. The
excitonic contribution to peak B can be attributed to coherent
conversion between ρedeb

and ρebed
during the delay time τ2 in

pathway II. The biexcitonic contributions to peak B are a result

of conversion processes between ρfddeb
and ρfbbeb

, and between
ρfddeb

and ρfbded
during the delay time τ3. Unfortunately, a

distinction between both biexcitonic processes is not possible
since the individual peaks are not spectrally resolvable. The
asymmetric line shape of peak B only suggests that both
processes mentioned above play a role.

B. Realistic switching

In the last section, we demonstrated that the detection
protocol yields a vanishing spectrum for idealized switching
between bright and dark state excitation selection rules in
the secular approximation. Thus the only contributions to the
idealized spectrum originated from nonsecular processes.

In this section, we use the dipole- and quadrupole-field
couplings μmn · Eνk

r and Qmn : ∇S Eνk
r computed for the

plasmonic dolmen structure, so that the switching quality is
given through Eq. (15). Since the quadrupole-field coupling
is now Qmn : ∇S Ex

r �= 0, an x-polarized excitation beam will
not only excite bright states, but has also a small probability
of exciting dark states. The opposite situation will occur for
a y-polarized beam since μmn · Ey

r �= 0. As a result of this
deviation from the ideal selection rules, remnants of unwanted
secular processes will be present in the spectra.

To analyze the impact of imperfect switching on the
detection protocol, we will compare the full spectrum for
a delay time τ2 = 72 fs [Fig. 9(a)] with the ideal spectrum
discussed before [Fig. 8(a)]. The comparison already suggests
that the additional secular processes in the case of realistic
switching do not affect the 2D spectrum considerably. The
important peaks A and B, indicating nonsecular conversion
processes, are still present. The peak intensity of peak B is
slightly reduced through destructive interference with secular
processes caused by the nonideal selection rules.

To further quantify the error introduced through these
additional secular processes, we look at the spectrum in secular
approximation in Fig. 9(b). We remember that in the ideal
switching case, this spectrum is identical to zero. Thus in
the realistic case, it directly constitutes the error introduced
through imperfect switching. We recognize some features
at �1 = ωged

and around �3 ≈ 2 eV marginally affecting
the full spectrum, Fig. 9(a). Furthermore, a large peak B is
present in the secular spectrum, which leads to the slight
decrease of the peak intensity in the full spectrum. It can
be attributed to the bad switching quality η−1

y in Eq. (15). It
opens additional pathways with bright state excitation at times
t2 and t3 (compare Fig. 6). These pathways will create through
secular relaxation a signal at the energies �3 = ωebg , ωfbbeb

,
and ωfbded

. All these contributions taken together constitute
the large peak B in Fig. 9(b).

An important observation is that peak A is not present at all
in the secular spectrum, suggesting that this peak is solely an
effect of nonsecular conversion and cannot be created through
secular processes, even in the case of realistic switching. Peak
A is therefore a clear signature of nonsecular processes and
a delay-time dependent analysis of this peak will thus give
insight solely into these processes.

One should keep in mind that the spectra are shown on
a nonlinear scale. The amplitude of peak B in the secular
spectrum is more than one order of magnitude smaller than the
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FIG. 8. (Color online) 2D spectra |ne(0,�3,τ2,�1)| including
nonsecular terms in the ideal case of Qmn : ∇S Ex

r = μmn · Ey
r = 0

for (a) τ2 = 72 fs and (b) τ2 = 94 fs. Two distinct features A and B
are visible. Destructive interference with the excitonic states leads to
a quantum beating behavior. In secular approximation, both spectra
vanish.

nonsecular signal, thus we have an error of <10%. For peak
A, we have an error of ∼0.1%, since this peak is completely
absent in the secular spectrum.

As a final remark, the limitation of this detection protocol
should also be pointed out. We applied this protocol to detect
nonsecular conversion processes between the bright and dark
state manifolds, though it is not possible to detect nonsecular
conversion within each manifold since there always have to be
at least two selectively excitable manifolds of states present
in the system. However, the protocol can be extended to
detection between other manifolds, e.g., through spin-sensitive
excitation.

V. CONCLUSION

In this paper, we presented the theoretical outline for
a detection protocol of nonsecular conversion processes.
We derived the signal generated by the protocol from the
fourth-order density matrix response to four ultrashort light
pulses. The detection protocol is sensitive to nonsecular
processes between different subsets of transitions. Here,
we used the subsets of dipole-allowed and dipole-forbidden
transitions, though this protocol can be extended to arbitrary
subsets (for example spin-up and spin-down excitation in
semiconductors through circularly polarized light). To access
dipole-forbidden excitations, we expanded the light-matter
interaction by inclusion of field-gradient interactions. We
presented a possible way of switching between excitation
of dipole-allowed and dipole-forbidden transitions through a
plasmonic dolmen structure.

The protocol was applied to a CdSe QD in a ZnS NR.
Even for the simple relaxation treatment in Born-Markov
approximation, we were able to extract the small signal
generated through nonsecular processes out of the large
contribution of secular processes. The experimental realization
using similar protocols, for example on semiconductor systems

FIG. 9. (Color online) 2D spectrum |ne(0,�3,τ2 = 72 fs,�1)|
for realistic switching quality ηνk

, Eq. (15) (a) including nonsecular
processes and (b) in secular approximation. The realistic switching
in (a) introduces only a minor error compared to Fig. 8(a). This error
is directly represented through (b).

and biological photosynthetic or synthetic dyes, could lead to
direct investigation of non-Markovian effects.
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APPENDIX A: UNPERTURBED SYSTEM

The electronic Hamiltonian is derived under the assump-
tion of the envelope approximation for the electronic wave
functions, Eq. (5), and includes the Coulomb interaction of
electrons and holes:

H0 =
∑

i

εi,ce
†
i ei −

∑
j

εj,vh
†
jhj −

∑
ij

V
ij

ji e
†
i h

†
jhj ei

+ 1

2

∑
ij

V
ij

ji e
†
i e

†
j ej ei + 1

2

∑
ij

V
ij

ji h
†
i h

†
jhjhi. (A1)

The last two terms introduce the biexcitonic shifts. The
Coulomb integrals are given by

V
ij

kl = e2

4πε0ε
δλiλl

δλj λk
δσiσl

δσj σk

∫
d rd r ′ ϕ∗

i,λi
(r)ϕ∗

j,λj
(r ′)

× 1

|r − r ′|ϕk,λk
(r ′)ϕl,λl

(r), (A2)

where we only consider monopole-monopole corrections
to the interaction-free Hamiltonian. Thus the Hamiltonian
remains diagonal after inclusion of the Coulomb terms.
The Coulomb elements possess the symmetry V

ij

kl = V
ji

lk =
V kl∗

ij = V lk∗
ji .

We introduce the excitonic states

|em〉 = e
†
i h

†
j |g〉 (A3)
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with the multi-index em = {i,j} labeling the excitonic state m

with electron in state i and hole in state j . Analogously, the
biexcitonic state is

|fm〉 = e
†
i e

†
jh

†
kh

†
l |g〉 (A4)

with the multi-index fm = {ij,kl} for electrons in state i and
j , as well as holes in states k and l. The Hamiltonian can be
reformulated as

H0 =
∑
em

εem
|em〉〈em| +

∑
fm

εfm
|fm〉〈fm|, (A5)

with the energies

εem
= εi,c − εj,v − V

ij

ji ,

εfm
= εi,c + εj,c − εk,v − εl,v

−(
V ik

ki + V il
li + V

jk

kj + V
jl

lj

) + (
V

ij

ji + V kl
lk

)
. (A6)

We further reduce the notation by collecting both excitonic
and biexcitonic states into a generic index m:

H0 =
∑
m

εm|m〉〈m|. (A7)

APPENDIX B: HIGHER-ORDER EXCITON-LIGHT
INTERACTION

We start from a semiclassical interaction between electrons
and electric fields derived in Ref. [81] in its second quantized
form (for simplicity r0 = 0):

He-L =−e

∫
d r ψ†(r)

[
r · E(0,t) + 1

2
r ◦ r : ∇E(0,t)

]
ψ(r).

(B1)

The first term is the dipole interaction, and the second term
is the quadrupole interaction. We use the envelope approx-
imation, Eq. (5) and transform into electron-hole picture.
Additional separation of length scales r → rn + r ′ (where
rn is pointing to unit cell n and r ′ varies within the unit cell)
leads to

He−L = −e
∑
ij

∑
rn

∫
UC

d r ′
[

(rn + r ′) · E(0,t)

+ 1

2
(rn + r ′) ◦ (rn + r ′) : ∇E(0,t)

]

×[
ϕ∗

i,c(rn)ϕj,v(rn)uσi∗
c (r ′)uσj

v (r ′)e†i h
†
j + H.a.

]
, (B2)

where we only considered interband transitions.
In principle, magnetic dipole interactions have to be

included in the discussion as well. However, the magnetic
fields at r0 are weak and will therefore be neglected in the
discussion (checked in microscopic calculations, not included
in the paper).

1. Dipole interaction

We take the first term of Eq. (B2) with the constant electric
field and convert the sum over rn into an integral. As done in

Appendix A, we introduce excitonic states |em〉 with the multi-
index em = {i,j}. We define the microscopic dipole element,

dσm

cv = dσm∗
vc =

∫
UC

d r ′ uσm∗
c (r ′) r ′ uσm

v (r ′)δσmσn
, (B3)

which provides information about the directional character
of light absorption depending on the crystal structure and
orientation, and the overlap integral between the envelope
wave functions

Semg =
∫

d r ϕ∗
em,c(r)ϕem,v(r). (B4)

Thus, we can write the dipole contribution to the light-matter
interaction for excitons:

H
(0)
e-L

∣∣
ex = −e

∑
em

[
dσem

cv Semg|em〉〈g| + H.a.
] · E(0,t). (B5)

We proceed analogously with biexcitons according to above
notation,

H
(0)
e-L

∣∣
biex = −e

∑
fmen

[
dσem

cv Sfmen
|fm〉〈en| + H.a.

] · E(0,t). (B6)

We apply the factorization of the electric field, Eq. (7).
Again, we combine both Hamiltonians, Eqs. (B5) and (B6), to
condense the notation:

H
(0)
e-L = −

∑
k

∑
mn

intraband

μmn · Eνk

r Ek
t (t − tk)|m〉〈n|. (B7)

The dipole-field coupling is given by

μmn = e Smndσm

cv . (B8)

2. Quadrupole interaction

We turn back to Eq. (B2) and collect all terms with
electric-field gradients. To simplify the expression, we note
that the integral

∫
d r ′ uσm∗

c (r ′)uσm
v (r ′) vanishes, since Bloch-

functions of different bands are orthogonal. The integral∫
d r ′ uσm∗

c (r ′) r ′ ◦ r ′ uσm
v (r ′) is assumed to be small and will

therefore be neglected.
The remaining terms are treated analogous to the previous

section. We introduce the dipole element of the envelope wave
function

memg =
∫

d r ϕ∗
em,c(r) r ϕem,v(r), (B9)

and the notation a · A · b = b · AT · a = a ◦ b : A = b ◦ a :
AT with the dyadic product a ◦ b and the Frobenius inner
product defined in Eq. (11) [82]. Through ∇S E := 1/2(∇E +
∇ET ) we can simplify the expression to

H
(1)
e-L

∣∣
ex = −e

∑
em

[(
dσem

cv ◦ memg

)|em〉〈g| + H.a.
]

: ∇S E(0,t).

(B10)
The biexcitonic contribution can also be derived accordingly.
Again, we apply the approximation (7) and collect the
excitonic and biexcitonic contribution to obtain

H
(1)
e-L = −

∑
k

∑
mn

intraband

Qmn : ∇S Eνk

r Ek
t (t − tk)|m〉〈n| (B11)
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with

Qmn = e
(
dσm

cv ◦ mmn

)
. (B12)

APPENDIX C: PHONON INTERACTION

For the electron-phonon interaction we consider the Hamil-
tonian for Fröhlich coupling between electrons and optical
phonons [109],

He-ph = e
∑

q

∫
d r ψ†(r)φq(r)ψ(r), (C1)

which originates from the polarization induced by the elec-
trostatic potential φq of the phonon-mode q. As done before,
we transform the Hamiltonian into the electron-hole picture
under assumption of the envelope approximation, Eq. (5).
Furthermore, we drop the phonon interaction with the ground
state. Thus we get [90]

He-ph = �

∑
q

⎡
⎣∑

ij

(
gij

q,cb
†
q + gji∗

q,c bq

)
e
†
i ej

−
∑
ij

(
gij

q,vb
†
q + gji∗

q,vbq

)
h
†
jhi

⎤
⎦ (C2)

with the phonon-coupling elements

g
ij

q,λ = e

4πε0ε�

∫
d r ϕ∗

i,λi
(r)ϕj,λj

(r)φq(r)δλiλj
δσiσj

. (C3)

For the phonon potentials φq(r), we consider cylindrical lon-
gitudinal optical (LO) and side-surface optical (SSO) phonons

of a nanorod as calculated in Ref. [90]. They interact with the
spherical electron wave functions in the QD. We assume that
the phonons are not influenced by the QD within the rod and
that the QD is positioned in the center of the NR. Acoustic
phonons were neglected since their energy is too small to
surpass the transition energy between the energy levels.

Again, we transform the Hamiltonian into the exciton -
picture through Eqs. (A3) and (A4):

He-ph = �

∑
qemen

(
gemen

q b†q + genem∗
q bq

)|em〉〈en|

+ �

∑
qfmfn

(
gfmfn

q b†q + gfnfm∗
q bq

)|fm〉〈fn|. (C4)

The excitonic phonon coupling elements for two excitons
|em〉 = |i,k〉,|en〉 = |j,l〉 are

gemen

q = gij
q,cδkl − glk

q,vδij (C5)

and for two biexcitons |fm〉 = |ij,kl〉,|fn〉 = |i ′j ′,k′l′〉:
gfmfn

q = (
gii ′

q,cδjj ′ + gjj ′
q,cδii ′ − gij ′

q,cδji ′ − gji ′
q,cδij ′

)
×(δkk′δll′ − δkl′δlk′)

− (
gk′k

q,vδll′ + gl′l
q,vδkk′ − gk′l

q,vδlk′ − gl′k
q,vδkl′

)
×(δii ′δjj ′ − δij ′δji ′ ). (C6)

The δij between the states also implies δσiσj
between their

spin degree of freedom.
We introduce the shorthand notation as in the previous

sections through

He-ph = �

∑
q

∑
mn

intraband

(
gmn

q b†q + gnm∗
q bq

)|m〉〈n|. (C7)

APPENDIX D: LIOUVILLE PATHWAYS

Upon evaluation of Eq. (25) with the light-coupling Hamiltonian, Eq. (8), as described in the main text, we get the analytical
expressions for all contributing pathways:

ρ
(4)
I,ei ej

(τ4,τ3,τ2,τ1) = − 1

�4

∑
e1...e5

Geiej ,e4e5 (τ4)M̃ν4
ge5

Ge4g,e3g(τ3)M̃ν3
e3g

M̃ν2
e2g

Gge2,ge1 (τ1)M̃ν1
ge1

×Ẽ∗
4 (ω4)Ẽ3(ω3)Ẽ2(ω2)Ẽ∗

1 (ω1)eiφs , (D1)

ρ
(4)
II,ei ej

(τ4,τ3,τ2,τ1) = − 1

�4

∑
e1...e7

Geiej ,e6e7 (τ4)M̃ν4
ge7

Ge6g,e5g(τ3)M̃ν3
e4g

Ge5e4,e3e2 (τ2)M̃ν2
e3g

Gge2,ge1 (τ1)M̃ν1
ge1

×Ẽ∗
4 (ω4)Ẽ3(ω3)Ẽ2(ω2)Ẽ∗

1 (ω1)eiφs , (D2)

ρ
(4)
III,ei ej

(τ4,τ3,τ2,τ1) = − 1

�4

∑
e1...e7

∑
f1,f2

Geiej ,e7e6 (τ4)M̃ν4
e7f2

Gf2e6,f1e4 (τ3)M̃ν3
f1e5

Ge5e4,e3e2 (τ2)M̃ν2
e3g

Gge2,ge1 (τ1)M̃ν1
ge1

×Ẽ∗
4 (ω4)Ẽ3(ω3)Ẽ2(ω2)Ẽ∗

1 (ω1)eiφs , (D3)

ρ
(4)
IV,fifj

(τ4,τ3,τ2,τ1) = + 1

�4

∑
e1...e6

∑
f1...f3

Gfifj ,f2f3 (τ4)M̃ν4
e6f3

Gf2e6,f1e4 (τ3)M̃ν3
f1e5

Ge5e4,e3e2 (τ2)M̃ν2
e3g

Gge2,ge1 (τ1)M̃ν1
ge1

×Ẽ∗
4 (ω4)Ẽ3(ω3)Ẽ2(ω2)Ẽ∗

1 (ω1)eiφs . (D4)

They correspond to the Feynman diagrams in Fig. 6.
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155 (1977).
[9] S. Chaturvedi and F. Shibata, Z. Phys. B 35, 297 (1979).

[10] F. Shibata, Y. Takahashi, and N. Hashitsume, J. Stat. Phys. 17,
171 (1977).

[11] M. Richter and A. Knorr, Ann. Phys. 325, 711 (2010).
[12] Y. Tanimura and R. Kubo, J. Phys. Soc. Jpn. 58, 101 (1989).
[13] Y. Tanimura, Phys. Rev. A 41, 6676 (1990).
[14] H. Haug, Phys. Status Solidi B 173, 139 (1992).
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and D. V. Voronine, Science 333, 1723 (2011).

[68] M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic,
F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider,
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