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We study the problem of quantum state transfer from the optical cavity field to the microwave resonator in
cavity electro-optic modulators. We give the analytical expression of the transfer fidelities of Gaussian states and
some non-Gaussian states. We discuss the influences of the electro-optic coupling strength and the temperature
of the environment on the fidelity of the state transfer. We show that it is possible to achieve high transfer
fidelity for Gaussian states and some non-Gaussian states. We find that the transfer fidelity of the non-Gaussian
state produced by performing the photon-addition operation, the photon-subtraction operation, or the photon-
subtraction-then-addition operation on a Gaussian state is lower than that of the corresponding Gaussian state.
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I. INTRODUCTION

It is well known that high fidelity transfer of quantum
states is a necessary prerequisite for large-scale quantum
information processing. Hence, the problems of quantum state
transfer have recently been the object of extensive studies.
For microwave photons and optical photons, each has its
own advantages. Microwave photons can be easily controlled
in superconducting circuits [1], while optical photons are
ideal candidates for distributing quantum information. Thus
the quantum state transfer between optical and microwave
photons allows one to make use of their advantages [2].
Recently, considerable theoretical and experimental work
has been devoted to the investigation of the quantum state
transfer between the optical mode and the microwave mode
using a hybrid device based on their common interaction
with a nanomechanical resonator [3–10]. Reference [9] ex-
perimentally demonstrates bidirectional conversion between
microwave and optical light with conversion efficiencies of
∼10%. The conversion efficiency is mainly limited by the
thermal noise of the mechanical oscillator. Reference [10]
compares the three different schemes (double swap, adiabatic
passage, and hybrid scheme) used in the quantum state transfer
from an optical cavity to a microwave cavity in detail. They
show that the effect of the thermal noise of the mechanical
oscillator on the fidelity of the quantum state transfer in the
adiabatic scheme is lower than those in the other two schemes.

On the other hand, there is considerable interest in cavity
electro-optic modulators [11–20] because they can directly
couple an optical cavity mode to a microwave resonator
in nonlinear electro-optic materials such as lithium niobate
based on the linear electro-optic effect, where the higher-
order electro-optic effects are weak compared with the linear
electro-optic effect so that they can be neglected [18]. It has
been shown that a cavity electro-optic system is analogy to
an optomechancial system [21]. In addition, it has been theo-
retically shown that frequency conversion between microwave
and optical domains with 100% efficiency can be achieved in a
cavity electro-optic system in the absence of the thermal noise
of the environment [22]. It has been experimentally shown
that a photon-number conversion efficiency of 5 × 10−4%
can be achieved in a lithium niobate whispering-gallery-
mode electro-optic modulator [15]. And Ref. [15] points out
that it is possible to achieve a unity conversion efficiency

using a whispering gallery resonator with the quality factor
Q ≈ 4 × 108. In the future, the conversion efficiency can be
greatly improved with the rapid progress in the electro-optic
technologies [12,14,16]. Here we study the quantum state
transfer in a cavity electro-optic modulator. We consider the
transfer of Gaussian states (a coherent state and a squeezed
coherent state) and the transfer of non-Gaussian states such
as a Fock state, a qubit state, a single-photon-added coherent
state, a single-photon-subtracted squeezed vacuum state, and
a photon-subtracted-then-added squeezed vacuum state. The
last three kinds of the non-Gaussian states are generated
through the de-Gaussification procedure which is realized
through adding photons, subtracting photons, or subtract-
ing then adding photons on a Gaussian state. We analyze
the dependence of the transfer fidelities of Gaussian states
and some non-Gaussian states on the electro-optic coupling
strength and the temperature of the environment. We find that
the high fidelity of transferring Gaussian states and several
non-Gaussian states from the optical mode to the microwave
mode is achievable in such a system. Interestingly, we find
that the fidelity of the coherent state transferred directly from
the optical mode to the microwave mode is comparable to
that achieved by the adiabatic approach in an optomechanical
system by the aid of a mechanical mode [10]. Moreover, we
find that the transfer fidelity of the non-Gaussian state obtained
by the de-Gaussification operation is lower than that of the
corresponding Gaussian state.

The paper is organized as follows. In Sec. II, we introduce
the model, give the quantum Langevin equations. In Sec. III,
we consider the quantum state transfer from the optical mode to
the microwave mode when the quantum noises are not taken
into account. In Sec. IV, we investigate the quantum state
transfer with quantum noises, and analyze how the transfer
fidelities of Gaussian states and several non-Gaussian states
are affected by the effective electro-optic coupling strength and
the temperature of the environment. We compare the fidelities
of different initial states of the optical mode to be transferred.
Finally, we conclude our work in the last section.

II. MODEL

We consider a cavity electro-optic modulator (EOM) as
shown in Fig. 1 [21,22]. The EOM consists of a nonlinear
electro-optic medium such as lithium niobate [11–17]. The
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FIG. 1. (Color online) Schematic of a cavity electro-optic mod-
ulator. EOM denotes an electro-optic modulator in which the optical
cavity mode a is coupled to the microwave resonator b.

optical cavity field with frequency ωa is driven by an external
laser field with frequency ωl . A voltage V is applied across the
medium, which is perpendicular to the propagation direction
of the cavity field, thus the EOM is a transverse modulator.
The electric field established in the medium by the application
of the voltage leads to a change in the refractive index of the
medium, inducing a phase shift on the cavity field propagating
through the medium. If the variance in the refractive index
is linearly proportional to the electric field, the interaction
between the electric field and the light field is known as
the linear electro-optic effect or the Pockels effect [18–20],
which is a second-order nonlinear effect. Here the voltage V

corresponds to the mechanical position in the optomechanical
system, and the modulator is treated as a capacitor in a
single-mode microwave resonator b with frequency ωb [21].
The electro-optic coupling strength between the optical field
and the microwave resonator can be defined as [21]

g ≡ ωan
3rl

cτd

√
�ωb

2C
, (1)

which is determined by the optical refractive index n of the
electro-optic medium, the electro-optic coefficient r in the
units of m/V, the length l of the medium, the speed c of
light in vacuum, the optical round trip time τ , the thickness
d of the medium, and the capacitance C of the microwave
resonator. If the microwave frequency ωb is close to the spacing
�ω between the optical modes, and �ω − ωb is much larger
than the cavity linewidth γa , we can restrict our attention to
three optical modes with frequencies ωa , ωa − ωb, ωa + ωb

[12,13]. Furthermore, if we transform the three optical modes
and the microwave mode to frames rotating at their respective
resonance frequencies, make rotating wave approximation,
and let the external laser field be red detuned with respect to the
optical mode with frequency ωa by the microwave frequency
ωb (ωl = ωa − ωb), the system is approximately equivalent
to a beam splitter, i.e., the optical mode with frequency ωa

exchanges energy with the microwave mode with frequency

ωb [21]. The equations of motion are given by

da

dt
= igαb − γa

2
a + √

γaain,

(2)
db

dt
= igα∗a − γb

2
b + √

γbbin,

where a and b are the annihilation operators of the optical and
microwave modes, respectively, α is the steady-state cavity
amplitude, γb is the damping rate of the microwave resonator,
and ain and bin are input quantum noise operators with zero
mean values; they have the following nonzero time-domain
correlation functions:

〈a†
in(t)ain(t ′)〉 = N (ωa)δ(t − t ′),

〈ain(t)a†
in(t ′)〉 = [N (ωa) + 1]δ(t − t ′),

(3)〈b†in(t)bin(t ′)〉 = N (ωb)δ(t − t ′),

〈bin(t)b†in(t ′)〉 = [N (ωb) + 1]δ(t − t ′),

where N (ω) = 1
e�ω/(kB T )−1

is the average number of thermal
photons in the optical mode and the microwave mode, kB

is the Boltzmann constant, and T is the temperature of the
environment. At optical frequency ωa , one has �ωa/(kBT ) 

1, thus N (ωa) � 0. For simplicity, we write N (ωa) and N (ωb)
as Na and Nb in the following.

III. QUANTUM STATE TRANSFER IN THE ABSENCE
OF QUANTUM NOISES

First we consider the case that the input noise ain of the
optical field and the input noise bin of the microwave resonator
are neglected. The optical mode and the microwave mode at
time t can be derived from Eq. (2), which yield

a(t) = ept [cos(qt)a(0) + i sin(qt)b(0)],
(4)

b(t) = ept [i sin(qt)a(0) + cos(qt)b(0)],

where p = − 1
4 (γa + γb), q =

√
G2 − (γa−γb)2

16 , and G = g|α|.
When t = π/(2q), one has

a(t = π/(2q)) = ieπp/(2q)b(0),
(5)

b(t = π/(2q)) = ieπp/(2q)a(0).

It is seen that the quantum state transfer can be achieved in
this system, the transferring efficiency is determined by the
effective coupling strength G and the decay rates γa , γb. For
the special case γa = γb = 0, we have

a(t = π/(2G)) = ib(0),
(6)

b(t = π/(2G)) = ia(0),

which indicates the perfect quantum state transfer between
the two modes a and b, i.e., the state of one mode at time
t = π/(2G) is exactly the same as the initial state of the other
mode except the phase difference i.

IV. QUANTUM STATE TRANSFER IN THE PRESENCE
OF QUANTUM NOISES

In this section, we present our result for a real physical
system taking into account the optical noise ain and the
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microwave noise bin. We discuss the transfer of Gaussian
states (a coherent state and a squeezed coherent state) and
the transfer of non-Gaussian states (a Fock state, a qubit
state, a single-photon-added coherent state, a single-photon-
subtracted squeezed vacuum state, and a photon-subtracted-
then-added squeezed vacuum state) from the optical mode to
the microwave mode.

From Eq. (2), we obtain the final states of the optical cavity
mode and the microwave mode, which yield

a(t) = ept [cos(qt)a(0) + i sin(qt)b(0)]

+√
γa

∫ t

0
dτ epτ cos(qτ )ain(t − τ )

+ i
√

γb

∫ t

0
dτ epτ sin(qτ )bin(t − τ ),

b(t) = ept [i sin(qt)a(0) + cos(qt)b(0)]

+ i
√

γa

∫ t

0
dτ epτ sin(qτ )ain(t − τ )

+√
γb

∫ t

0
dτ epτ cos(qτ )bin(t − τ ). (7)

We define ã(t) = a(t)/i and b̃(t) = b(t)/i to remove the
phase i of the states a(t) and b(t). The amplitude and
phase quadratures of the fluctuations of the optical mode
and the microwave mode are defined as xa(t) = 1√

2
[ã(t) +

ã(t)†], ya(t) = 1√
2i

[ã(t) − ã(t)†], xb(t) = 1√
2
[b̃(t) + b̃(t)†],

and yb(t) = 1√
2i

[b̃(t) − b̃(t)†], respectively.

A. The transfer of Gaussian states

The efficiency of the quantum state transfer can be
quantified by the fidelity. The Ulhmann fidelity [23] is defined
as

F = [Tr(
√√

ρiρf

√
ρi)]

2, (8)

where ρi and ρf are the reduced density matrices for the
initial and final states, respectively. The fidelity is unity when
the two states are the same, and zero when they are totally
different. If both the states ρi and ρf are pure or one of them is
pure while the other is mixed, the fidelity in Eq. (8) reduces to
F = Tr(ρiρf ), and it can be represented by an overlap between
the Wigner functions of the initial and final states in the phase
space, F = π

∫
d2βWi(β)Wf (β). First we focus on the case

in which the initial state of the optical mode to be transferred
is a pure Gaussian state, then the fidelity of the state transfer
between two Gaussian quantum states can be simplified as [24]

F = 1√
det Vi+Vf

2

exp[−(μi − μf )T (Vi + Vf )−1(μi − μf )],

(9)
where Vi and Vf have the form,

V =
(

2σxx 2σyx

2σyx 2σyy

)
. (10)

Here σxx , σyx , and σyy are the elements of the covariance
matrix. The covariance of two operators X and Y is defined as

σXY (t) = 〈X(t)Y (t)〉 + 〈Y (t)X(t)〉
2

− 〈X(t)〉〈Y (t)〉. (11)

And μi = (〈xi 〉
〈yi 〉) and μf = (〈xf 〉

〈yf 〉) are the expectation values
of the quadratures of the optical field and the microwave
resonator, respectively.

Suppose that the optical mode a to be transferred is initially
prepared in a single-mode squeezed coherent state given by
|α,r〉 = D(α)S(r)|0〉 where D(α) = exp(αa† − α∗a) is the
unitary displacement operator with amplitude α = |α|eiφ ,
and S(r) = exp[r(a2 − a†2)/2] is the unitary single-mode
squeezing operator with the real squeezing parameter r , then
the expectation values of the quadratures and the covariance
matrix of the initial state of the optical mode a are

μi =
(√

2|α| cos φ√
2|α| sin φ

)
, (12)

Vi =
(

e−2r 0

0 e2r

)
. (13)

Moreover, we assume that the initial state of the microwave
mode b is in the thermal state at the temperature T of the
environment. The expectation values of the quadratures and the
covariance matrix of the final state of the microwave resonator
b at time t can be calculated by Eq. (7). They are

μf =
(√

2ept sin(qt)|α| cos φ√
2ept sin(qt)|α| sin φ

)
, (14)

Vf =
(

u(r,t) 0

0 v(r,t)

)
, (15)

where

u(r,t) = (t) + e2pt sin2(qt)e−2r + 2e2pt cos2(qt)

×(Nb + 0.5),

v(r,t) = (t) + e2pt sin2(qt)e2r + 2e2pt cos2(qt)

×(Nb + 0.5),

(t) = −γa

4
(2Na + 1)

[
e2(p+iq)t − 1

2(p + iq)
− e2pt − 1

p

+ e2(p−iq)t − 1

2(p − iq)

]
+ γb

4
(2Nb + 1)

×
[
e2(p+iq)t − 1

2(p + iq)
+ e2pt − 1

p
+ e2(p−iq)t − 1

2(p − iq)

]
. (16)

After some calculations, we obtain the fidelity,

F = 2√
E1E2

exp

{
−2|α|2[ept sin(qt) − 1]2

× cos2(φ)E2 + sin2(φ)E1

E1E2

}
, (17)

where E1 = e−2r + u(r,t), E2 = e2r + v(r,t). We choose the
values of the parameters which are similar to those used
in the recent experiment [12]: the wavelength of the input
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FIG. 2. (Color online) The state transfer fidelity F from an opti-
cal cavity field to a microwave resonator as a function of the coupling
strength G/γa for the temperature of the environment T = 0 K at the
time t = π/(2q). The curves from top to bottom correspond to the
initial state of the optical cavity field in |α = 1,r = 0〉, |α = 2,r = 0〉,
|α = 2,r = 0.5〉, |α = 2,r = 1〉, and |α = 2,r = 1.5〉, respectively.

laser λ = 2πc/ωa = 1550 nm, and the resonance frequency
of the microwave mode ωb = 2π × 9 GHz. We assume that
the optical decay rate γa and the microwave damping rate γb

are equal.
We first consider the influence of the coupling strength

on the state transfer fidelity. We fix the time t = π/(2q) and
the temperature of the environment T = 0 K. Figure 2 plots
the fidelity F of the quantum state transfer from the optical
field to the microwave resonator against the coupling strength
G/γa when the initial state of the optical mode a is a coherent
state with α = 1,2 and r = 0, and a squeezed coherent state
with α = 2 and r = 0.5,1,1.5. For the coherent state transfer,
with increasing the coupling strength G, the fidelity is rapidly
increased to unity. For a smaller coherent amplitude α, the
fidelity arrives at unity at a lower coupling strength G. For the
squeezed coherent state transfer, with increasing the coupling
strength G, the fidelity is increased. For a given coupling
strength G, increasing the squeezing parameter r leads to a
decrease in the transfer fidelity of the squeezed coherent state.
When G = 40γa , α = 2, and r = 0.5, 1, 1.5, the fidelities are
99%, 94%, 84%, respectively.

We now show the effect of the temperature of the environ-
ment on the state transfer fidelity. We fix the time t = π/(2q)
and the coupling strength G = 40γa . Figure 3 plots the fidelity
F of the quantum state transfer from the optical field to the
microwave resonator against the temperature T (K) of the
environment when the initial state of the optical mode a is
a coherent state with α = 1, 2 and r = 0, and a squeezed
coherent state with α = 2 and r = 0.5, 1, 1.5. For the transfer
of the coherent state with different amplitudes, the fidelities
are decreased with the temperature T of the environment at the
same rate. It is noted that the transfer fidelity of the coherent
state is close to the result as shown in Fig. 6(a) in Ref. [10]
by using adiabatic scheme. Moreover, it is found that the
detrimental effect of the temperature of the environment on
the fidelity of the squeezed coherent state transfer is larger
than that on the fidelity of the coherent state. The reason is
that the coherent state is the closest analog to a classical light
field, but the squeezed coherent state is a nonclassical state,

FIG. 3. (Color online) The state transfer fidelity F from an
optical cavity field to a microwave resonator as a function of the
temperature T (K) of the environment for the coupling strength
G = 40γa at the time t = π/(2q). The curves from top to bottom
correspond to the initial state of the optical cavity field in |α = 1,r =
0〉, |α = 2,r = 0〉, |α = 2,r = 0.5〉, |α = 2,r = 1〉, and |α = 2,r =
1.5〉, respectively.

which is very fragile to the thermal environment. Furthermore,
increasing the squeezing parameter r , the fidelity of the
squeezed coherent state is more sensitive to the change of
the temperature of the environment.

B. The transfer of some non-Gaussian states

In the previous subsection, we present the transfer of the
Gaussian states. However, it is well known that non-Gaussian
states are necessary in quantum information processing and
quantum metrology due to their nonclassical features such as
the negativity of the Wigner functions [25]. In this subsection,
we discuss the transfer of a non-Gaussian state from the cavity
mode a to the microwave mode b. For simplicity, we assume
that the decay rate γa of the cavity mode is equal to the damping
rate γb of the microwave resonator. Moreover, we assume that
the initial state of the microwave mode b is in the thermal
state at the temperature T of the environment. The fidelity
F of quantum state transfer can be evaluated by the overlap
between two Wigner functions,

F = π

∫
d2βWa(β)Wb(β,t = π/(2q)), (18)

where Wa(β) is the Wigner function of the initial state of the
cavity mode a, and Wb(β,t = π/(2q)) is the Wigner function
of the state of the microwave mode b at time t = π/(2q). The
Wigner function of the microwave mode b at t = π/(2q) is
given by

Wb(β,t) = 1

π2

∫
d2ξbχb(ξb,t) exp[−(ξbβ

∗ − ξ ∗
b β)], (19)

where χb(ξb,t) is the characteristic function of the state
of the microwave resonator, which can be obtained from
the characteristic function of the total optical-microwave
state [26],

χb(ξb,t) = χa,b(ξa = 0,ξb,t). (20)
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The time evolution of the full characteristic function is defined
as

χa,b(ξa,ξb,t) = Tr[ρa,b(t)Da(ξa)Db(ξb)], (21)

where ρa,b(t) is the density operator of the system; Da(ξa) =
exp(ξaa

† − ξ ∗
a a) and Db(ξb) = exp(ξbb

† − ξ ∗
b b) are the dis-

placement operators. If the optical field is initially prepared
in Gaussian states such as a coherent state and a squeezed
coherent state, the full characteristic function of the system
[26] reads

χa,b(ξa,ξb,t) = exp[− 1
2ξT σ (t)ξ + iξT d(t)], (22)

where d(t) are the displacement vector d(t) = 〈ϒ(t)〉, ϒ(t) =
(xa(t),ya(t),xb(t),yb(t))T , the canonical commutation rela-
tions are collected in a matrix ε,

[ϒ(t)i ,ϒ(t)j ] = iεij , ε =

⎛
⎜⎜⎜⎝

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎞
⎟⎟⎟⎠, (23)

σ (t) is the 4 × 4 covariance matrix with elements defined as
σ (t)ij = 〈ϒ(t)iϒ(t)j 〉+〈ϒ(t)j ϒ(t)i 〉

2 − 〈ϒ(t)i〉〈ϒ(t)j 〉, and

ξ =
√

2ε

⎛
⎜⎜⎜⎝

Re(ξa)

Im(ξa)

Re(ξb)

Im(ξb)

⎞
⎟⎟⎟⎠. (24)

For various non-Gaussian states we consider below, the
characteristic functions of the total optical-microwave state
can be derived from Eq. (22), the characteristic functions and
the Wigner functions of the state of the microcave mode b at
time t = π/(2q) are presented in Appendix.

1. Fock state transfer

As a first example, we discuss the transfer of a Fock state
from the optical mode to the microwave resonator. Fock states
are useful in quantum communication [27] and enhancing the
phase sensitivity of interferometers [28]. If the cavity mode a

to be transferred is in a single-photon Fock state, which can
be expressed in terms of coherent states,

|1〉 = ∂

∂α

(
e|α|2/2|α〉)

α=0, (25)

the characteristic function of the total optical-microwave state
χa,b(ξa,ξb,t) can be written as [26]

χa,b(ξa,ξb,t) = ∂

∂α

∂

∂α∗
(
e|α|2A

)
α=0, (26)

in which A = exp[− 1
2ξT σ (t)ξ + iξT d(t)] is the full charac-

teristic function of the system when the optical field is initially
in a coherent state. The Wigner function of the initial state of
the cavity mode a in the single-photon Fock state is found to
be

Wa(β) = 2

π
(4|β|2 − 1) exp(−2|β|2). (27)

After some calculations, we arrive at the following expression
for the transfer fidelity of the single-photon Fock state,

F = 2h2

s

[
2 − 1

s
− 2�

(
1 − 4h

s

)]
, (28)

where

s = 1

2
u(0,t = π/(2q)),

� = exp(πp/q)

s
, (29)

h = 1

2 + 1
s

.

If the initial state of the cavity mode a to be transferred
is prepared in the two-photon Fock state |2〉, which can be
expressed in terms of coherent states,

|2〉 = 1√
2!

∂2

∂α2

(
e|α|2/2|α〉)

α=0, (30)

the corresponding characteristic function of the total optical-
microwave state χa,b(ξa,ξb,t) is

χa,b(ξa,ξb,t) = 1

2!

∂2

∂α2

∂2

∂α∗2

(
e|α|2A

)
α=0. (31)

The Wigner function of the initial state of the cavity mode a

in the two-photon Fock state |2〉 is found to be

Wa(β) = 2

π
(1 − 8|β|2 + 8|β|4) exp(−2|β|2). (32)

Then we find that the state transfer fidelity for the two-photon
Fock state |2〉 is given by

F = 2h3

s

[(
2 − 1

s

)
(1 − �)2 + 2

h

s

(
20 − 12

s
+ 1

s2

)

×�(1 − �) + h2

s2

(
52 − 20

s
+ 1

s2

)
�2

]
. (33)

2. Qubit state transfer

As a second example, we consider the transfer of a qubit
state 1√

2
(|0〉 + |1〉) from the optical mode to the microwave

resonator. The qubit state, a linear superposition of the two
Fock states |0〉 and |1〉, is a fundamental unit of quantum
information. In this case, the characteristic function of the
total optical-microwave state χa,b(ξa,ξb,t) becomes

χa,b(ξa,ξb,t) = 1

2

{
Aα=0 + ∂

∂α
Aα=0 + ∂

∂α∗Aα=0

+ ∂

∂α

∂

∂α∗
(
e|α|2A

)
α=0

}
. (34)

The Wigner function of the initial state of the cavity mode a

in the qubit state is found to be

Wa(β) = 2

π
(β + β∗ + 2|β|2) exp(−2|β|2). (35)

Then the transfer fidelity of the qubit state is given by

F = 2h2

s

(
2h�

s
+ 2 − � +

√
�

s

)
. (36)
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FIG. 4. (Color online) The transfer fidelities F of a single-photon
Fock state |1〉, a two-photon Fock state |2〉, and a qubit state 1√

2
(|0〉 +

|1〉) as a function of the coupling strength G/γa for the temperature
of the environment T = 0 K. The black solid curve corresponds to
the qubit state, the blue dashed curve corresponds to the Fock state
|1〉, and the red dotted curve corresponds to the Fock state |2〉.

The transfer fidelities of a single-photon Fock state |1〉, a
two-photon Fock state |2〉, and a qubit state 1√

2
(|0〉 + |1〉) as

a function of the coupling strength G for different coherent
amplitudes α at T = 0 K are plotted in Fig. 4. Note that the
fidelity increases with increasing the coupling strength G. For
a given coupling strength G, it is seen that the transfer fidelity
of the qubit state is higher than that of the single-photon Fock
state, and the transfer fidelity of the single-photon Fock state
is higher than that of the two-photon Fock state |2〉. When
G = 40γa , the transfer fidelities of 1√

2
(|0〉 + |1〉), |1〉, and |2〉

are 99%, 96%, 92%, respectively.

3. Single-photon-added coherent state transfer

As a third example, we show the transfer of a single-photon-
added coherent state from the optical mode to the microwave
resonator. The single-photon-added coherent state is obtained
by the action of the photon creation operator on a coherent
state, i.e., |α,1〉 = a†|α〉√

1+|α|2 . It has been theoretically proposed

[29] and experimentally generated [30,31]. It can be used to
study the quantum-classical transition [30]. Non-Gaussianity
and nonclassicality of a single-photon-added coherent state
have been demonstrated experimentally in Ref. [32]. The
single-photon-added coherent state can be written as

|α,1〉 = 1√
1 + |α|2

e−|α|2/2 ∂

∂α
e|α|2/2|α〉, (37)

thus the characteristic function of the total optical-microwave
state χa,b(ξa,ξb,t) has the form,

χa,b(ξa,ξb,t) = 1

(1 + |α|2)
e−|α|2 ∂

∂α

∂

∂α∗
(
e|α|2A

)
. (38)

The Wigner function of the initial state of the cavity mode a

in the single-photon-added coherent state is found to be

Wa(β) = 2

π (1 + |α|2)
(|2β − α|2 − 1) exp(−2|β − α|2).

(39)

For simplicity, we assume that α is real. We find that the
transfer fidelity of the single-photon-added coherent state |α,1〉
is given by

F = 2I1

s(1 + α2)2

{
(α2 − 1)

[
I2 + I3I4 + �

s

(
I 2

4 + h
)]

+ 4

[
I2

(
I 2

4 + h
) + I3I4

(
I 2

4 + 2h
)

+ �

s

((
I 2

4 + h
)(

I 2
4 + 2h

) + I 2
4 h

)]

− 4α

[
I2I4 + I3

(
I 2

4 + h

2

)
+ �

s
I4

(
I 2

4 + 2h
)]}

× exp[−α2(2 + �)], (40)

where

I1 = h exp

⎡
⎣α2h

(
2 +

√
�

s

)2
⎤
⎦,

I2 = α2(1 − �)2 + 1 − �,

I3 = 2α

√
�

s
(1 − �),

I4 = αh

(
2 +

√
�

s

)
. (41)

When α = 0, the single-photon-added coherent state is
simply a single-photon Fock state |1〉, thus the fidelity given by
Eq. (40) is equal to Eq. (28). When α = 1, the transfer fidelity
of the state |α,1〉 at T = 0 K (s = 1

2 , h = 1
4 ) can be written as

F = �

8

{
1 +

(
�

2
− 2

)[(√
�

2
− 1

)2

− 3

]}

× exp

[
−1

4
(2 −

√
2�)2

]
, (42)

where � = 2 exp (−πγa

2G
). For the ideal case γa = γb = 0, � =

2, the transfer fidelity F of the state |α,1〉 will be unity.
The transfer fidelity F of a single-photon-added coherent

state |α,1〉 with α = 1 as a function of the coupling strength G

at T = 0 K is plotted in Fig. 5. For comparison, we also plot
the transfer fidelities of the coherent state |α〉 with α = 1 and
the single-photon Fock state |1〉 as a function of the coupling
strength G at T = 0 K. One can see that the transfer fidelity
of |α,1〉 increases with increasing the coupling strength G.
When G = 40γa , the transfer fidelity for |α,1〉 with α = 1 is
99%. Note that the transfer fidelity of a single-photon-added
coherent state |α,1〉 is lower than that of the coherent state |α〉
for the same value of α, but it is higher than that of the single-
photon Fock state |1〉. The reason is that the coherent state
is nearest to the classical field, and the single-photon-added
coherent state is a nonclassical state, and its nonclassicality
is smaller than that of the single-photon Fock state, because
the volume of the negative part of the Wigner function of
the single-photon-added coherent state is less than that of the
single-photon Fock state, which can be seen from Fig. 6.
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FIG. 5. (Color online) The transfer fidelity F of a single-photon-
added coherent state as a function of the coupling strength G/γa for
the temperature of the environment T = 0 K. The black solid curve
corresponds to |α〉 with α = 1, the blue dashed curve corresponds to
|α,1〉 with α = 1, and the red dotted curve corresponds to |1〉.

FIG. 6. (Color online) (a) The Wigner function Wa(β) of the
initial state of the optical mode in the single-photon-added coherent
state |α,1〉 with α = 1. (b) The Wigner function Wa(β) of the initial
state of the optical mode in the single-photon Fock state |1〉.

4. Single-photon-subtracted squeezed vacuum state transfer

As a fourth example, we study the transfer of a single-
photon-subtracted squeezed vacuum state from the opti-
cal mode to the microwave resonator. The single-photon-
subtracted squeezed vacuum state can be obtained theoretically
by operating the photon annihilation operator on a squeezed
vacuum state S(r)|0〉, i.e., 1

sinh(r)aS(r)|0〉 with 1
sinh(r) being

the normalization constant [33,34]. When the squeezing
parameter r takes small values, these states approximate the
Schrödinger kitten states, i.e., superpositions of coherent states
with low amplitudes [35,36], which can be used in quantum
information protocols [37]. The experimental generation of
this kind of state has been reported [38,39]. Using the unitary
transformation,

S†(r)aS(r) = a cosh(r) − a† sinh(r), (43)

we obtain 1
sinh(r)aS(r)|0〉 = −S(r)|1〉, thus a single-photon-

subtracted squeezed vacuum state is a squeezed single-photon
Fock state with a phase π . Hence the characteristic function
of the total optical-microwave state χa,b(ξa,ξb,t) has the form,

χa,b(ξa,ξb,t) = ∂

∂α

∂

∂α∗
(
e|α|2�

)
α=0, (44)

where � = exp[− 1
2ξT σ (t)ξ + iξT d(t)] is the full character-

istic function of the system when the initial state of the optical
field is a squeezed coherent state. The Wigner function of
the initial state of the cavity mode a in the single-photon-
subtracted squeezed vacuum state is found to be

Wa(β) = 2

π
{4[e2rRe2(β) + e−2r Im2(β)] − 1}

× exp{−2[e2rRe2(β) + e−2r Im2(β)]}. (45)

The transfer fidelity of the single-photon-subtracted squeezed
vacuum state has the expression,

F = 2√
ūv̄Ū V̄

{
−Ā + (−B̄ + 4Āe2r )

1

2Ū

+ (−C̄ + 4Āe−2r )
1

2V̄
+ (B̄e−2r + C̄e2r )

1

Ū V̄

+ 3B̄e2r

Ū 2
+ 3C̄e−2r

V̄ 2

}
, (46)

where

ū = 1

2
u(r,t = π/(2q)), v̄ = 1

2
v(r,t = π/(2q)),

Ū = 2e2r + 1

ū
, V̄ = 2e−2r + 1

v̄
,

Ā = 1 − e(πp/q)e−2r

2ū
− e(πp/q)e2r

2v̄
,

B̄ = e(πp/q)e−2r

ū2
, C̄ = e(πp/q)e2r

v̄2
. (47)

When r = 0, the single-photon-subtracted squeezed vacuum
state reduces to the single-photon Fock state |1〉 with a phase
π . In this case, we find that the fidelity given by Eq. (46) is
equal to Eq. (28).

The transfer fidelities F of a single-photon-subtracted
squeezed vacuum state as a function of the coupling strength G
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FIG. 7. (Color online) The transfer fidelities F of a single-
photon-subtracted squeezed vacuum state as a function of the
coupling strength G/γa for different squeezing parameters r and
the temperature of the environment T = 0 K. The curves from top to
bottom correspond to r = 0, 0.5, 1, respectively.

for different squeezing parameters r and T = 0 K is plotted in
Fig. 7. For a given squeezing parameter r , the transfer fidelity
F increases with the coupling strength G. For a given coupling
strength G, the bigger the squeezing parameter r is, the lower
the transfer fidelity is. Note that the transfer fidelity of a single-
photon-subtracted squeezed vacuum (r �= 0) is lower than
that of a single-photon Fock state (r = 0). When G = 40γa ,
r = 0.5, 1, the transfer fidelities are 93%, 84%, respectively.

5. Photon-subtracted-then-added squeezed vacuum state transfer

As a last non-Gaussian example, we investigate the transfer
of a photon-subtracted-then-added squeezed vacuum state
from the optical mode to the microwave resonator. The photon-
subtracted-then-added squeezed vacuum state is generated by
first subtracting a single photon to a squeezed vacuum state
and then another photon is subsequently added [40], i.e.,

|�〉 = 1√
Na†a

a†aS(r)|0〉. (48)

It has been shown that a single photon subtraction and
subsequent addition with a squeezed vacuum state can lead
to the generation of the approximate squeezed superposi-
tions of coherent states [40,41], which can be used for
the proof-of-principle experiments such as quantum tele-
portation or single qubit gates [42]. Using Eq. (43) and
S†(r)a†S(r) = a† cosh(r) − a sinh(r), the photon-subtracted-
then-added squeezed vacuum state can be written as

|�〉 = 1√
Na†a

S(r)[sinh(r)|0〉 −
√

2 cosh(r)|2〉], (49)

in which Na†a = sinh2(r) + 2 cosh2(r) is the normalization
factor. Hence, the photon-subtracted-then-added squeezed
vacuum state is a quantum superposition state of the squeezed
vacuum state S(r)|0〉 and the squeezed Fock state S(r)|2〉.
For a photon-subtracted-then-added squeezed vacuum state,
the characteristic function of the total optical-microwave state
χa,b(ξa,ξb,t) becomes

χa,b(ξa,ξb,t) = 1

Na†a

{
sinh2(r)�α=0 −

√
2 cosh(r) sinh(r)

1√
2!

∂2

∂α2
�α=0

−
√

2 cosh(r) sinh(r)
1√
2!

∂2

∂α∗2
�α=0 + 2 cosh2(r)

1

2!

∂2

∂α2

∂2

∂α∗2

(
e|α|2�

)
α=0

}
. (50)

The Wigner function of the initial state of the cavity mode a in a photon-subtracted-then-added squeezed vacuum state is found
to be

Wa(β) = 2

πNa†a
[J1 + J2Re2(β) + J3Im2(β) + J4Re2(β)Im2(β) + J5Re4(β) + J6Im4(β)]

× exp{−2[e2rRe2(β) + e−2r Im2(β)]}, (51)

where

J1 = sinh2(r) + 2 cosh2(r), J2 = −4e2r [sinh(2r) + 4 cosh2(r)],
(52)

J3 = 4e−2r [sinh(2r) − 4 cosh2(r)], J4 = 32 cosh2(r), J5 = 16e4r cosh2(r), J6 = 16e−4r cosh2(r).

Then the transfer fidelity of a photon-subtracted-then-added squeezed vacuum state is obtained as

F = 2

N 2
a†a

√
ūv̄Ū V̄

{
J1K1 + 1

2Ū
(J1K2 + J2K1) + 1

2V̄
(J1K3 + J3K1) + 1

4Ū V̄
(J1K4 + J4K1 + J2K3 + J3K2)

+ 3

4Ū 2
(J1K5 + J5K1 + J2K2) + 3

4V̄ 2
(J1K6 + J6K1 + J3K3) + 3

8Ū 2V̄
(J2K4 + J4K2 + J3K5 + J5K3)

+ 3

8Ū V̄ 2
(J2K6 + J6K2 + J3K4 + J4K3) + 9

16Ū 2V̄ 2
(J4K4 + J5K6 + J6K5) + 15

16Ū 3V̄
(J4K5 + J5K4)

+ 15

16Ū V̄ 3
(J4K6 + J6K4) + 15

8Ū 3
(J2K5 + J5K2) + 15

8V̄ 3
(J3K6 + J6K3) + 105

16Ū 4
J5K5 + 105

16V̄ 4
J6K6

}
, (53)
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where

K1 = n1 + n2

2v̄
+ n3

2ū
+ 3n4

4v̄2
+ n5

4ūv̄
+ 3n6

4ū2
,

K2 = −n3

ū2
− n5

2ū2v̄
− 3n6

ū3
,

K3 = −n2

v̄2
− n5

2ūv̄2
− 3n4

v̄3
,

(54)
K4 = n5

ū2v̄2
,

K5 = n6

ū4
,

K6 = n4

v̄4
,

and

n1 = sinh2(r) + 2 cosh2(r),

n2 = −e2r [sinh(2r) + 4 cosh2(r)] exp(πp/q),

n3 = e−2r [sinh(2r) − 4 cosh2(r)] exp(πp/q),
(55)

n4 = e4r cosh2(r) exp(2πp/q),

n5 = 2 cosh2(r) exp(2πp/q),

n6 = e−4r cosh2(r) exp(2πp/q).

When r = 0, the photon-subtracted-then-added squeezed vac-
uum state reduces to the two-photon Fock state |2〉 with a phase
π . In this case, we find that the fidelity given by Eq. (53) is
equal to Eq. (33).

Figure 8 shows the transfer fidelities F of a photon-
subtracted-then-added squeezed vacuum state as a function
of the coupling strength G for different squeezing parameters
r and T = 0 K. For a given squeezing parameter r , the transfer
fidelity increases as the coupling strength G is increased. For
a given coupling strength G, the transfer fidelity gets better
as the squeezing parameter r becomes smaller. Note that the
transfer fidelity of a photon-subtracted-then-added squeezed
vacuum state (r �= 0) is lower than that of a two-photon Fock
state |2〉 (r = 0). When G = 40γa and r = 0.5, 1, the transfer
fidelities are 88%, 75%, respectively.

FIG. 8. (Color online) The transfer fidelities F of a photon-
subtracted-then-added squeezed vacuum state as a function of the
coupling strength G/γa for different squeezing parameters r and the
temperature of the environment T = 0 K. The curves from top to
bottom correspond to r = 0, 0.5, 1, respectively.

FIG. 9. (Color online) The transfer fidelities F of a single-
photon-subtracted squeezed vacuum state and a photon-subtracted-
then-added squeezed vacuum state as a function of the squeezing
parameter r for G = 40γa and T = 0 K. The black solid curve
is for a squeezed vacuum state, the blue dashed curve is for a
single-photon-subtracted squeezed vacuum state, and the red dotted
curve is for a photon-subtracted-then-added squeezed vacuum state.

Figure 9 shows the transfer fidelities F of a single-photon-
subtracted squeezed vacuum state and a photon-subtracted-
then-added squeezed vacuum state as a function of the
squeezing parameter r for G = 40γa and T = 0 K. For
comparison, we also plot the transfer fidelity of a squeezed
vacuum state as a function of the squeezing parameter r for
G = 40γa and T = 0 K. For a fixed value of the squeezed
parameter r , we find that both the transfer fidelity of the
single-photon-subtracted squeezed vacuum and the transfer
fidelity of the photon-subtracted-then-added squeezed vacuum
state are lower than that of the squeezed vacuum state, and the
transfer fidelity of the photon-subtracted-then-added squeezed
vacuum state is the lowest.

We further investigate how the temperature T of the
environment affects the transfer fidelities F of various non-
Gaussian states. Figure 10 shows the transfer fidelities F of a
single-photon Fock state |1〉, a two-photon Fock state |2〉, and a
qubit state 1√

2
(|0〉 + |1〉), a single-photon-added coherent state

with α = 1, a single-photon-subtracted squeezed vacuum state
with r = 0.5, and a photon-subtracted-then-added squeezed
vacuum state with r = 0.5 as a function of the temperature
T (K) of the environment for the coupling strength G =
40γa . Due to the detrimental effect of the temperature T of
the environment, the fidelity decreases with increasing the
temperature T of the environment. It is seen that the curve
for the qubit state overlaps that for the single-photon-added
coherent state with α = 1. Note that the transfer fidelity of
the single-photon Fock state degrades faster than that of
the qubit state but slower than that of the two-photon Fock
state |2〉. For the same amount of squeezing, the transfer
fidelity of a single-photon-subtracted squeezed vacuum state
decreases with the temperature T more slowly than that
of a photon-subtracted-then-added squeezed vacuum state.
Additionally, for a fixed value of T , the transfer fidelity of the
single-photon-subtracted squeezed vacuum state is lower than
that of the single-photon Fock state, and the transfer fidelity
of the photon-subtracted-then-added squeezed vacuum state is
lower than that of the two-photon Fock state |2〉.
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FIG. 10. (Color online) The transfer fidelities F of a single-
photon Fock state (red dotted), a two-photon Fock state |2〉 (green dot
dashed), a qubit state (black solid), a single-photon-added coherent
state with α = 1 (blue middle dashed), a single-photon-subtracted
squeezed vacuum state with r = 0.5 (purple short dashed), and a
photon-subtracted-then-added squeezed vacuum state with r = 0.5
(pink long dashed) as a function of the temperature T (K) of the
environment for the coupling strength G = 40γa .

V. CONCLUSIONS

In summary, we have investigated the quantum state transfer
from the optical mode to the microwave mode in the cavity
electro-optic modulator. In the absence of the noises, we show
that the quantum state transfer is performed perfectly if the
decay rates of the optical mode and the microwave mode are
equal to zero. In the presence of the noises, the fidelity of
the quantum state transfer depends on the effective coupling
strength and the temperature of the environment. The results
show that the high fidelity state transfer for Gaussian states and
some non-Gaussian states is possible to achieve if the effective
coupling strength is strong enough and the temperature of
the environment is low enough. We also make a comparison
between the fidelities of different initial states of the optical
mode to be transferred. We find that the transfer fidelity
of the non-Gaussian state obtained by the de-Gaussification
procedure is lower than that of the corresponding Gaussian
state.

Finally, we briefly discuss experimental feasibility. In the
cavity electro-optic modulator demonstrated experimentally
by Ilchenko et al. [12], the electro-optic coupling strength is
g ∼ 2π × 20 Hz, the optical decay rate and the microwave
resonator’s damping rate are γa = γb = 2π × 40 MHz, the
external laser power is 2 mW, and the ratio G/γa is on the order
of 10−3 only [21]. It has been pointed out that there is plenty
of room for improvement in the parameters [21]. For example,
the electro-optic coupling strength could be improved to g ∼
2π × 5 kHz, and the optical decay rate and the microwave
damping rate could be reduced to 2π × 0.2 MHz; then G/γa =
40 is possible to be reached, thus the high fidelity of quantum
state transfer could be achieved in the cavity electro-optic
modulator. Moreover, all the initial states of the optical field
considered above are pure. However, in a real experiment,
the optical field is initially prepared in a mixed state which
is nearly pure. In this case, the final state of the microwave
resonator is also a mixed state. The fidelity between the two

mixed states ρi and ρf can be calculated by using Eq. (8).
The mixed state to be transferred is described by the density
matrix,

ρi =
M∑

j=1

Pj |ψj 〉〈ψj |, (56)

where Pj is the probability of the mixed state ρi to be in the
pure state |ψj 〉, 0 < Pj < 1, and

∑M
j=1 Pj = 1. We assume

that P1 is close to 1, thus
∑M

j=2 Pj is close to zero. Hence,
this mixed state ρi is near the pure state |ψ1〉. The transfer
fidelity of the mixed state ρi depends on all the coefficients
P1, P2, . . ., PM and all the pure states |ψ1〉, |ψ2〉, . . ., |ψM〉.
The transfer fidelity of the mixed state ρi might be lower or
higher than or equal to that of the pure state |ψ1〉. Hence the
cavity electro-optic modulator provides an alternative efficient
method to transfer quantum states from the optical mode to
the microwave mode.
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APPENDIX: THE CHARACTERISTIC FUNCTIONS AND
THE WIGNER FUNCTIONS OF THE STATE OF THE

MICROWAVE RESONATOR AT TIME t = π
2q

From Eqs. (18) and (19), it is seen that if we want to obtain
the fidelities F of transferring different non-Gaussian states
from the optical mode to the microwave mode, we first need to
calculate the characteristic functions and the Wigner functions
of the state of the microwave resonator at t = π

2q
, which are

shown in the following.
When the optical field is initially in a coherent state |α〉, the

characteristic function of the state of the microwave resonator
at t = π

2q
can be obtained by using Eqs. (20) and (22), which

yields

χb

(
ξb,t = π

2q

)
= χa,b

(
ξa = 0,ξb,t = π

2q

)

= exp[−s|ξb|2 + (ξbα
∗ − ξ ∗

b α)B], (A1)

where B = exp[πp/(2q)].
When the optical field is initially in a single-photon

Fock state |1〉, the characteristic function of the state of the
microwave resonator at t = π

2q
can be obtained by using Eqs.

(20), (26), and (A1), which yields

χb

(
ξb,t = π

2q

)
= (1 − |ξb|2B2) exp(−s|ξb|2). (A2)

Substituting Eq. (A2) into Eq. (19), we find the Wigner
function of the state of the microwave resonator at t = π

2q
,

Wb

(
β,t = π

2q

) = 1

πs

[
1 − B2

s

(
1 − |β|2

s

)]
exp

(
−|β|2

s

)
.

(A3)

043845-10



QUANTUM STATE TRANSFER IN CAVITY ELECTRO- . . . PHYSICAL REVIEW A 92, 043845 (2015)

When the optical field is initially in a two-photon Fock state
|2〉, the characteristic function of the state of the microwave
resonator at t = π

2q
can be obtained by using Eqs. (20), (31),

and (A1), which yields

χb

(
ξb,t = π

2q

)
= 1

2
(2 − 4|ξb|2B2 + |ξb|4B4) exp(−s|ξb|2).

(A4)

Then we substitute Eq. (A4) into Eq. (19) and derive the
Wigner function of the state of the microwave resonator at
t = π

2q
as

Wb

(
β,t = π

2q

)
= 1

πs

[
1 − 2B2

s

(
1 − |β|2

s

)

+
(

1 − 2|β|2
s

+ |β|4
2s2

)B4

s2

]

× exp

(
−|β|2

s

)
. (A5)

When the optical field is initially in a qubit state 1√
2
(|0〉 +

|1〉), the characteristic function of the state of the microwave
resonator at t = π

2q
can be obtained by using Eqs. (20), (34),

and (A1), which yields

χb

(
ξb,t = π

2q

)
= 1

2
[2 + 2iBIm(ξb) − |ξb|2B2]

× exp(−s|ξb|2). (A6)

From Eq. (19), the Wigner function of the state of the
microwave resonator at t = π

2q
is found to be

Wb

(
β,t = π

2q

)
= 1

2πs

[
2 + 2B

s
Re(β) − B2

s

(
1 − |β|2

s

)]

× exp

(
−|β|2

s

)
. (A7)

When the optical field is initially in a single-photon-added
coherent state, the characteristic function of the state of the
microwave resonator at t = π

2q
can be obtained by using Eqs.

(20), (38), and (A1), which yields

χb

(
ξb,t = π

2q

)

= 1

1 + |α|2 [1 + |α|2 + (ξbα
∗ − ξ ∗

b α)B − |ξb|2B2]

× exp[−s|ξb|2 + (ξbα
∗ − ξ ∗

b α)B]. (A8)

Then the Wigner function of the state of the microwave
resonator at t = π

2q
can be found by using Eq. (19), which

reads

Wb

(
β,t = π

2q

)

= 1

πs(1 + |α|2)

[
1 + |α|2 + B

s
(αβ∗ + α∗β − 2|α|2B)

− B2

s

(
1 − 1

s
|β − αB|2

)]
exp

(
−1

s
|β − αB|2

)
. (A9)

When the optical field is initially in a squeezed coherent
state |α,r〉, the characteristic function of the state of the
microwave resonator at t = π

2q
can be obtained by using Eqs.

(20) and (22), which yields

χb

(
ξb,t = π

2q

)
= exp{−[v̄Re2(ξb) + ūIm2(ξb)]

+ (ξbᾱ
∗ − ξ ∗

b ᾱ)B}, (A10)

where ᾱ = α cosh(r) − α∗ sinh(r).
When the optical field is initially in a single-photon-

subtracted squeezed vacuum state, the characteristic function
of the state of the microwave resonator at t = π

2q
can be

obtained by using Eqs. (20), (44), and (A10), which yields

χb

(
ξb,t = π

2q

)
= {1 − B2[e2rRe2(ξb) + e−2r Im2(ξb)]}

× exp[−v̄Re2(ξb) − ūIm2(ξb)]. (A11)

Then the Wigner function of the state of the microwave
resonator at t = π

2q
can be found by using Eq. (19), which

has the form,

Wb

(
β,t = π

2q

)
= 1

π
√

ūv̄

{
1 − B2

[
e2r

v̄

(
1

2
− Im2(β)

v̄

)

+ e−2r

ū

(
1

2
− Re2(β)

ū

)]}

× exp

[
−Re2(β)

ū
− Im2(β)

v̄

]
. (A12)

When the optical field is initially in a photon-subtracted-
then-added squeezed vacuum state, the characteristic function
of the state of the microwave resonator at t = π

2q
can be

obtained by using Eqs. (20), (50), and (A10), which yields

χb

(
ξb,t = π

2q

)

= 1

Na†a
[n1 + n2Re2(ξb) + n3Im2(ξb) + n4Re4(ξb)

+ n5Re2(ξb)Im2(ξb) + n6Im4(ξb)]

× exp[−v̄Re2(ξb) − ūIm2(ξb)]. (A13)

Then the Wigner function of the state of the microwave
resonator at t = π

2q
can be found by using Eq. (19), which

reads

Wb

(
β,t = π

2q

)
= 1

πNa†a

√
ūv̄

[K1 + K2Re2(β)

+K3Im2(β) + K4Re2(β)Im2(β)

+K5Re4(β) + K6Im4(β)]

× exp

[
−Re2(β)

ū
− Im2(β)

v̄

]
. (A14)
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