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Improved thermometry of low-temperature quantum systems by a ring-structure probe
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The thermometry precision of a sample is a question of both fundamental and technological importance. In
this paper, we consider a ring-structure system as our probe to estimate the temperature of a bath. Based on the
Markovian master equation of the probe, we calculate the quantum Fisher information (QFI) of the probe at any
time. We find that for the thermal equilibrium thermometry, the ferromagnetic structure can measure a lower
temperature of the bath with a higher precision compared with the nonstructure probe, while for the dynamical
thermometry, the antiferromagnetic structure can make the QFI of the probe in the dynamical process much larger
than that in equilibrium with the bath, which is somewhat counterintuitive. Moreover, the best accuracy for the
thermometry achieved in the antiferromagnetic structure case can be much higher than that in the nonstructure
case. The physical mechanisms of the above phenomena are given in this paper.
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I. INTRODUCTION

Parameter estimation is a fundamental and important
subject in physics, with its applications in various aspects such
as gravitational-wave detectors [1,2], frequency spectroscopy
[3,4], interferometry [5,6], and atomic clocks [7,8]. One
usually utilizes Cramér-Rao bound [9] on the error as a
criterion to assess the performance of a parameter-estimation
technique, which is proportional to the inverse of the square
root of the so-called Fisher information (FI) [9–11]. The
maximization of the FI over all measurement strategies
allowed by quantum mechanics leads to a nontrivial quantity:
quantum Fisher information (QFI).

Temperature, being one of the most fundamental and
most frequently measured physical quantities, has recently
attracted a growing interest in obtaining an accurate reading.
Indeed, precise knowledge of the temperature of a sample has
proved indispensable for many advancements in physics [12],
biology [13], material science [14], and the microelectronic
industry [15]. Also the task of temperature measurement can
be translated using the language of estimation theory to the
problem of parameter estimation.

With the progress in manipulation of an individual quan-
tum system, the study of thermometry precision, using an
individual quantum system as a probe, has attracted con-
siderable attention [16–22]. Specifically, Ref. [16] analyzed
the thermometry of an unknown bath and proved that the
optimal quantum probe is an effective two-level atom with
a maximally degenerate excited state, while Refs. [17,18]
used a single qubit as the probe to estimate the temperature
of the micromechanical resonators. Meanwhile, Jevtic et al.
[19] have also used a single qubit to distinguish between
two different temperatures of a bosonic bath and found
the potential role played by coherence and entanglement
in simple thermometric tasks. In addition, Ref. [20] has
made use of the ac Stark effect to implement the practical
and precise qubit thermometry of an oscillator. References
[21,22] used two-level atomic quantum dots as thermometers
of BECs. The fundamental and important questions such
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as the scaling of the precision of temperature estimation
with the number of quantum probes has been discussed in
Ref. [23], and it was shown that it is possible to map the
problem of measuring the temperature onto the problem of
estimating an unknown phase; as a result, the scaling of the
precision of a thermometer may, in principle, be improved
to 1/N , representing the Heisenberg limit to thermometry.
Following this paper, Jarzyna and Zwierz provided a detailed
description of the interferometric thermometer and found that
this approach is capable of measuring the temperature of a
sample in the nK regime [24]. Recently, Ref. [25] introduced
the local quantum thermal susceptibility (LQTS) functional
to quantify the best achievable accuracy for the temperature
estimation of a composite system via local measurements.
Reference [26] has clarified the limitations of a universal
concept of scale-independent temperature by showing that
temperature is intensive on a given length scale if and only
if correlations are negligible. Some theoretical works [27–29]
have shown that interactions among particles may be a valuable
resource for quantum metrology, allowing scaling beyond the
Heisenberg limit. Recently, Ref. [30] has used an ultracold
lattice gas simulating a strongly correlated system consisting
of N interacting particles as a probe for the thermometry.

In this paper, we consider a ring-structure system with
nearest-neighbor interactions as our probe to estimate the
temperature of an electromagnetic field (bath). The ring-
structure probe, consisting of N two-level atoms, is coupled
through dipole interactions with the electromagnetic field. We
first calculate the QFI of the probe at any time and then analyze
how the structure (strength of the dipole-dipole interaction
between adjacent atoms) and the particle number of the
probe affect the temperature estimation in two complementary
scenarios, i.e., the thermal equilibrium thermometry (one
estimates the temperature when the probe reaches thermal
equilibrium with the bath) and the dynamical thermometry
(one estimates the temperature before the probe attains full
thermalization). For the dynamical thermometry, we use the
Greenberger-Horne-Zeilinger (GHZ) state as the initial state of
our probe and study its dynamical evolution before achieving
full thermalization with the electromagnetic field.

Our main results are the following. First, for the ther-
mal equilibrium thermometry, the ferromagnetic probe can
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FIG. 1. (Color online) A schematic diagram showing the ther-
mometry process with a ring-structure probe. � represents the
coupling between adjacent atoms of the probe, g denotes the coupling
between the probe and the electromagnetic field, and t represents the
evolution time of the probe at which the probe is measured to estimate
the temperature T of the electromagnetic field.

measure a lower temperature of the bath with an improved pre-
cision compared with the nonstructure case. More accurately,
when the structure is ferromagnetic, as the absolute value of
the coupling strength increases, the optimal temperature Topt,
at which the QFI achieves its maximum, becomes lower and
the value of the corresponding equilibrated QFI of the probe
becomes larger. However, the probe would take a longer time
to be equilibrated with the bath. Fortunately, we can reduce
this time by increasing the particle number N of the probe. In
contrast, for the dynamical thermometry, the antiferromagnetic
structure would play a distinctive role. Specifically, when the
coupling strength increases to a certain value, the QFI of the
probe in the dynamical process can be larger than that in
equilibrium with the bath, which is somewhat counterintuitive.
The best accuracy for the thermometry achieved in the
antiferromagnetic structure case can be much higher than that
in the nonstructure case; moreover, the larger the coupling
strength, the lower the Topt and the larger the optimal QFI, but
the optimal measurement time topt becomes longer. Similarly,
we can reduce this optimal measurement time topt by increasing
the particle number N of the probe.

The remainder of this paper is organized as follows: in
Sec. II, we first introduce our model and its dynamics and
then we analyze its energy level structure. In Sec. III, we
first review the quantum parameter-estimation theory and then
calculate the QFI at any time for our model and, based on
this, we analyze the effects of the structure and the particle
number N of the probe on the thermometry precision in
two complementary scenarios, i.e., the thermal equilibrium
thermometry and the dynamical thermometry. Finally, Sec. IV
closes the paper with some concluding remarks.

II. RING-STRUCTURE PROBE AND ITS
DYNAMICAL EVOLUTION

A. Model and dynamics

In this paper, we adopt a ring-structure [31,32] system
consisting of N identical and permutational symmetric two-
level atoms (see Fig. 1) as a probe to detect the temperature

of an electromagnetic field. The Hamiltonian of N atoms is
(� = c = 1)

Hs = 1

2
ωA

N∑
n=1

σn
z , (1)

with ωA being the bare atomic transition frequency and σn
z =

|e〉〈e| − |g〉〈g| being the Pauli operator for the nth atom. The
Hamiltonian of the electromagnetic field is

HB =
∑

k

∑
λ=1,2

ωka
†
λ(k)aλ(k), (2)

where ωk is the field frequency for the wave vector k, and aλ(k)
and a

†
λ(k) are the field annihilation and creation operators,

respectively. λ = 1,2 denote two independent polarization
directions of the electromagnetic field for each k. The atom-
field interaction can be expressed as

HI = −
N∑
n

[σn
−d · Ê(rn) + σn

+d∗ · Ê(rn)], (3)

in which σn
+ = |e〉〈g| and σn

− = |g〉〈e| are the upper and lower
operators to describe the nth two-level atom, and d is the
atomic dipole vector. The electric field operator Ê is given by

Ê(rn) = i

N∑
n=1

∑
k,λ

√
2πωk

V
eλ(k)[a†

λ(k)e−ik·rn − aλ(k)eik·rn ],

(4)
where eλ(k) is the polarization vector of the field, V is an
arbitrary quantization volume, much larger than the atomic
system, and rn is the position vector of the nth two-level atom.

The system dynamics is then generically determined by the
following master equation (the detailed derivation is shown in
the Appendix) [31–33]:

dρs(t)

dt
= −i[Hs + Hd,ρs(t)] +

∑
ω>0

N∑
m,n

4ω3|d|2
3

×
(

[1 + N (ω)]

[
σn

−ρs(t)σ
m
+ − 1

2

{
σm

+ σn
−,ρs(t)

}]

+N (ω)

[
σn

+ρs(t)σ
m
− − 1

2

{
σm

− σn
+,ρs(t)

}])
, (5)

where N (ω) = (exp[ω/T ] − 1)−1 is the Planck distribution
with T being the temperature, and satisfies N (−ω) = −[1 +
N (ω)] (here we let the Boltzmann constant kB = 1). The
Hamiltonian

Hd = �
∑

n

(σn
+σn+1

− + σn
−σn+1

+ ) (6)

is the Van der Waals dipole-dipole interaction induced by
the electromagnetic field, where � is the interaction strength
(throughout this paper, the term “structure” refers to it) and
the periodic boundary condition σN+1

± = σ 1
± is considered.

Due to the fact that [Hs,Hd ] = 0, for the first order of the
Van der Waals dipole-dipole interaction, i.e., Eq. (6), it does
not mix the eigenstates of Hs , but only shifts their energies.
And it is this energy level shift that could contribute to the
thermometry precision, which will be shown in Sec. III, while
in the following, we will discuss this energy shift in detail.
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B. Energy levels

Due to the permutation symmetry of the probe system, the
N atoms become indistinguishable such that the electromag-
netic field interacts with them collectively. The dynamics is
then best described by collective operators,

J± =
N∑

n=1

σn
±, Jz = 1

2

N∑
n=1

σn
z . (7)

Any N spin-1/2 state invariant by atom permutation is an
eigenstate corresponding to the maximum J = N/2 value of
the angular momentum, which can be written as the Dicke
state |J,M〉, obtained by repeated action of the symmetrical
collective deexcitation operator J− on the state |e,e · · · e〉:

|J,M〉 =
√

(J + M)!

N !(J − M)!
J J−M

− |e,e · · · e〉. (8)

The actions of the collective operators J± and Jz on the Dicke
state can be described as

J±|J,M〉 =
√

(J ± M + 1)(J ∓ M)|J,M ± 1〉, (9)

and

Jz|J,M〉 = M|J,M〉. (10)

For convenience, we would write |M〉 instead of |J,M〉 for
J = N/2 in the following.

Now let us analyze how the energy level would change in
the presence of the Van der Waals dipole-dipole interaction
[Eq. (6)] between the adjacent atoms of the probe. Due to
the fact that Hd [Eq. (6)] does not mix the eigenstates of Hs ,
but only shifts their energies as mentioned above, the effective
Hamiltonian of the probe can be written as a diagonalized form
[31,32],

He ≡ Hs + Hd =
J∑

M=−J

EM |M〉〈M|, (11)

where EM is the eigenenergy of the state |M〉,

EM = MωA + �
J 2 − M2

J − 1
2

. (12)

The energy difference between any two adjacent energy levels
can be obtained as

�EM→M−1 ≡ EM − EM−1 = ωA − 4�
M − 1

2

N − 1
. (13)

From Eq. (13), we can see that if we neglect the dipole-dipole
interaction, i.e., � = 0, then the transition frequencies between
any two adjacent energy levels are degenerate and equal to ωA.
On the contrary, if we consider the dipole-dipole interaction,
i.e., � �= 0, then it would break the degeneracy of the transition
frequency.

Figure 2 is a paradigm schematic drawing of the Hamilto-
nian spectrum [Eq. (12)] as a function of the coupling strength
� with N = 5. We can see that when there is no interaction
(� = 0), the energy level is equally spaced, i.e., each transition
has the same frequency ωA (throughout this paper, we take
ωA as unit 1). But as the coupling strength � changes, each
energy level would shift except for the ground level and the

FIG. 2. (Color online) Schematic drawing of the Hamiltonian
spectrum [Eq. (12)] as a function of the coupling strength � for
particle number N = 5 as an example. Here we take ωA as the unit,
i.e., ωA = 1.

highest excited level, and become unequally spaced, i.e., each
transition now has a unique frequency ωM = �EM→M−1. We
emphasize that we only consider the range � ∈ (−0.5,0.5)
because the Hamiltonian spectrum [Eq. (12)] would become
very complicated and the energy levels would have at least one
energy level crossing for � � 0.5 or � � −0.5.

Then we would analyze the effects of the particle
number N and the coupling strength � on the energy
difference �EM→M−1, which will be used in Sec. III.
From Eq. (13), we can obtain that the energy difference
between the two highest-energy levels EN

2
and EN

2 −1 is
�EN

2 → N
2 −1 ≡ EN

2
− EN

2 −1 = ωA − 2�, and the energy dif-
ference between the two lowest-energy levels E− N

2 +1 and E− N
2

is �E− N
2 +1→− N

2
≡ E− N

2 +1 − E− N
2

= ωA + 2�. We can see
that both �EN

2 → N
2 −1 and �E− N

2 +1→− N
2

are independent of
the particle number N . Moreover, for the higher-energy differ-
ences near �EN

2 → N
2 −1, we can obtain that �EH ∼ EN

2 −1 −
EN

2 −2 = ωA − 2�(1 − 2
N−1 ) = �EN

2 → N
2 −1 + 4�

N−1 , and for
the lower-energy differences near �E− N

2 +1→− N
2

, we can ob-

tain that �EL ∼ E− N
2 +2 − E− N

2 +1 = ωA + 2�(1 − 2
N−1 ) =

�E− N
2 +1→− N

2
− 4�

N−1 . Here, the subscripts H and L on �E

mean “high” and “low,” respectively. From the expressions
of �EH and �EL, we can see that when � > 0 (� < 0), as
N increases, �EH decreases (increases) and �EL increases
(decreases). Here we emphasize that when N → ∞, �EH →
�EN

2 → N
2 −1 and �EL → �E− N

2 +1→− N
2

and both of them are
independent of N . On the other hand, when � > 0 (� < 0), as
|�| increases, �EH decreases (increases) and �EL increases
(decreases), and �EL > �EH (�EL < �EH ) (see Fig. 2).

Defining the ladder operator LM = |M − 1〉〈M|, the sys-
tem’s dynamical equation (5) can be expressed as [31,32]

dρs(t)

dt
= −i[He,ρs(t)] +

∑
M

	M{N (ωM )D[L†
M ]ρs(t)

+ [N (ωM ) + 1]D[LM ]ρs(t)}, (14)

with D[A]ρ = AρA† − 1
2 {A†A,ρ},	M = 4ω3

M

3 (J − M +
1)(J + M). Here, we let |d|2 = 1. If we ignore the
interactions between the adjacent atoms (� = 0), the master
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equation can be simplified as

dρs(t)

dt
= −i[Hs,ρs(t)] + 	0{N (ωA)D[J+]ρs(t)

+ [N (ωA) + 1]D[J−]ρs(t)}, (15)

with 	0 = 4ω3
A/3.

It is easy to show that the equilibrium state ρs(T ) =
Z−1 ∑

M e−EM/T |M〉〈M|, with Z = ∑
M e−EM/T , is a fixed

point of Eqs. (14) and (15), i.e., any symmetrical initial state of
the probe would eventually arrive at thermal equilibrium with
the bath. The problem now gets down to solving Eqs. (14) and
(15). Based on this, we can obtain the QFI at any time and
further analyze the effects of the structure � and the particle
number N of the probe on the thermometry precision. This
will be done in the next section, and we will write ρ instead of
ρs for convenience below.

Finally, it should be noted that if we consider a permutation
symmetric spin-1/2 chain with the periodic boundary condi-
tion, in which the interaction between the spins is intrinsic and
is not induced by the environment, as a probe to detect the
temperature of a bosonic bath, the energy level structure, the
dynamical process [Eqs. (14) and (15)], and the results about
the thermometry obtained in the next section are also valid.

III. EFFECTS OF THE STRUCTURE
� AND THE PARTICLE NUMBER ON THE

THERMOMETRY PRECISION

In this section, we apply the quantum estimation theory to
estimate the temperature of a bath. An estimation procedure
always consists of the following steps: First we send the probe
initialized in a quantum state ρ(0) through a sample, which
undergoes an evolution depending on some parameter θ ; next,
we subject the probe to a general quantum measurement,
described by a positive operator-valued measure (POVM),
which outputs measurement results x; and, finally, we choose
an unbiased estimator θ̂ to process the data and infer the value
of the unknown parameter θ , and the unbiased estimator θ̂

satisfies 〈θ̂〉 = θ . This scheme describes not only the quantum
estimation tasks, but also the classical ones.

The standard deviation of this estimator, i.e., �θ̂ =√
Var(θ̂), quantifies the error on estimation of θ . The quantum

Cramér-Rao bound sets a lower bound on this error as follows:

�θ̂ � 1√
νQ(ρ(θ ; t))

, (16)

where ν is the number of independent experimental repetitions,
and Q(ρ(θ ; t)) is the quantum Fisher information (QFI)
associated with the parameter θ , which is given by

Q(ρ(θ ; t)) = Tr
[
ρ(θ ; t)L2

ρ(θ ;t)

]
. (17)

The symmetric logarithmic derivative Lρ(θ ;t) in the above
equation is defined as

dρ(θ ; t)

dθ
≡ 1

2
[ρ(θ ; t)Lρ(θ ;t) + Lρ(θ ;t)ρ(θ ; t)]. (18)

Writing ρ(θ ; t) in its spectral decomposition as ρ(θ ; t) =∑
i pi |ψi〉〈ψi |, one can obtain

Q(ρ(θ ; t)) = 2
∑
j,k

1

pj + pk

∣∣∣〈ψj |dρ(θ ; t)

dθ
|ψk〉

∣∣∣2
. (19)

The computation of the QFI is, in general, hard since
the diagonalization of ρ(θ ; t) is required. However, there
exist several upper bounds on the Fisher information [34,35].
Nevertheless, for the special initial state we choose, we can
easily calculate the QFI with respect to parameter T at arbitrary
time t .

In this paper, we consider the GHZ-like state |ψ〉 =
cos φ|g,g · · · g〉 + sin φ|e,e · · · e〉 (φ ∈ [0,π/2]) as our initial
state of the probe. According to the definition of the Dicke
state [Eq. (8)], the GHZ-like state can be expressed as |ψ〉 =
cos φ| − J 〉 + sin φ|J 〉 (M = −J and J ) and the state at time
t can be written as

ρ(T ; t ; φ) = ρ−J,J (T ; t ; φ)|−J 〉〈J | + ρJ,−J (T ; t ; φ)|J 〉〈−J |

+
J∑

M=−J

ρM,M (T ; t ; φ)|M〉〈M|, (20)

where ρM,M (T ; t ; φ) are the diagonal elements of the probe
state ρ at time t , and ρ−J,J (T ; t ; φ) and ρJ,−J (T ; t ; φ) are the
two nondiagonal elements of ρ at time t . This form of the
density operator ρ(T ; t ; φ) can be diagonalized because it is a
2 × 2 block diagonal.

Then we can calculate the dynamical QFI by putting
Eq. (20) into Eq. (19) associated with the parameter T as
follows:

Qd (ρ(T ; t ; φ))

=
∑

j,k=+,−

2

pj + pk

∣∣∣a∗
j ak

dρ−J,−J (T ; t ; φ)

dT

+ a∗
j bk

dρ−J,J (T ; t ; φ)

dT

+ b∗
j ak

dρJ,−J (T ; t ; φ)

dT
+ b∗

j bk

dρJ,J (T ; t ; φ)

dT

∣∣∣2

+
J−1∑

M=−J+1

1

ρM,M (T ; t ; φ)

∣∣∣dρM,M (T ; t ; φ)

dT

∣∣∣2
, (21)

where a− = − ρ−J,J (T ;t ;φ)
χ−

, a+ = ρJ,J (T ;t ;φ) − p+
χ+

,

b− = ρ−J,−J (T ;t ;φ) − p−
χ−

, b+ = − ρJ,−J (T ;t ;φ)
χ+

, with

p± = 1
2 {[ρ−J,−J (T ; t ; φ) + ρJ,J (T ; t ; φ)] ± η}, η =√

4|ρ−J,J (T ; t ; φ)|2 + [ρ−J,−J (T ; t ; φ) − ρJ,J (T ; t ; φ)]2 and
χ± = √|ρ−J,J (T ; t ; φ)|2 + [ρ±J,±J (T ; t ; φ) − p±]2. And
from Eq. (21) we can see that the nondiagonal elements
ρJ,−J (T ; t ; φ) and ρ−J,J (T ; t ; φ), associated with quantum
coherence, affect the dynamical QFI.

On the other hand, for temperature estimation on a thermal
equilibrium state ρ(T ), the QFI is analytically given by [36,37]

Qe(ρ(T )) = �H 2
e

T 4
, (22)
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where

�H 2
e ≡Tr

[
H 2

e ρ(T )
] − {Tr[Heρ(T )]}2

= 1

Z

∑
M

E2
Me

−EM
T − 1

Z2

(∑
M

EMe
−EM

T

)2

,
(23)

with ρ(T ) = Z−1 ∑
M e−EM/T |M〉〈M| and Z = ∑

M e−EM/T

mentioned below Eq. (15). In light of Eq. (22), we can see that
the maximization of the QFI at a given T is equivalent to the
maximization of the energy variance at thermal equilibrium,
i.e., more levels are populated. And from Eq. (21) it can be
verified that

lim
t→∞ Qd (ρ(T ; t ; φ)) = Qe(ρ(T )). (24)

Here it should be noted that t → ∞ in Eq. (24) just means that
finally the probe should be in equilibrium with the bath, and
from our numerical calculation we find that in most cases the
probe can be approximately in equilibrium with the bath in a
finite time.

In what follows, we will analyze the effects of the structure
� and the particle number N of the probe on the thermometry
precision in two complementary scenarios, i.e., the thermal
equilibrium thermometry and the dynamical thermometry.

A. Thermal equilibrium thermometry

First, we consider the thermal equilibrium thermometry,
where the measurement is taken when the probe reaches
thermal equilibrium with the bath, so it is irrespective of the
symmetrical initial state of the probe we choose. According to
Eqs. (22) and (23) and through our calculations, we find that
for the thermal equilibrium thermometry, the ferromagnetic
structure (� < 0) has an advantage over the nonstructure case
(� = 0) in the thermometry precision, while the antiferro-
magnetic structure (� > 0) does not. We find that at very low
temperature, the behavior of the equilibrated QFI is almost
independent of the particle number N , while as the temperature
increases, the particle number N becomes somewhat related
to the value of the equilibrated QFI.

As an example, in Figs. 3(a) and 3(b), we plot the equili-
brated QFI [Eq. (22)] as a function of the bath temperature T

for different coupling strength with N = 20 in the case of the
ferromagnetic structure and the antiferromagnetic structure,
respectively. We can see from Figs. 3(a) and 3(b) that as
the coupling strength � varies from −0.49ωA → 0.49ωA, the
optimal temperature Topt becomes higher and the value of its
corresponding equilibrated QFI gradually becomes smaller.
It can be clearly seen that for the ferromagnetic structure
(� < 0), the thermometry precision is always higher than that
of the nonstructure case (� = 0) [see Fig. 3(a)]; for example,
when the coupling strength � = −0.49ωA, the value of the
equilibrated QFI is very large and Topt is very low, while
for the antiferromagnetic structure (� > 0), the thermometry
precision is lower than that of the nonstructure case (� = 0)
[see Fig. 3(b)]. It can be concluded that for the thermal
equilibrium thermometry, the ferromagnetic structure has an
advantage over the nonstructure case (� = 0) in the attainable
thermometry precision, i.e., it can measure a lower temperature

FIG. 3. (Color online) (a),(b) Quantum Fisher information,
Qe(ρ(T )), as a function of the bath temperature T for different
coupling strength with N = 20 and for the ferromagnetic structure
and the antiferromagnetic structure, respectively. The inset of (a) is
for � = −0.49ωA with N = 20. (c),(d) Quantum Fisher information,
Qe(ρ(T )), as a function of the bath temperature T for different
particle numbers N = 2,5,10,20 and for the ferromagnetic structure
� = −0.45ωA and the antiferromagnetic structure � = 0.45ωA,
respectively. kB = � = 1.

of the bath with an improved precision compared to the
nonstructure probe.

This can be understood as follows. For the thermal
equilibrium thermometry and at low temperature, the atoms
are mainly distributed in the lower-energy levels, so the
distribution of the lower-energy levels plays a leading role
in the thermometry precision. We know that the smaller
the energy difference, the more sensitive the probe to the
thermal fluctuation, because even at a very low temperature,
almost all of the lower-energy levels can be populated; that
is, the energy variance �H 2

e is large, and hence the resulting
equilibrated QFI is large, and vice versa. As a result, when
� < 0, the lower-energy difference is smaller than that of the
nonstructure case (� = 0) (see Fig. 2), so the value of the
equilibrated QFI is larger than that of the nonstructure case.
Moreover, for the ferromagnetic structure (� < 0), the larger
the absolute value of the coupling strength �, the smaller the
lower-energy difference �EL, which has been analyzed in
Sec. II, so the lower the Topt, and the larger the value of the
equilibrated QFI at its corresponding Topt. Note that at Topt,
the transition frequencies of the probe, corresponding to the
lower-energy differences �EL, are close to resonance with the
characteristic frequency of the thermal fluctuation of the bath
[16]. In contrast, when � > 0, the lower-energy difference is
larger than that of the nonstructure case (� = 0) (see Fig. 2),
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so the value of the equilibrated QFI is smaller than that of
the nonstructure case. Moreover, for the antiferromagnetic
structure (� > 0), the larger the coupling strength �, the
larger the lower-energy difference �EL, so the higher the
Topt, and the smaller the value of the equilibrated QFI at its
corresponding Topt.

Next, in Figs. 3(c) and 3(d), we plot the equilibrated
QFI [Eq. (22)] as a function of the bath temperature T for
different particle number N in the case of the ferromagnetic
structure � = −0.45ωA and the antiferromagnetic structure
� = 0.45ωA, respectively. We can see from Fig. 3(c) that
at very low temperature [T ∈ (0,0.05)], the behaviors of the
equilibrated QFI for the ferromagnetic structure are almost the
same for different particle number N , while as the temperature
increases, a slight difference appears among them. Specifically,
the larger the particle number N , the larger the value of the
equilibrated QFI. On the contrary, for the antiferromagnetic
structure, from Fig. 3(d) we can see that at relatively low
temperature [T ∈ (0,0.7)], the larger the particle number N ,
the smaller the value of the equilibrated QFI, while at relatively
high temperature (T > 2.5), the larger the particle number N ,
the larger the value of the equilibrated QFI.

This can be illustrated from the point of the energy
level structure (refer to Fig. 2 and the analysis in Sec. II).
Specifically, when � < 0, the lower-energy difference �EL

is smaller than the higher-energy difference �EH , and the
populations of the lower-energy levels are greater than that of
the higher-energy levels. So the lower-energy difference plays
a leading role in the thermal equilibrium thermometry. As
the particle number N increases, the lower-energy difference
�EL becomes smaller, so the value of the equilibrated QFI
increases. Note that at a very low temperature, the atoms are
almost distributed in the ground level and the first excited
level, due to the fact that the energy difference between the
ground level and the first excited level is independent of
the particle number N , so the equilibrated QFI is almost
independent of the particle number N , which can be seen
in Fig. 3(c). On the contrary, when � > 0, the lower-energy
difference �EL is larger than the higher-energy difference
�EH , but the populations of the lower-energy levels are
greater than that of the higher-energy levels. In this case, things
become complicated and there might be a tradeoff between the
population and the energy difference. So, in this regime (� >

0), the equilibrated QFI is not monotonous with respect to N

in the entire temperature range. Specifically, for relatively low
temperature, the higher-energy levels get almost unpopulated,
so the lower-energy difference �EL plays a leading role in
the thermometry precision. As a result, the larger the particle
number N , the larger the �EL, and thus the smaller the value
of the equilibrated QFI; while for relatively high temperature,
the higher-energy levels start to get populated, and the higher-
energy difference �EH is smaller than the lower-energy
difference �EL, so the higher-energy difference �EH may
play an indispensable role in the thermometry precision. As a
result, the larger the particle number N , the smaller the �EH ,
and thus the larger the value of the equilibrated QFI, which can
be seen in Fig. 3(d). Here we emphasize that for each coupling
strength � ∈ (−0.5ωA,0.5ωA), when N → ∞, i.e., in the
thermodynamic limit, the equilibrated QFI is independent of N

because when N → ∞, both �EL and �EH are independent
of N (see Sec. II).

We also investigate the effects of the coupling strength
� and the particle number N on the time te that the probe
needs to arrive at equilibrium with the bath. In this paper,
we numerically calculate te as following. For each bath
temperature T , we first give the analytical expression of the
thermal equilibrated QFI, Qe(ρ(T )), and then we calculate the
dynamical QFI, Qd (ρ(T ; t ; φ)), of the probe state at time t .
In our numerical calculations, we define te as the shortest
time which satisfies |Qd (ρ(T ; te; φ)) − Qe(ρ(T ))| < 10−12,
and in this case we suppose that the probe is approximately
in equilibrium with the bath at temperature T . Through our
numerical calculations, we find that the closer the coupling
strength � is to the energy level crossing (� = ±0.5ωA), the
slower the probe evolves to the thermal equilibrium state,
no matter what the symmetrical initial state of the probe
is. Fortunately, we can reduce the time te by increasing the
particle number N of the probe; that is, as the particle number
N increases, te becomes shorter. In Fig. 4, we plot te, at the
optimal temperature Topt, as a function of the particle number
N for � = −0.3ωA [Fig. 4(a)], � = −0.4ωA [Fig. 4(b)], and
� = −0.45ωA [Fig. 4(c)], and we choose the ground state
(φ = 0) as the probe initial state for simplicity. Here we
emphasize that some other forms of the symmetrical initial
state are also available for calculating te; however, the ground
state is relatively quicker to arrive at thermal equilibrium with
the bath than others. We can see from Fig. 4 that for fixed
particle number N , the larger the absolute value of the coupling

FIG. 4. (Color online) The time that the probe needed to reach thermal equilibrium with the bath, te, at the optimal temperature Topt, as a
function of the particle number N for (a) � = −0.3ωA, (b) � = −0.4ωA, and (c) � = −0.45ωA. φ = 0.
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FIG. 5. (Color online) Quantum Fisher information, Qd (ρ(T ; t)), as functions of the bath temperature T and the measurement time t for
different coupling strengths, � = −0.45ωA, 0,0.1ωA, 0.3ωA, 0.4ωA, 0.45ωA with N = 20. φ = π/4, kB = � = 1.

strength �, the longer the time te. However, for fixed coupling
strength �, the larger the particle number N , the shorter the
time te. In particular, we can see from Fig. 4 that the time
te is approximately scaled by 1/N for any coupling strength
�. This is because the decay rates appearing in Eq. (14) are

	M = 4ω3
M

3 (J − M + 1)(J + M), where the minimal value of
(J − M + 1)(J + M) ∼ N (when J = N/2,M = J or −J ).

B. Dynamical thermometry

All of the previous analyses are focused on the thermal
equilibrium thermometry. In practice, however, one may have
to read out the temperature before achieving full thermalization
due to some constraint, for example, the probe is very hard to
reach thermal equilibrium with the bath, i.e., te is very long.
Now, let us analyze the effects of the structure � and the
particle number N of the probe on the dynamical thermometry
[see Eqs. (14) and (15)] where the measurement is taken before
the thermal equilibrium is reached. In order to maximize the
dynamical QFI, Qd (ρ(T ; t ; φ)) [Eq. (21)], we numerically
optimize the GHZ-like initial state over φ and find that the
optimal initial state is the standard GHZ state, i.e., φ = π/4.
So we will use the standard GHZ state as our initial state of
the probe for the dynamical thermometry in the following.
And it is noted that for simplicity we will omit φ in the
expression of Qd (ρ(T ; t ; φ)), i.e., we will use Qd (ρ(T ; t)) to
represent the QFI for the standard GHZ state in the following.
Based on Eq. (21) and through our calculations, we find
that for the dynamical thermometry, the antiferromagnetic
structure (� > 0) plays a distinctive role in the thermometry
precision, that is, it can make the dynamical QFI larger than
the equilibrated QFI and, on this condition, increasing N

in a limited range can increase the value of the dynamical

QFI. Moreover, the best precision achieved in the case of
the antiferromagnetic structure can be higher than that in the
nonstructure case.

However, for the ferromagnetic structure and the nonstruc-
ture, through our numerical calculations, we find that they
cannot make the dynamical QFI larger than the equilibrated
QFI. As an example, we plot Figs. 5(a) and 5(b) to show the
behaviors of the QFI as functions of the bath temperature T

and the measurement time t with N = 20 in the ferromagnetic
and the nonstructure cases, respectively. We can see from
Figs. 5(a) and 5(b) that for both the ferromagnetic structure
and the nonstructure, the QFI would arrive at its largest value
when the probe is equilibrated with the bath.

In contrast, in Figs. 5(c)–5(f), we plot the QFI as functions
of the bath temperature T and the measurement time t for dif-
ferent coupling strengths � = 0.1ωA, 0.3ωA, 0.4ωA, 0.45ωA

in the case of the antiferromagnetic structure with N = 20.
We can see that for small coupling strength, for example,
� = 0.1ωA, the QFI arrives at its largest value when the probe
is equilibrated with the bath. But for relatively larger coupling
strengths, i.e., � = 0.3ωA,0.4ωA,0.45ωA, the largest value of
the QFI appears in the dynamical process, rather than in the
equilibrium state. Besides, we can see from Figs. 5(d)–5(f)
that as the coupling strength increases, the optimal QFI,
Qd (ρ(Topt,topt)), which has the largest value in the entire
T − t parameter space (the reddest point in Fig. 5), becomes
increasingly larger.

Furthermore, in Fig. 6(a), we plot the time optimized
QFI, i.e., QM (ρ(T )) ≡ max

t
Qd (ρ(T ; t)), as a function of the

bath temperature T for different coupling strengths � =
0, 0.3ωA, 0.4ωA, 0.45ωA, 0.49ωA with N = 20. The maxi-
mization above is carried out over all the measurement time t

during the evolution of the probe, at which the dynamical QFI
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FIG. 6. (Color online) Time optimized QFI, QM (ρ(T )), as a
function of the bath temperature T for (a) different coupling strengths
� = 0, 0.3ωA, 0.4ωA, 0.45ωA, 0.49ωA with N = 20. The inset gives
the complete behavior of QM (ρ(T )) for � = 0.49ωA. (b) Different
particle numbers N = 2,5,10,20 with � = 0.3ωA. φ = π/4,kB =
� = 1.

Qd (ρ(T ; t)) achieves its largest value. The inset of Fig. 6(a)
is for � = 0.49ωA. We can see that in the case of the
antiferromagnetic structure (� > 0), as the coupling strength
� increases, the optimal QFI is monotonically increasing and
Topt is generally shifting slightly towards the low-temperature
region. That is, the larger the coupling strength, the lower the
Topt and the larger the optimal QFI. And we can also see that
the optimal QFI obtained in the case of the antiferromagnetic
structure can be much larger than that in the nonstructure case.

The above phenomena can be interpreted as follows.
Different from the thermal equilibrium thermometry, for
the dynamical thermometry, all of the energy levels would
contribute to the thermometry precision, not just the lower-
energy levels. This is because the initial state, i.e., GHZ
state, is equally distributed in the highest excited level and
the ground level, so the transitions between the adjacent
higher-energy levels are bound to happen during the evolution.
For � = 0, i.e., the nonstructure case, all of the energy levels
are equally spaced, so the dynamical QFI cannot be larger than
the equilibrated QFI. For � < 0, the lower-energy difference
�EL is smaller than the higher-energy difference �EH , and
the populations of the lower-energy levels are greater than
that of the higher-energy levels during the evolution, so the

contributions of the higher-energy levels to the precision are
less than that of the lower-energy levels. As a result, the
dynamical QFI also cannot be larger than the equilibrated QFI,
while for � > 0, although the populations of the higher-energy
levels are still smaller than that of the lower-energy levels
during the time evolution, the higher-energy difference �EH

is smaller than the lower-energy difference �EL. So there
exists a competition in the contribution to the thermometry
precision between the population and the energy difference,
and only when the higher-energy difference �EH is far smaller
than the lower-energy difference �EL, the dynamical QFI can
be larger than the equilibrated QFI. And on this condition,
the larger the coupling strength, the smaller the higher-energy
difference �EH , so the lower the Topt and the larger the value
of the optimal QFI. Note that at Topt, the transition frequencies
of the probe, corresponding to the higher-energy differences
�EH , are close to resonance with the characteristic frequency
of the thermal fluctuation of the bath. In addition, the optimal
QFI obtained in the case of the antiferromagnetic structure
can be much larger than that in the nonstructure case because
when the coupling strength � increases to a certain value, the
higher-energy difference can be much smaller than the equally
spaced energy difference of the nonstructure case.

Next, in Fig. 6(b), we plot the time optimized QFI,
QM (ρ(T )), as a function of the bath temperature T for different
particle numbers N = 2,5,10,20 with � = 0.3ωA. We can see
from Fig. 6(b) that as the particle number N increases, the value
of the optimal QFI becomes larger. This is because that as
the particle number N increases, the higher-energy difference
�EH , which plays a leading role in this case, becomes
gradually smaller so the optimal QFI becomes increasingly
larger. And through our numerical calculations, we find that
when N → ∞, i.e., in the thermodynamic limit, the behavior
of the dynamical QFI is independent of N .

Similar to the thermal equilibrium thermometry, in the
dynamical thermometry, the closer the coupling strength �

is to the energy level crossing (� = 0.5ωA), the slower the
probe evolves and the longer the optimal measurement time
topt is, corresponding to the optimal QFI, Qd (ρ(Topt,topt)).
Fortunately, we can also reduce topt by increasing the particle
number N of the probe. In Fig. 7, we plot the optimal
measurement time topt as a function of the particle number
N for (a) � = 0.3ωA, (b) � = 0.4ωA, and (c) � = 0.45ωA.
We can see that for fixed particle number N , the larger the
coupling strength �, the longer the optimal measurement time

FIG. 7. (Color online) Optimal measurement time topt, corresponding to Qd (ρ(Topt,topt)), as a function of the particle number N for (a)
� = 0.3ωA, (b) � = 0.4ωA, and (c) � = 0.45ωA. φ = π/4.
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topt. However, for fixed coupling strength �, the larger the
particle number N , the shorter the optimal measurement time
topt. And we can see from Fig. 7 that topt is also approximately
scaled by 1/N .

IV. CONCLUSIONS

In summary, we have investigated the effects of the structure
� (strength of the dipole-dipole interaction between adjacent
atoms) and the particle number N of a ring-structure probe
on the thermometry precision of an electromagnetic field
(bath) in two complementary scenarios, i.e., the thermal
equilibrium thermometry and the dynamical thermometry.
We have calculated the quantum Fisher information (QFI)
of the probe for our model at any time and then analyzed
what roles the structure and the particle number of the probe
would play in the temperature estimation. We have found that
for the thermal equilibrium thermometry, the ferromagnetic
structure (� < 0) can measure a lower temperature of the bath
with a higher precision compared with the nonstructure probe
(� = 0). More accurately, as the absolute value of the coupling
strength � increases, the optimal temperature becomes lower
and the value of the corresponding equilibrated QFI of the
probe becomes larger. However, the probe would take a longer
time to be equilibrated with the bath. Fortunately, we can
reduce it by increasing the particle number N of the probe.
Moreover, for the ferromagnetic structure, increasing N in
a limited range can also improve the thermometry precision
more or less, especially for a relatively higher temperature. In
contrast, for the dynamical thermometry, the antiferromagnetic
structure (� > 0) would play an important role. Specifically,
when the coupling strength � increases to a certain value, the
QFI of the probe in the dynamical process can be much larger
than that in equilibrium with the bath, which is somewhat
counterintuitive. Moreover, the best precision achieved in the
case of the antiferromagnetic structure can be much higher
than that in the nonstructure case. Specifically, the larger the
coupling strength, the lower the optimal temperature and the
larger the optimal QFI. But the optimal measurement time
becomes longer. Similarly, we can reduce it by increasing the

particle number N of the probe. Additionally, increasing N in
a limited range can also increase the value of the dynamical
QFI.

While in this paper we have not discussed the effect of
the quantum correlation on the thermometry, we have tried
various initial states during our research besides the GHZ-
like state to study their dynamical thermometry, including
the ground state and the excited state which have neither
the classical correlation nor the quantum correlation, the
maximally mixed state which has classical correlation, the
superposition state composed of the highest excited state |N/2〉
and the second-highest excited state |N/2 − 1〉, and some
other forms of superposition state which have both classical
and quantum correlations. We have found that among all
of the initial states we considered, the standard GHZ state
performs the best for the dynamical thermometry. So we have
finally chosen the standard GHZ state as our initial state
of the probe for the dynamical thermometry. But the exact
mechanism of how the coherence can promote the dynamical
thermometry and what potential role is played by quantumness
in thermometry are complicated and still unknown for us,
and deserve a deep investigation in our further work. On
the other hand, here we have investigated a relatively simple
energy level structure of our model which does not involve the
energy level crossing, but when the parameter � extends the
regime we considered in this paper, there are some energy level
crossings and things become complicated. We have found that
at these points (energy level crossing), the evolution speed of
the probe would be reduced significantly, which is associated
with the quantum phase transition. We are very curious about
what would happen for the thermometry around these phase
transition points and what the relationship is between quantum
phase transition and thermometry, which will be investigated
in our future work.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (Grants No. 11274043 and
No. 11375025).

APPENDIX: THE DERIVATION OF THE MASTER EQUATION

For the model we consider in this paper, i.e., Eqs. (1)–(3) in the main text, after performing the standard Born-Markov
approximation and taking the trace over the environment, the starting point for our derivation is [31–33]

dρs(t)

dt
= −i[Hs,ρs(t)] +

∑
ω

∑
m,n

{	mn(ω)[σn
−ρs(t)σ

m
+ − σm

+ σn
−ρs(t)] + H.c.}, (A1)

where H.c. denotes the Hermitian conjugate. 	mn(ω) = ∫ ∞
0 dseiωsTrB[d∗ · Ê(rm,s)d · Ê(rn,0)ρB(T )] is the spectral correlation

tensor, ρB(T ) = 1
Z

exp[−HB/T ] is the thermal state of the environment, with the partition function Z = Tr(exp[−HB/T ]) and
T being the temperature (here we let the Boltzmann constant kB = 1). In this case, the spectral correlation tensor 	mn(ω) can be
expressed as [31,32]

	mn(ω) = |d|2
4π

∫ ∞

0
dωkκ(ωk)ω3

kF (ωkrmn)

{
[1 + N (ωk)]eik·rmn

∫ ∞

0
dse−i(ωk−ω)s + N (ωk)e−ik·rmn

∫ ∞

0
dsei(ωk+ω)s

}
, (A2)

where κ(ω) = ∑
k |gk|2δ(ω − ωk) is the spectral density and F (ωkrmn) is a diffraction-type function with the vector rmn =

rn − rm. Due to
∫ ∞

0 dse±iεs = πδ(ε) ± iP 1
ε

(where P denotes the Cauchy principal value), the spectral correlation tensor
	mn(ω) can be divided into two parts, 	mn(ω) = γmn(ω) + iS(ω).
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The real part γmn is derived from the δ functions and gives rise to the dissipative dynamics. In this paper, we assume that
all atomic dipoles are parallel, and perpendicular to the plane defined by the ring. We are working in the small atomic system
limit, where the wavelength of the electromagnetic field is far longer than the size of our probe, i.e., ωrmn ≈ 0. In this case,
F (ωkrmn) ≈ 8π/3. For a flat spectral density, the dissipative rate can be expressed as [31,32]

γmn(ω) ≈ γ (ω) = 4ω3|d|2
3

[1 + N (ω)], (A3)

where N (ω) = (exp[ω/T ] − 1)−1 is the Planck distribution with the property N (−ω) = −[1 + N (ω)]. The dissipative dynamics
corresponding to the real part is[

dρs(t)

dt

]
real

=
∑
ω>0

N∑
m,n

4ω3|d|2
3

(
[1 + N (ω)]

[
σn

−ρs(t)σ
m
+ − 1

2
{σm

+ σn
−,ρs(t)}

]
+ N (ω)

[
σn

+ρs(t)σ
m
− − 1

2
{σm

− σn
+,ρs(t)}

])
,

(A4)

where {·} represents the anticommutator.
We now turn to the imaginary part S(ω) of the spectral correlation tensor. The m = n terms, for which F (0) = 8π/3,

correspond to the ordinary Lamb shift of individual atom transitions; these can be accounted for by a renormalization of the
bare atomic frequency ωA. By contrast, the m �= n terms correspond to the Van der Waals dipole-dipole interaction induced by
the electromagnetic field. For a small atomic system ωrmn � 1, the Van der Waals dipole-dipole interaction can be described as
(here, we neglect the Stark shifts)

Hd =
N∑

m>n

�mn(σm
+ σn

− + σn
−σm

+ ), (A5)

with the interaction strength �mn given by [31,32]

�mn = d2

4πr3
mn

[
1 − 3(ε̂a · rmn)2

r2
mn

]
≈ d2

4πr3
mn

, (A6)

where ε̂a is a unit vector parallel to the direction of the dipoles. Due to the 1/r3
mn decreasing of the dipole-dipole interaction, the

interactions between the adjacent atoms play a dominant role, additionally, for symmetric geometries, i.e., for the ring structure
considered in this paper, the interaction strength �mn := � is a constant, such that the dipole-dipole interaction [Eq. (A5)]
reduces to

Hd = �
∑

n

(σn
+σn+1

− + σn
−σn+1

+ ), (A7)

where � = d2

4πr3 ,r represents the distance between the neighbor atoms, and the periodic boundary condition σN+1
± = σ 1

± is
considered. The dynamics corresponding to the imaginary part can be described as [31,32][

dρs(t)

dt

]
imag

= −i[Hs + Hd,ρs(t)]. (A8)

Combining Eqs. (A4) and (A8), the dynamics of the probe system can be expressed as

dρs(t)

dt
= −i[Hs + Hd,ρs(t)] +

∑
ω>0

N∑
m,n

4ω3|d|2
3

(
[1 + N (ω)]

[
σn

−ρs(t)σ
m
+ − 1

2
{σm

+ σn
−,ρs(t)}

]

+N (ω)

[
σn

+ρs(t)σ
m
− − 1

2
{σm

− σn
+,ρs(t)}

])
. (A9)

[1] C. M. Caves, Phys. Rev. D 23, 1693 (1981).
[2] K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler,

and P. K. Lam, Phys. Rev. Lett. 88, 231102 (2002).
[3] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and

D. J. Heinzen, Phys. Rev. A 46, R6797 (1992).
[4] J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen,

Phys. Rev. A 54, R4649 (1996).
[5] M. J. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355 (1993).

[6] H. Lee, P. Kok, and J. P. Dowling, J. Mod. Opt. 49, 2325 (2002).
[7] A. Valencia, G. Scarcelli, and Y. Shih, Appl. Phys. Lett. 85, 2655

(2004).
[8] M. de Burgh and S. D. Bartlett, Phys. Rev. A 72, 042301 (2005).
[9] H. Cramér, Mathematical Methods of Statistics (Princeton

University Press, Princeton, NJ, 1999), Vol. 9.
[10] R. A. Fisher, Philos. Trans. R. Soc. A 222, 309 (1922); Proc.

Cambridge Philos. Soc. 22, 700 (1925)

052112-10

http://dx.doi.org/10.1103/PhysRevD.23.1693
http://dx.doi.org/10.1103/PhysRevD.23.1693
http://dx.doi.org/10.1103/PhysRevD.23.1693
http://dx.doi.org/10.1103/PhysRevD.23.1693
http://dx.doi.org/10.1103/PhysRevLett.88.231102
http://dx.doi.org/10.1103/PhysRevLett.88.231102
http://dx.doi.org/10.1103/PhysRevLett.88.231102
http://dx.doi.org/10.1103/PhysRevLett.88.231102
http://dx.doi.org/10.1103/PhysRevA.46.R6797
http://dx.doi.org/10.1103/PhysRevA.46.R6797
http://dx.doi.org/10.1103/PhysRevA.46.R6797
http://dx.doi.org/10.1103/PhysRevA.46.R6797
http://dx.doi.org/10.1103/PhysRevA.54.R4649
http://dx.doi.org/10.1103/PhysRevA.54.R4649
http://dx.doi.org/10.1103/PhysRevA.54.R4649
http://dx.doi.org/10.1103/PhysRevA.54.R4649
http://dx.doi.org/10.1103/PhysRevLett.71.1355
http://dx.doi.org/10.1103/PhysRevLett.71.1355
http://dx.doi.org/10.1103/PhysRevLett.71.1355
http://dx.doi.org/10.1103/PhysRevLett.71.1355
http://dx.doi.org/10.1080/0950034021000011536
http://dx.doi.org/10.1080/0950034021000011536
http://dx.doi.org/10.1080/0950034021000011536
http://dx.doi.org/10.1080/0950034021000011536
http://dx.doi.org/10.1063/1.1797561
http://dx.doi.org/10.1063/1.1797561
http://dx.doi.org/10.1063/1.1797561
http://dx.doi.org/10.1063/1.1797561
http://dx.doi.org/10.1103/PhysRevA.72.042301
http://dx.doi.org/10.1103/PhysRevA.72.042301
http://dx.doi.org/10.1103/PhysRevA.72.042301
http://dx.doi.org/10.1103/PhysRevA.72.042301
http://dx.doi.org/10.1098/rsta.1922.0009
http://dx.doi.org/10.1098/rsta.1922.0009
http://dx.doi.org/10.1098/rsta.1922.0009
http://dx.doi.org/10.1098/rsta.1922.0009
http://dx.doi.org/10.1017/S0305004100009580
http://dx.doi.org/10.1017/S0305004100009580
http://dx.doi.org/10.1017/S0305004100009580
http://dx.doi.org/10.1017/S0305004100009580


IMPROVED THERMOMETRY OF LOW-TEMPERATURE . . . PHYSICAL REVIEW A 92, 052112 (2015)

[11] C. R. Rao, Linear Statistical Inference and Its Applications
(Wiley, New York, 1973).

[12] J. Ruostekoski, C. J. Foot, and A. B. Deb, Phys. Rev. Lett. 103,
170404 (2009).

[13] G. Kucsko, P. Maurer, N. Yao, M. Kubo, H. Noh, P. Lo, H. Park,
and M. Lukin, Nature (London) 500, 54 (2013).

[14] D. M. Toyli, F. Charles, D. J. Christle, V. V. Dobrovitski, and
D. D. Awschalom, Proc. Natl. Acad. Sci. USA 110, 8417 (2013).

[15] Z. Jiang et al., Appl. Phys. Lett. 83, 2190 (2003).
[16] L. A. Correa, M. Mehboudi, G. Adesso, and A. Sanpera, Phys.

Rev. Lett. 114, 220405 (2015).
[17] M. Brunelli, S. Olivares, and M. G. A. Paris, Phys. Rev. A 84,

032105 (2011).
[18] M. Brunelli, S. Olivares, M. Paternostro, and M. G. A. Paris,

Phys. Rev. A 86, 012125 (2012).
[19] S. Jevtic, D. Newman, T. Rudolph, and T. M. Stace, Phys. Rev.

A 91, 012331 (2015).
[20] K. D. B. Higgins, B. W. Lovett, and E. M. Gauger, Phys. Rev.

B 88, 155409 (2013).
[21] M. Bruderer and D. Jaksch, New J. Phys. 8, 87 (2006).
[22] C. Sabı́n, A. White, L. Hackermuller, and I. Fuentes, Sci. Rep.

4, 6436 (2014).
[23] T. M. Stace, Phys. Rev. A 82, 011611(R) (2010).
[24] M. Jarzyna and M. Zwierz, Phys. Rev. A 92, 032112

(2015).

[25] A. D. Pasquale, D. Rossini, R. Fazio, and V. Giovannetti,
arXiv:1504.07787.

[26] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J.
Eisert, Phys. Rev. X 4, 031019 (2014).

[27] S. Boixo, S. T. Flammia, C. M. Caves, and J. M. Geremia, Phys.
Rev. Lett. 98, 090401 (2007).

[28] S. Choi and B. Sundaram, Phys. Rev. A 77, 053613 (2008).
[29] S. M. Roy and S. L. Braunstein, Phys. Rev. Lett. 100, 220501

(2008).
[30] M. Mehboudi, M. Moreno-Cardoner, G. De Chiara, and A.

Sanpera, New J. Phys. 17, 055020 (2015).
[31] M. Gross and S. Haroche, Phys. Rep. 93, 301 (1982).
[32] K. D. B. Higgins, S. C. Benjamin, T. M. Stace, G. J. Miburn,

B. W. Lovett, and E. M. Gauger, Nat. Commun. 5, 4705 (2014).
[33] H. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press, New York, 2002).
[34] B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nat.

Phys. 7, 406 (2011).
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