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Bell inequalities violated using detectors of low efficiency

Károly F. Pál and Tamás Vértesi
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We define a family of binary-outcome n-party m � n settings per party Bell inequalities whose members
require the least detection efficiency for their violation among all known inequalities of the same type. This gives
upper bounds for the minimum value of the critical efficiency—below which no violation is possible—achievable
for such inequalities. For m = 2, our family reduces to the one given by Larsson and Semitecolos in 2001 [Phys.
Rev. A 63, 022117 (2001)]. For m > 2, a gap remains between these bounds and the best lower bounds. The
violating state near the threshold efficiency always approaches a product state of n qubits.
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I. INTRODUCTION

In a Bell experiment distant parties perform measurements
on a shared physical system. From very reasonable assump-
tions it follows that the correlations between their results
must satisfy certain inequalities. Quantum mechanics predicts
that often these Bell inequalities will not be respected [1,2].
Their violation, which excludes all local realistic explanations
for the quantum world and which is often referred to as
nonlocality, is one of the most surprising and counterintuitive
features of quantum physics. One of the earliest experimental
demonstrations of the Bell violation was done by Aspect
et al. [3], and many experiments on various systems have
been performed since (see, e.g., Refs. [4,5]). Unfortunately,
technical imperfections open various loopholes, which in
principle allow local realistic explanation for the experimental
results. Notably, a very recent experiment conducted by
Hensen et al. [6] managed to close the two main loopholes,
the so-called detection and locality loopholes, simultaneously.

The detection loophole appears in experiments performed
on systems of photons [7]. Some photons get lost during
transmission, and the efficiency of the present-day photon
detectors is also limited. If the proportion of photons detected
falls below a certain critical value ηcrit, which depends both on
the Bell inequality and on the system, then the results become
compatible with local realism. As an important property
characterizing the inequality and the system, Vallone et al. [8]
introduced the notion of the robustness of nonlocality R. They
defined this quantity as the maximum fraction of detection
events that can be lost such that the remaining ones still do not
admit a local model. It is easy to see that R = 1 − ηcrit. In the
present paper it will be assumed that the detection efficiency
is the same for all parties. There are experiments, for example,
those involving entangled photon-ion systems, where some of
the parties (the ones working with the ions) have virtually no
loss of events. Then the experiment tolerates higher losses for
the remaining parties than in the symmetric case considered
here [9,10].

Another important loophole is the locality loophole, whose
closure requires spacelike separation between the parties. This
can realistically be ensured only in Bell tests performed on
photon systems. Each loophole has been closed by some
experiment, in particular, both the locality loophole and the
detection loophole were closed by photons. (See the respective
Refs. [5] and [11] and a comprehensive review [12] on this

topic.) Moreover, Hensen et al. [6] reports a recent experiment
which closes both loopholes simultaneously using entangled
electron spins. Such an experimental verification is very
interesting (however, a loophole-free Bell experiment using
only photons is still needed) and also fairly important from a
philosophical point of view, although, as so many predictions
of quantum mechanics have proven correct, at present virtually
everyone is quite convinced that the Bell violations observed so
far are genuine and not the results of some conspiracy plotted
by nature, using different loopholes in different situations to
mislead us.

However, loophole-free Bell violation is important from
a practical point of view as well, since it is the basis of
the so-called device-independent (DI) protocols of quantum
information technology (see, for example, Ref. [13] for a
recent review). Such protocols are based on the fact that Bell
violation is impossible to fake (modulo technical loopholes).
DI protocols make it possible for anyone to check the proper
functioning of an apparatus without knowing much about
the details of its internal structure. Therefore construction
faults would be easier to notice, and it would be harder for
a malicious manufacturer to build back doors into the device.
This approach promises to perform cryptographic tasks with
an unprecedented security [14], produce genuinely random
numbers [15], and carry out black-box state tomography [16].

The violation of the simplest Bell inequality, the two-
party (n = 2) two-setting per party (m = 2), binary-outcome
Clauser-Horne-Shimony-Holt (CHSH) inequality [17], re-
quires at least ηcrit = 2/3 ≈ 0.667 detection efficiency [18].
This value may be reached with a partially entangled two-qubit
state, which approaches a product state near the threshold
efficiency. In this case the robustness of nonlocality is R =
1/3. As far as we know, with two parties performing an
arbitrary number m of measurements on a pair of qubits,
no better value has been achieved. In Ref. [10] a bipartite
four-setting inequality was found with a somewhat lower
critical efficiency of ηcrit = (

√
5 − 1)/2 ≈ 0.618. To get this

value a pair of ququarts had to be used. Larsson and
Semitecolos [19] have introduced a family of n � 2 party
binary-outcome Bell inequalities with m = 2 settings per
party with ηcrit = n/(2n − 1). Later, this threshold value was
proven to be optimal by Massar and Pironio [20]. That is,
no two-setting n-party Bell inequality may be violated with
any lower detection efficiency. Note that this threshold holds
true for measurements with any number of outcomes and any
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dimensionality of the local Hilbert space used. This result also
means that for m = 2 an efficiency of less than 1/2 is never
enough.

Let η∗ be the smallest of the critical detection efficiencies
belonging to the Bell inequalities characterized by a certain
number of parties and numbers of settings and measurement
outcomes for each party. Above η∗ there are quantum mea-
surements exhibiting correlations that cannot be explained
by any local hidden-variables model. The value for ηcrit

given by Ref. [19] and cited above is just η∗ for the set of
binary-outcome n-party two-setting per party Bell inequalities.
For n-party and more than two-setting per party (m > 2)
inequalities, η∗ is not known. Massar and Pironio [20] have
given a lower bound for this quantity by constructing explicit
local-hidden-variables models reproducing the correlations for
efficiencies below this bound. For m = 2 the bound is the same
as that of Ref. [19]. Based on combinatorial considerations,
Buhrman et al. [21] have derived an upper bound for η∗, when
m is some power of 2. Reference [22] also provided upper
bounds for many (n, m) combinations (m prime) by giving
explicit Bell inequalities corresponding to those efficiency
values. The inequalities of that work may become useful in
practice as well, because they require the Greenberger-Horne-
Zeilinger (GHZ) state [23], well distinguishable measurement
settings even near the threshold efficiency, and the noise
tolerance is also quite good.

Very recently tripartite Bell inequalities have been con-
structed [24] requiring low detection efficiencies for their
violation with the W state [25]. With three measurement
settings for one of the parties and two settings for the
other two parties, a critical efficiency of ηcrit = 0.6 has been
achieved. The same efficiency has been necessary for an
inequality symmetric for the permutations of the parties with
m = 3 settings per party. For m = 4, 6, and 8 this value has
been improved to ηcrit = 0.509 036, 0.502 417, and 0.501 338,
respectively. For larger m the construction would have required
too many computational resources, but the tendency indicates
that the result would have remained above 0.5. However, if
a small admixture of a product state to the W state has been
allowed, ηcrit = 0.5 has been found for an m = 4 inequality.
This value did not improve when m was increased to 6.

In this work we have used an iterative procedure alternating
a linear programming step and a semidefinite programming
step to get the m = 3, n = 3, and n = 4 binary-outcome Bell
inequalities with the smallest possible ηcrit. In this procedure
we made assumptions neither about the symmetry of the
inequality nor about the properties of the state, not even
about the dimensionality of the Hilbert space. We have
produced tripartite inequalities reaching ηcrit = 0.5 already
with three binary-outcome settings per party, and for m = 3,
n = 4 we have obtained ηcrit = 6/13 ≈ 0.461 54. We could get
the same values with confining ourselves to permutationally
symmetric inequalities. Numerical calculations showed that
the state giving the maximum violation near the threshold
efficiency is a state of n qubits, namely, a mixture of the
W state and a product state that approaches the product
state near ηcrit, the same behavior as that observed for the
two-setting inequalities of Larsson and Semitecolos [19]. The
measurement settings could be chosen the same for all parties.
Each measurement operator could be characterized by a single

angle that approached zero at ηcrit but at different paces for the
different settings, again, similarly to what is seen in Ref. [19].
These observations helped us to make the generalization and
to define a whole family of Bell inequalities with any m and
n � m. The members of the family require the least detection
efficiency for their violation among all known inequalities of
the same type, giving upper bounds for η∗. For m = 2 the
inequalities are the same (apart from swapping of the two
measurement settings) as those of Ref. [19].

The structure of this paper is as follows. In Sec. II, we give
explicitly the family of multipartite Bell expressions. Then, in
Sec. III, we give the optimal quantum violation of these Bell
inequalities with qubit systems accounting for finite detection
efficiencies. Our main result is presented in formula (8),
providing (to the best of our knowledge) the best upper bound
on η∗ for any n � m parties and m settings per party. To
get this formula, we have used two claims: one regarding
the equality of certain quantum conditional probabilities and
the negligibility of others, the other concerning the classical
bound. The first claim is proven in Sec. IV and the second
one in Sec. V. To demonstrate the behavior of the relevant
quantities, we highlight the example n = m = 3 in Sec. VI,
where we give the explicit Bell expression and also show
the optimal measurement settings (angles) and Bell violation
departing from the value of the critical detection efficiency.
Finally, we summarize our conclusions.

II. THE INEQUALITIES

We consider the Bell scenario with n distant observers.
Each observer may freely choose between a set of m binary
measurement settings with possible outcomes zero and one.
Let Aij denote the j th measurement of the ith party. A Bell
inequality corresponding to this setup may be written as

m∑
j1=0

m∑
j2=0

. . .

m∑
jn=0

Bj1j2...jn
P

(
A1j1A2j2 . . . Anjn

)
� L, (1)

where L is the classical bound, and P (A1j1A2j2 . . . Anjn
) ≡

P (11 . . . 1|A1j1A2j2 . . . Anjn
) denotes the conditional probabil-

ity of all parties getting outcome 1, given they have measured
A1j1 , A2j2 , and so on. For the sake of brevity of the notation, for
terms involving only a subset of observers, we have introduced
a zeroth measurement whose outcome is always 1 and which is
always supposed to be performed. This measurement appears
in these terms for the observers, not members of the subset
considered. Also note that the value of B00...0 in Eq. (1) is
chosen to be zero to make the value of L unambiguous.

The inequalities we introduce in the present paper are
invariant with respect to the permutations of the parties,
and n � m holds. Besides terms involving all n observers,
they contain only terms with n − 1 parties (that is, terms
containing equal or less than n − 2 parties are zero). Due
to the permutational symmetry, Bell coefficients having the
same set of indices in different orders have the same value.
Therefore we only give explicit values for coefficients with
indices j1 � j2 � j3 · · · � jn.

The nonzero (n − 1)-party Bell coefficients have the value
of −1. Besides the index zero for the party not involved,
they have indices from 2 to m once, plus index m another
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n − m times if n > m. For example, if m = 2 and n > 2, then
B02...2 = −1, or if m = 3 and n > 3, then B023...3 = −1. For
larger values of m the nonzero coefficients are

B0234...mm...m = −1, (2)

and the ones we get by permuting the indices of the coefficients
above. Thus there are n!/(n − m + 1)! nonzero (n − 1)-party
coefficients.

Furthermore, we have n-party Bell coefficients whose value
is positive. They are the ones that have the same set of indices
as the nonzero (n − 1)-party coefficients above, but index zero
is replaced by anything from 1 to m. If this index is m, the value
of the coefficient is (n − m + 1); otherwise it is 1. Therefore,
we may write (again for larger m)

B1234...mm...m = 1

B2234...mm...m = 1

B2334...mm...m = 1

B2344...mm...m = 1

...

B234...mmm...m = n − m + 1. (3)

Again, all coefficients we get by permuting the indices have the
same value. Thus the first and the last line represent n!/(n −
m + 1)! and n!/(n − m + 2)! coefficients, respectively, while
the lines in between represent n!/2(n − m + 1)! coefficients.

There are also some n-party Bell coefficients having
negative values,

Bk1k2k3k4...kn
< 0, (4)

where the indices are such that the quantum values of the con-
ditional probabilities multiplying these coefficients calculated
with the quantum state and the measurement operators we
will give later are vanishingly small compared to the quantum
conditional probabilities multiplying the coefficients given by
Eqs. (2) and (3). Then the actual values of these coefficients
will not influence the quantum value of the Bell expression
[the left-hand side of Eq. (1)]; therefore we may choose them
freely. As we will show later, this freedom makes it possible
to achieve that the classical bound L appearing in Eq. (1) is
zero, which is appropriate for our purpose. There are many
solutions, and they all give the same value for the threshold
detector efficiency. The maximum quantum violation above
the threshold efficiency does depend on the actual choice, but
we have made no attempt to find the best one.

All other Bell coefficients are zero.

III. QUANTUM VIOLATION WITH DETECTORS
OF LIMITED EFFICIENCY

Let us consider the quantum violation of our Bell inequality.
If we confine ourselves to von Neumann measurements on a
pure n-qubit state |ψ〉, the quantum value of the conditional
probability appearing in Eq. (1) may be written as

PQ

(
A1j1A2j2 . . . Anjn

) = 〈ψ |
n⊗

i=1

Âiji
|ψ〉, (5)

where Âij for 1 � j � m is the measurement operator corre-
sponding to measurement Aij , Âi0 = Î is the identity operator
in the subspace of the ith observer, and

⊗n
i=1 Âiji

denotes
the tensor product of the operators of the parties. The state
|ψ〉 we consider in this paper is invariant with respect to the
permutations of the parties, and all parties have the same set
of measurement operators, that is, Âij = Âj is independent of
i. In our case, the Bell inequality of Eq. (1) is permutationally
invariant. If the classical bound is zero, the condition for its
quantum violation can be written as

m∑
j1=0

m∑
j2=j1

· · ·
m∑

jn=jn−1

π (j1,j2, . . . ,jn)Bj1j2...jn

×〈ψ |
n⊗

i=1

Âji
|ψ〉 > 0, (6)

where π (j1,j2, . . . ,jn) denotes the number of independent
permutations of its arguments. Let us suppose that the
observers have detectors of limited efficiency η < 1. Let them
agree that each of them signal outcome zero whenever the
particle is not detected. Note that in principle the observers
may agree on more general local strategies in the event of no
detection (e.g., in case of no detection some of the parties may
signal outcome 1). In fact, we have no general proof that the
present one is the optimal strategy.

In this case each term in the left-hand side (l.h.s.) of Eq. (6)
must be multiplied by the probability of detecting all particles
concerned to get the condition for the detection of the violation.
This probability is ηl for an l-party term, where l is the number
of nonzero indices. At the threshold efficiency ηcrit the resulting
expression is zero. This condition gives an nth-order equation
for ηcrit. In our case the solution is simple, because we have
restricted ourselves to n-party and (n − 1)-party terms. The
condition for being able to detect the violation is

ηn−1
m∑

j2=1

m∑
j3=j2

· · ·
m∑

jn=jn−1

π (0,j2, . . . ,jn)B0j2...jn

× 〈ψ |Î ⊗
n⊗

i=2

Âji
|ψ〉 + ηn

m∑
j1=1

m∑
j2=j1

. . .

×
m∑

jn=jn−1

π (j1,j2, . . . ,jn)Bj1j2...jn

× 〈ψ |
n⊗

i=1

Âji
|ψ〉 > 0. (7)

Then ηcrit is −1 times the ratio of the (n − 1)-party and n-party
contributions in the expression above. The former must be
negative while the latter positive such that the l.h.s. is positive
above ηcrit.

In the next section we will show that with an appropriate
choice of the state vector and the measurement settings, the
quantum conditional probabilities associated with each Bell
coefficient given in Eqs. (2) and (3) are equal. As the same
number appears both in the numerator and the denominator
of the ratio giving ηcrit, we can simplify with it. The factor π

giving the number of independent permutations of the indices
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is n!/(n − m + 1)! for the (n − 1)-party coefficient and for
the n-party coefficient given in the first line of Eq. (3). The
factor is one-half of this for the next m − 2 coefficients, and
it is n!/(n − m + 2)! for the last one. Taking into account the
values of the coefficients we can give the expression for ηcrit

as

ηcrit = 1

1 + m−2
2 + n−m+1

n−m+2

= 2

2 + m − 2
n−m+2

. (8)

Here we have simplified the fraction by the common factor
n!/(n − m + 1)!. This expression is our main result. Our Bell
inequalities are such that their violation, at least in principle,
can be detected by using detectors of as low efficiency as
given above. Therefore this is an upper bound for the threshold
detector efficiency which may be achieved for n-party m � n

setting binary-outcome Bell inequalities. The expression gives
2/(m + 1) for n = m and 2/(m + 2) in the limit of large
n. However, if we increase n, we can achieve less than by
increasing both m and n by just 1.

To prove Eq. (8) we must show that the relevant quantum
conditional probabilities are really equal as we have claimed
and that the local bound is zero. We will do this in the next
two sections.

IV. THE QUANTUM CONDITIONAL PROBABILITIES

Let all measurements be real ones, that is, performed in the
X − Z plane. Then each operator Âj can be characterized by
a single real variable φj :

Âj |0〉 = 1 − cos φj

2
|0〉 − sin φj

2
|1〉 ≡ c−

j |0〉 + sj |1〉

Âj |1〉 = − sin φj

2
|0〉 + 1 + cos φj

2
|1〉 ≡ sj |0〉 + c+

j |1〉. (9)

A zero angle corresponds to the measurement giving outcome
1 with probability 1 for the |1〉 state. Let all measurement
angles be small, and let them obey the following hierarchy:

0 � |φ1| 	 |φ2| 	 |φ3| 	 · · · 	 |φm|. (10)

We will show later that above ηcrit if φm is small enough
and the differences between the orders of magnitudes of the
consecutive angles are large enough the Bell inequality will
always be violated with the appropriate state. Numerical results
for the optimum choice in the case of n = m = 3 will be shown
in Sec. VI.

Let the state be

|ψ〉 = cos α|0〉 − sin α|W 〉, (11)

where

|0〉 ≡ |00 . . . 0〉 (12)

|W 〉 ≡ 1√
n

(|10 . . . 0〉 + |01 . . . 0〉 + · · · + |00 . . . 1〉). (13)

This state is permutationally symmetric. The angle α will be
small, and therefore the state is predominantly the separable
|0〉 state with a very small amount of |W 〉 state added.

First we calculate the quantum conditional probability by
multiplying the (n − 1)-party Bell coefficient given by Eq. (2).

From Eqs. (5) and (11) we get

PQ(A10A22A33 . . . AmmA(m+1)m . . . Anm)

= cos2 αS00 − 2 cos α sin αSW0 + sin2 αSWW, (14)

where

Sστ ≡ 〈σ |Î ⊗
n⊗

i=2

Âi |τ 〉, (15)

with Âi ≡ Âm when i � m. As the first step to calculate these
matrix elements, from Eqs. (9) and (12) we get:

Î ⊗
n⊗

i=2

Âi |0〉 = |0〉 ⊗
n⊗

i=2

(c−
i |0〉 + si |1〉). (16)

Then, by using Eqs. (12) and (13) it is easy to calculate S00
and SW0. We may also get SWW from a similar, but somewhat
lengthier calculation. The result is:

S00 =
n∏

i=2

c−
i

SW0 = 1√
n

n∑
k=2

sk

c−
k

n∏
i=2

c−
i ≡ S00

ξ

SWW = S00

(
1

n
+ 1

ξ 2

)
. (17)

As |c−
i | 	 |si |, ξ is a small number. By substituting Eqs. (17)

into Eq. (14) we get

PQ(A10A22A33 . . . AmmA(m+1)m . . . Anm)

= S00

[(
cos α − sin α

ξ

)2

+ sin2 α

n

]
. (18)

The first term in the square bracket dominates over the second
one. However, as we will see later, the contribution from
the n-party terms is of the same order as the second term.
The threshold efficiency may only be finite if the first term
vanishes. We can achieve that by choosing the mixing angle α

characterizing the quantum state such that tgα = ξ . As the role
of this choice is to eliminate the leading-order term, to achieve
this in practice would require an extremely precise preparation
of the state. Then we arrive at

PQ(A10A22A33 . . . AmmA(m+1)m . . . Anm) = S00 sin2 α

n
. (19)

To get the factors multiplying the Bell coefficients of
Eqs. (3) and (4), let us calculate the general n-party conditional
probability. Analogously to Eqs. (14) and (15) we may write

PQ

(
A1j1A2j2 . . . Anjn

)
= cos2 αF00 − 2 cos α sin αFW0 + sin2 αFWW, (20)

where

Fστ ≡ 〈σ |
n⊗

i=1

Âiji
|τ 〉. (21)

We note that Fστ depends on the set of indices ji (i = 1, . . . ,n)
characterizing the particular n-party coefficient. We will not
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explicitly mark this dependence. At the same time, Sστ defined
in Eq. (15) has no such dependence, as it corresponds to
the well-defined indices of the single nonzero (n − 1)-party
coefficient. We can calculate the matrix elements above
similarly to the ones given in Eq. (17), and we get:

F00 =
n∏

i=1

c−
ji

FW0 = 1√
n

n∑
k=1

sjk

c−
jk

n∏
i=1

c−
ji

≡ F00

χ

FWW = F00

χ2
. (22)

By substituting Eqs. (22) into Eq. (20) we get

PQ

(
A1j1A2j2 . . . Anjn

) = F00

(
cos α − sin α

χ

)2

= F00 sin2 α

(
1

ξ
− 1

χ

)2

. (23)

Here we used the relation tgα = ξ .
Let us consider the quantum conditional probabilities

multiplying the n-party coefficients whose values are given
explicitly in Eq. (3). The product giving F00 includes exactly
the same elements as the one giving S00, plus one more [see
Eqs. (17) and (22)]. The same is true for the sums defining χ

and ξ . The extra element is the one of index l for the lth line of
Eq. (3). Then F00 = S00c

−
l and 1/χ = 1/ξ + sl/(c−

l

√
n). By

substituting these values into Eq. (23) we get that the result is
s2
l /c

−
l times the value given in Eq. (19) for the (n − 1)-party

conditional probability. But this extra factor is one in the limit
of small angles. Therefore, for our state and measurement
settings, the quantum conditional probabilities multiplying
each of the Bell coefficients of Eqs. (2) and (3) are equal
indeed and have the value given in Eq. (19).

Now, let us consider which are the Bell coefficients Eq. (4)
whose value may freely be chosen. From Eqs. (19) and (23) it
follows that the quantum probability characterized by indices
k1 � k2 � · · · � kn is negligible compared to the significant
ones if ∏n

i=1 c−
ki∏n

i=2 c−
i

(
n∑

i=2

si

c−
i

−
n∑

i=1

ski

c−
ki

)2

	 1. (24)

Here we substituted the values of S00, F00, ξ , and χ from
Eqs. (17) and (22). However, c−

i = (1 − cos φi)/2 ≈ φ2
i /4 and

si = − sin φi/2 ≈ −φi/2, if the angles are small; therefore the
above condition may be written as[∏n

i=1 φki∏n
i=2 φi

(
n∑

i=1

1

φki

−
n∑

i=2

1

φi

)]2

	 1. (25)

If k1 = 1, due to the hierarchy imposed by Eq. (10) the
dominant term in the parentheses is 1/φ1. Then the condition
above may be written as (

∏n
i=2 φki

/
∏n

i=2 φi)2 	 1. This
relation holds if φki

� φi for 2 � i � n, and for at least one
index w the inequality is strict, in which case φkw

	 φw.
When deriving the formulas we have implicitly supposed
that φ1 
= 0. However, the result is true for φ1 = 0 as well.

If ki = i + 1 for i < l, while kl = kl−1 = l, the dominant
term in the parentheses is 1/φl and the condition becomes
(
∏n

i=l+1 φki
/
∏n

i=l+1 φi)2 	 1. Then if the same relations hold
between φi and φki

as for the k1 = 1 case, but now for
l + 1 � i � n, Eq. (25) will hold. To ensure that the classical
bound is zero, it is sufficient to allow just those Bell coefficients
to have negative values that correspond to ki obeying the
conditions above.

Now, let us show that above ηcrit [see Eq. (8)] the
measurement operators may be chosen such that the l.h.s.
of Eq. (7) is positive, that is, the Bell inequality is violated,
indeed. Let us underestimate the l.h.s. of Eq. (7). First, let us
underestimate the factors of the positive Bell coefficients of
Eq. (3) by replacing all of them by the value of the smallest
one of them, namely, by s2

m/c−
m ≡ 1 − ε1 times the factor of

the (n − 1)-party coefficient of Eq. (19). It is easy to see that
ε1 > 0, and its value can be made as small as necessary by
choosing φm, the largest one of the measurement angles small
enough. At the same time, let us overestimate the factors of the
negative Bell coefficients of Eq. (4) by replacing them all by
the largest one of them, which is nothing else than the factor of
the (n − 1)-party coefficient times ε2, where ε2 is the largest
value the l.h.s. of Eq. (24) may take with ki corresponding to
one of the appropriate Bell coefficients. If the measurement
angles are small, the l.h.s. of Eq. (24) may be approximated
well by some (φp/φq)2, where p < q, or by products of such
factors. Then, taking into account the hierarchy of Eq. (10), ε2

is approximately the largest of (φq−1/φq)2. Therefore ε2 can
be arbitrarily small if all the ratios of the absolute values of
the consecutive angles in Eq. (10) are small enough.

After some straightforward calculations, Eq. (7) with its
l.h.s. underestimated as above may be written as

R

(
η − ηcrit − ε1

η

ηcrit
− ε2ηZ

)
> 0, (26)

where

R ≡ ηn−1 n!

(n − m + 1)!

S00 sin2 α

n
(27)

and

Z ≡ − (n − m + 1)!

n!

×
∑

k1<k2<···<kn

π (k1,k2, . . . ,kn)Bk1k2...kn
. (28)

The sum above goes through all combinations of ki , corre-
sponding to a negative full correlation Bell coefficient. When
deriving the formulas above, we used Eqs. (8) and (19). The
factor Z is a finite positive number for any m and n � m.
Then, for η > ηcrit whenever ε1 and ε2 are small enough,
which they can be, if the largest angle is small enough and
the order-of-magnitude differences between the consecutive
measurement angles are large enough, Eq. (26) is satisfied,
which means that the Bell inequality is violated. The strategy
above to choose the measurement settings is far from optimal.
Unfortunately, as we show in Sec. VI, even the optimally
chosen measurement settings get very close to each other,
becoming more and more indistinguishable as we approach
ηcrit, even for n = m = 3. Therefore not only the preparation
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of the state but the setting of the measurements would require
extreme precision.

V. THE CLASSICAL CASE

For an n-party Bell inequality with m measurement settings
per party the classical bound is zero if

m∑
j1=0

m∑
j2=0

· · ·
m∑

jn=0

Bj1j2...jn
a1j1a2j2 . . . anjn

� 0 (29)

for all deterministic local strategies, which are defined by the
actual choices of aij (i = 1, . . . ,n; j = 1, . . . ,m), where each
of them may take the value of zero or 1, while ai0 = 1 for
all i. The ai0 values appear in the subcorrelation terms. A
deterministic strategy means that each party has a definite
outcome for each measurement setting with probability 1. This
outcome for the j th measurement of the ith party is given by
aij . Let us denote the matrix with elements aij by ā. Then
for permutationally symmetric inequalities Eq. (29) may be
rewritten as

j2∑
j1=0

j3∑
j2=0

· · ·
m∑

jn=0

Bj1j2...jn
C(ā,j1,j2, . . . ,jn) � 0, (30)

where

C(ā,j1,j2, . . . ,jn)

= π (j1,j2, . . . ,jn)

n!

∑
σ∈Sn

n∏
i=1

aijσ (i)

= π (j1,j2, . . . ,jn)

n!
perm[ᾱ(ā,j1,j2, . . . ,jn)]. (31)

The sum in the first line extends over all elements σ

of the symmetric group Sn, that is, over all permutations
of the numbers 1,2, . . . n. We should only have summed
over the independent permutations of the numbers j1,j2 . . . jn.
The difference is taken care of by the factor in front of
the summation, with π (j1,j2, . . . ,jn) denoting the number of
independent permutations of its arguments. The sum itself is
nothing else but the permanent of the n × n square matrix
ᾱ(ā,j1,j2, . . . ,jn) consisting of the j1th, j2th,..., jnth columns
of the ā strategy matrix.

For the Bell inequality given by Eqs. (2)–(4), the condi-
tion (30) that the classical bound is zero may be written as

2perm[ᾱ(ā,1234 . . . mm . . . m)]

+ perm[ᾱ(ā,2234 . . . mm . . . m)]

+ perm[ᾱ(ā,2334 . . . mm . . . m)]

+ perm[ᾱ(ā,2344 . . . mm . . . m)] + . . .

+ 2
n − m + 1

n − m + 2
perm[ᾱ(ā,234 . . . mmm . . . m)]

− 2perm[ᾱ(ā,0234 . . . mm . . . m)] − Q(ā) � 0. (32)

Here we have used Eq. (31); we have substituted the actual
values of π (j1,j2, . . . ,jn) and simplified the inequality by a
factor of 2(n − m + 1)!. The Q(ā) � 0 denotes the contribu-
tion of terms due to the negative n-party Bell coefficients of
Eq. (4), multiplied by minus 2(n − m + 1)!.

A permanent is independent of the order of the rows
and columns of the matrix. Therefore, we may rearrange
the columns of the matrices appearing in Eq. (32) such that
their j th column is the (j + 1)th column of ā if j � m − 1,
the mth column if m − 1 � j � n − 1, and only their last
column differs from each other. However, the sum of two
permanents whose matrices differ from each other only in one
single column (row) is the permanent of the matrix having the
sum of those columns (rows) in that position. Furthermore,
multiplying a permanent with a factor has the same effect as
multiplying one of the columns (rows) of the matrix. Therefore,
Eq. (32) may be rewritten as

perm[β̄(ā)] − Q(ā) � 0, (33)

where

βij = ai(j+1) j � m − 1

βij = aim m − 1 � j � n − 1

βin = 2ai1 +
m−1∑
k=2

aik + 2
n − m + 1

n − m + 2
aim − 2. (34)

Our Bell inequality is appropriate if Eq. (32) holds for
all deterministic strategies. The permanents appearing in the
expression cannot be negative, as all the elements of the
matrices involved are 0 or 1. Therefore, strategies giving zero
for all terms with a positive sign trivially satisfy Eq. (32).
We also do not have to consider explicitly any strategy
leading to a nonzero factor for a Bell coefficient whose
value does not affect the threshold efficiency [Eq. (4)].
The Q(ā) depends linearly on such a coefficient; if we
choose its absolute value large enough, we can always satisfy
Eq. (32).

First let us consider strategies giving a positive value for
the first term of Eq. (32). This is true if and only if there is at
least one party having outcome 1 for the first measurement
setting, at least one other party having outcome 1 for the
second measurement setting, and so on, and finally, there
are at least n − m + 1 other parties having outcome 1 for
their mth measurement setting. For a permutationally invariant
inequality, all strategies that differ from each other only in
the order of parties give the same constraints for the Bell
coefficients. Therefore, without sacrificing generality, we may
assume that the first party’s first measurement outcome is 1, the
second party’s second measurement outcome is 1, and so on,
and finally, the last n − m party’s mth measurement outcome
is 1, that is, aik = 1, where k = min(i,m). We only have to
consider strategies whose matrices contain zeros to the left
of these elements in each row, that is, aik′ = 0 if 0 < k′ < k.
If aik′ were 1, then the factor of B12...(i−1)k′(i+1)...mm... would
not be zero. However, the quantum conditional probability
associated with this coefficient is (φk′/φk)2 	 1 times that
associated with the significant coefficients [this follows from
Eq. (25)]; therefore we need not consider such a strategy
explicitly indeed. The matrix of the remaining strategies for
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m = 6 and n = 9, without the zeroth column, is as follows:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a12 a13 a14 a15 a16

0 1 a23 a24 a25 a26

0 0 1 a34 a35 a36

0 0 0 1 a45 a46

0 0 0 0 1 a56

0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (35)

With such a strategy, matrix Q(ā) appearing in Eqs. (32)
and (33) is zero; terms contributing to it have zero factors.
It is also clear that increasing the number of parties beyond m

does not allow any more free parameters.
For this example Eq. (33) may be written as follows:

perm

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a12 a13 a14 a15 a16 a16 a16 a16 β1n

1 a23 a24 a25 a26 a26 a26 a26 β2n

0 1 a34 a35 a36 a36 a36 a36 β3n

0 0 1 a45 a46 a46 a46 a46 β4n

0 0 0 1 a56 a56 a56 a56 β5n

0 0 0 0 1 1 1 1 βmn

0 0 0 0 1 1 1 1 βmn

0 0 0 0 1 1 1 1 βmn

0 0 0 0 1 1 1 1 βmn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0. (36)

Let us expand the permanent along its last row. There are
n − m + 1 ones in that row, all in columns equal to each
other. These terms of the expansion give n − m + 1 times
the permanent of the matrix with that column and the last
row deleted. The contribution from the last element will be
βmn times the permanent of the matrix with its last row and
last column deleted. The sum of the contributions may be
expressed as the permanent of a single matrix whose ith
element in its last column is (n − m + 1)βin + βmnaim, which
we can calculate from Eqs. (34) and (35). The value we get is

(n − m + 1)

(
2ai1 +

m−1∑
k=2

aik + 2
n − m

n − m + 1
aim − 2

)
, (37)

which is just n − m + 1 times the last column of the matrix
with n − 1 parties. Therefore the value of the permanent for
n parties is n − m + 1 times the value for n − 1 parties. If
we repeat this n − m times we get (n − m + 1)! times the
permanent for n = m.

Let us consider n = m. For m = 6 Eq. (33) may be written
as

perm

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a12 a13 a14 a15 a16
∑6

j=2 a1i

1 a23 a24 a25 a26
∑6

j=3 a2i − 1

0 1 a34 a35 a36
∑6

j=4 a3i − 1

0 0 1 a45 a46 a45 + a46 − 1

0 0 0 1 a56 a56 − 1

0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0.

(38)

The values in the last column follow from Eq. (34). If
we expand the permanent along its last row we get the

permanent of a matrix of the same form corresponding to
m − 1 measurement settings. If we repeat this m − 1 times,
we finally get zero for the permanent. Therefore Eq. (33), and
equivalently, Eq. (32) is satisfied as an equality. Although we
demonstrated this result for the example of m = 6, it is obvious
that it is true for any m.

So far we have dealt only with strategies that lead to a
nonzero factor for the first term of Eq. (32). Now let us consider
strategies giving zero for the first l − 1 terms of Eq. (32)
and nonzero for the lth term. If n = m = 8 and l = 5 the
strategy matrix to be considered without the zeroth column is
the following:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 1 a13 a14 a15 a16 a17 a18

a21 a22 1 a24 a25 a26 a27 a28

a31 a32 a33 1 a35 a36 a37 a38

0 0 0 0 1 a46 a47 a48

0 0 0 0 1 a56 a57 a58

0 0 0 0 0 1 a67 a68

0 0 0 0 0 0 1 a78

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (39)

Elements ak(l−1) = 0 and akl = 0 for k < l; otherwise the kth
term of Eq. (32) would be positive. Furthermore, aij = 0 if
j < i for i > l. For example, a73 above is zero. If it were
not, the factor multiplying B23345568 would be positive. The
quantum conditional probability associated to this coefficient
is small by a factor of (φ5/φ7)2 	 1 [see Eq. (25)]. For the
interesting strategies a larger number of parties would mean
an additional n − m copies of the last line, which contains a
single 1 in the last position. Only this property of the matrix was
used when we showed that increasing n beyond m introduces
only a positive factor, which does not affect the validity of the
inequality. Therefore it is enough to deal with n = m.

For the present example Eq. (33) may be written as

perm

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a13 a14 a15 a16 a17 a18 β1m

a22 1 a24 a25 a26 a27 a28 β2m

a32 a33 1 a35 a36 a37 a38 β3m

0 0 0 1 a46 a47 a48 β4m

0 0 0 1 a56 a57 a58 β5m

0 0 0 0 1 a67 a68 β6m

0 0 0 0 0 1 a78 β7m

0 0 0 0 0 0 1 β8m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0.

(40)
This permanent is equal to the product of the permanents of
two blocks along the diagonal of sizes (l − 2) × (l − 2) and
(n − l + 2) × (n − l + 2). In the present case,

perm

⎛
⎜⎝

1 a13 a14

a22 1 a24

a32 a33 1

⎞
⎟⎠

× perm

⎛
⎜⎜⎜⎜⎜⎝

1 a46 a47 a48 β4m

1 a56 a57 a58 β4m

0 1 a67 a68 β4m

0 0 1 a78 β4m

0 0 0 1 β4m

⎞
⎟⎟⎟⎟⎟⎠. (41)
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If we substitute the values of the last column of the second
matrix from Eq. (34), we get a matrix whose structure is very
similar to the one in Eq. (38). There is one important difference.
Now the last elements of each row always equal the sum of
the preceding elements minus 2. In the case of Eq. (38), this
is not true for the first row, the minus 2 is missing. Due to this
difference, if we follow the steps we have taken in the case of
Eq. (34), we will not get zero but −2. Therefore, Eq. (32) is
satisfied now as a strict inequality.

To determine the values of the negative n-party Bell
coefficients, it is necessary to calculate the values of more
general permanents, which do not have zero entries at the right
positions, making the calculation possible even analytically.
There is no efficient way to evaluate a general permanent;
therefore for larger m and n the determination of the explicit
form of the Bell inequality may become infeasible. For small
m and n it is not difficult; in the next section we show an
appropriate inequality for n = m = 3.

VI. THE 333 CASE

For m = n = 3 a permutationally invariant inequality with
the properties required may be defined by the following
coefficients:

B023 = −1 B112 = −1 B113 = −1 B122 = −2

B123 = +1 B223 = +1 B233 = +1. (42)

Bell coefficients having the same set of indices in different
orders as any of the coefficients above have the same value.
All other coefficients are zero.

We got this inequality by iterating a linear programming
step and a semidefinite programming step. The former provides
the Bell inequality of zero classical bound with no single-party
marginals having the lowest critical detector efficiency from
known matrix elements of the measurement operators. The
procedure is the same as the one we used in Ref. [24]. In
the semidefinite programming step we applied the method
of Navascués et al. [26] at level 3 (that is, the maximum
length of all tuples of operators is 3 in the sequence) to get
an approximation for the matrix elements and a quite tight
upper bound for the violation. As starting values, we have
chosen three random settings on the Bloch sphere (the same for
each party) along with a random symmetric three-qubit state.
Note the initial qubit measurements generally do not confine
the state to a three-qubit state during the iteration procedure.
We have repeated the above iterative procedure many times
with different (randomly generated) starting values. The best
inequality we obtained is the one given above. Note that
the only assumption we have made is that we allowed no
single-party marginals, we actually allowed nonsymmetric
inequalities, and the procedure constrained neither the state,
nor the measurement operators, not even the dimensionality of
the Hilbert space.

We applied the seesaw algorithm [27] to the inequality
using three-qubit states. From this calculation it turned out
that this space was enough to get the violation and ηcrit = 1/2.
From this calculation we could also determine the structure
of the state and the behavior of the measurement operators.
We also derived a Bell inequality with m = 3 and n = 4,
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FIG. 1. The optimum measurement angles for the m = n = 3
inequality as functions of the detector efficiency.

and we have studied its behavior with the seesaw algorithms.
These results, and those for m = 2 and n > 2 by Larsson
and Semitecolos [19], made it possible for us to make the
generalization and to get the family of inequalities presented
in this paper. Near ηcrit all these inequalities can be violated
by the |00 . . . 0〉 state, with a small admixture of the n-particle
W state. For m = 2 and any n these are provably the best
inequalities as far as ηcrit is concerned. For m = 3 and n = 3
or n = 4, we could not find any better with our numerical
method. For larger values of n and m we cannot rule out that
there are some other families of inequalities requiring some
other types of states allowing even lower detection efficiencies.

We have calculated numerically the optimum measurement
angles and the maximum violation as functions of the detector
efficiency above the threshold efficiency ηcrit = 0.5 for the
inequality given in Eq. (42). To get more accurate numbers,
we did not use the seesaw algorithm to get these results, only
the knowledge we had gained from it about the form of the
solution. We used the analytical expressions given by Eqs. (17)
and (22) for the matrix elements and optimized numerically
the measurement angles and the mixing angle α.

The results are shown in Figs. 1 and 2. The first measure-
ment angle tends to zero at the fastest pace; it behaves as the
square of η − ηcrit. If we choose its value to be exactly zero, the
violation changes very little. The second measurement angle
is proportional with η − ηcrit, while the third one behaves as
the square root of η − ηcrit. The violation is proportional with
the sixth power of η − ηcrit.

VII. SUMMARY

In the present paper we have defined a family of binary-
outcome n-party Bell inequalities with m � n measurement
settings for each party, whose m > 2 members can be violated
by less detection efficiency than any other inequalities known
so far. This gives upper bounds for the minimum value η∗
of the critical efficiency achievable for such inequalities. The
family is the generalization of the one given by Larsson and
Semitecolos [19] for m = 2. Unfortunately, for m > 2 there
is still a gap between our upper bounds and the best lower
bounds n/[(n − 1)m + 1] given by Massar and Pironio [20].
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FIG. 2. The maximum violation of the m = n = 3 inequality as
a function of the detector efficiency.

For m = n = 3 our upper bound is 1/2, while the lower bound
is 3/7. As we have found no better Bell inequality while
making assumptions neither about the symmetry nor about
the violating state, η∗ may well agree with our bound for
both this case and also for m = 3, n = 4. For n = m our
bound Eq. (8) gives η∗ � 2/(m + 1), while from Ref. [20]
η∗ � 1/(m − 1 + 1/m) follows, a factor of 2 difference for
large m. Buhrman et al. [21] gives a worse upper bound of
η∗ � 8/m. When n → ∞, η∗ � 2/(m + 2), as it follows from
Eq. (8). In this case the lower bound is η∗ � 1/m, so there is
still a factor of 2 difference for large m. The upper bound of
Ref. [21] behaves very similarly to ours; it is η∗ � 1/m [see
Eq. (4) in their paper]. It is interesting to note that η∗ does not
approach zero if n alone goes to infinity, it is proportional to
1/m. However, if m → ∞ while n remains finite, the lower
bound of Ref. [20] goes to zero. Reference [21] does not give
a useful upper bound for this situation, while in the case of
Ref. [22] the critical efficiency remains finite, proportional to
1/n. Unfortunately, the present work tells nothing about the
m > n case, so even the qualitative behavior of η∗ in this case
remains open.

For the present family of Bell inequalities the violating state
approaches a product state near the threshold efficiency. The
same behavior has been observed by Vallone et al. [8] for
several other Bell inequalities, e.g., for the two-qubit chained
inequalities with any number of measurement settings. They
even concluded that the complementary behavior of entangle-
ment and nonlocality might be general. In the multipartite case
this cannot be so, as the inequalities given in Refs. [22] and [24]

are violated by the maximally entangled GHZ and W states
near ηcrit, respectively. In the bipartite case, a counterexample
is shown in the Appendix. However, it is still possible that the
conjecture by Vallone et al. is correct for inequalities with the
smallest critical efficiency, the ones with ηcrit = η∗.

Our multipartite Bell inequalities involve high-order corre-
lators among the particles, which are challenging to access in
the case of many particles. However, recently experimentally
more friendly binary-outcome Bell inequalities have been
constructed involving only two-body correlators [28]. We
pose it as an interesting problem to find such low-order Bell
inequalities which are suited to Bell violation using detectors
of low efficiencies.
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APPENDIX: TWO-PARTY BELL INEQUALITY WHERE
THE MAXIMAL ROBUSTNESS OF NONLOCALITY IS

ATTAINED WITH A MAXIMALLY ENTANGLED STATE

To prove the title of the Appendix, let us consider the
following Bell inequality:

I2 ≡ P (A1,B1) + P (A1,B2) + P (A2,B1) − P (A2,B2)

− cP (A1) − cP (B1) � 2 − 2c, (A1)

where c = 2(21/4−1)√
2−1

� 0.913 6. We choose that both Alice and
Bob always output “0” in case of nondetection, and hence
all measurements have binary outputs (it turns out that other
choices will not lead to lower detection efficiency thresholds).
Then the measurement probabilities are modified according to
P (Ax,By) → η2P (Ax,By), P (Ax) → ηP (Ax) and similarly
for Bob. By introducing these expressions in Eq. (A1) and
dividing by η2, we obtain the detection-efficiency-dependent
inequality:

I2(η) = P (A1,B1) + P (A1,B2) + P (A2,B1) − P (A2,B2)

− c
P (A1)

η
− c

P (B1)

η
� 2 − 2c

η2
. (A2)

By setting η = c, we get the Clauser-Horne inequality on the
l.h.s., whereas the r.h.s. becomes (

√
2 − 1)/2, which is just the

maximal quantum violation of the Clauser-Horne inequality
attainable with a pair of maximally entangled qubits [29,30].
From this it follows that as η approaches c � 0.9136 from
above, the maximal violation of the Bell inequality (A1) is
given by a state converging to the maximally entangled two-
qubit state.
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[19] J.-Å. Larsson and J. Semitecolos, Strict detector-efficiency
bounds for n-site Clauser-Horne inequalities, Phys. Rev. A 63,
022117 (2001).

[20] S. Massar and S. Pironio, Violation of local realism versus
detection efficiency, Phys. Rev. A 68, 062109 (2003).

[21] H. Buhrman, P. Høyer, S. Massar, and H. Röhrig, Combinatorics
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