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Open Fabry-Perot microcavities represent a promising route for achieving a quantum electrodynamics (cavity-
QED) platform with diamond-based emitters. In particular, they offer the opportunity to introduce high-purity,
minimally fabricated material into a tunable, high quality factor optical resonator. Here, we demonstrate a fiber-
based microcavity incorporating a thick (>10 μm) diamond membrane with a finesse of 17 000, corresponding
to a quality factor Q ∼ 106. Such minimally fabricated thick samples can contain optically stable emitters similar
to those found in bulk diamond. We observe modified microcavity spectra in the presence of the membrane, and
we develop analytic and numerical models to describe the effect of the membrane on cavity modes, including
loss and coupling to higher-order transverse modes. We estimate that a Purcell enhancement of approximately
20 should be possible for emitters within the diamond in this device, and we provide evidence that better diamond
surface treatments and mirror coatings could increase this value to 200 in a realistic system.
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I. INTRODUCTION

The field of diamond photonics has seen tremendous growth
over the past decade [1,2], spurred by new applications of
optically active defect centers in metrology [3,4] and quantum
information science [5,6]. In particular, the nitrogen-vacancy
(NV) defect [7] exhibits long spin coherence times and
narrow optical transitions favorable for realizing a solid-state
cavity-QED system. In pursuit of this goal, much progress
has been made in fabricating low-mode-volume cavities in
diamond itself [2,8–10], and Purcell enhancement of the
NV zero phonon line as large as 70 has been observed in
a diamond photonic crystal cavity [11]. A complementary
strategy is to confine the defect in an open Fabry-Perot
microcavity [12,13], which provides in situ tunability and the
possibility for very narrow cavity linewidths. Recently, three
groups have observed coupling between an open cavity and
an NV center in a nanocrystal [14–17].

A central challenge for diamond photonics is destabilization
of defect optical transitions in close proximity to surfaces,
especially for defects in nanocrystals or in nanofabricated
devices [18]. For example, the aforementioned diamond
photonic crystal cavity achieved its high Purcell factor at the
expense of spectral diffusion of many GHz [11], far in excess
of the near lifetime-limited linewidths of 13 MHz that can be
observed in some type IIa samples [19]. While recent advances
in surface treatments [20] and fabrication [21] hold promise
for realizing optimal NV properties in nanophotonic structures,
narrow linewidths are most reliably obtained microns into bulk
diamond. The open cavities discussed here can accommodate
the larger mode volumes required for such microns-thick
samples: both their mode volume V and quality factor Q

increase approximately linearly with length, so that the Purcell
enhancement Fp depends only on the mirror finesse F and the
ratio of the cavity waist w0 to the resonant wavelength λ: Fp ∝
Fλ2/w2

0 [12]. In addition, their linewidths are comparatively
narrow and can be tuned over a wide range in situ via the cavity
length, potentially allowing exploration of spin-dependent
coupling between an NV center and the cavity. Finally, by
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adjusting the positions of the mirrors, one can optimize the
cavity mode spatial overlap with the emitter.

In principle, it is straightforward to incorporate a microns-
thick membrane into an open cavity. However, for high
finesse F > 104 cavities, losses at the 100 ppm level are
important. Absorption and scattering must be minimized,
and changes in the cavity mode induced by the dielectric
interface must be considered. Here, we demonstrate that a
fiber-based microcavity can maintain high finesse F ∼ 17 000
(quality factor Q ∼ 106) while incorporating a >10-μm-thick
diamond membrane compatible with high-stability defect
centers. We further develop a theoretical description for the
longitudinal modes (including diffraction effects), and we use
perturbation theory to estimate the mixing between transverse
modes induced by the membrane. Based on our measurements,
we predict our device should be capable of enhancing the NV
zero phonon line by a factor of approximately 20.

II. THE FIBER CAVITY DEVICE

We work with a fiber-based Fabry-Perot microcavity
[12,13] in a geometry similar to those used to study quan-
tum dots [22] and molecules [23]. The microcavity system
[Fig. 1(a)] consists of a concave mirror on the tip of a
single mode optical fiber, and a macroscopic flat mirror to
which we bond the diamond membrane. Compared with
traditional optics, these fiber-based cavities offer advantages
in stable alignment and efficient coupling to the single mode
propagating in the fiber [12].

The fiber mirror substrate is fabricated using a CO2 laser
ablation process [12]. The ablation laser induces evaporation
and melting of the glass on the fiber tip [24], resulting in
an approximately Gaussian-shaped dimple [Fig. 1(b)] with
an extremely low surface roughness of <0.2 nm rms, as
measured with an atomic force microscope. By imaging the
fiber core during ablation alignment, we achieve a placement
repeatability of 0.5 μm for the ablation spot. The fiber used
in our experiments is measured to have a power coupling
efficiency to the cavity mode of ε2 = 48 ± 4% (limited by
mirror absorption as well as cavity and ablation misalignment;
see Appendix A), and an effective radius of curvature R =
61.0 ± 1.4 μm (see Appendix B).
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FIG. 1. (Color online) (a) A schematic of the microcavity system
illustrating the cavity length (L), mirror radius of curvature (R),
diamond membrane thickness (td ), and coupling efficiency (ε)
between the fiber and cavity modes. (b) An interferometric image
of an ablated fiber, where each subsequent dark fringe corresponds
to a change in depth of ≈253 nm. (c) A microscope camera image
of the fiber cavity mirror and reflection seen against the diamond
membrane. Dark regions in the upper corners are due to partial
etching of the mirror beneath the membrane, and some contamination
of the diamond surface is also visible. (d) Measured transmission
(solid line) and reflection (dashed line) curves for the bare cavity, and
membrane-in-cavity configurations, normalized to the peak reflected
power. These particular measurements correspond to finesses of
FL ≈ 37 000 ± 1000 and FL ≈ 15 900 ± 900 for the bare cavity and
membrane-in-cavity, respectively.

The second mirror substrate is a superpolished macroscopic
mirror flat with surface roughness below 0.1 nm rms. The
flat and fiber mirrors are coated with a dielectric mirror
stack (LASEROPTIK) specified to have a transmission of
70 ± 10 ppm and <24 ppm losses at λ = 637 nm; the
theoretical finesse of the stack design is 53 100. The fiber
(stripped of all polymer jacketing) and flat mirrors were both
annealed at 300 ◦C for 5 h under atmospheric conditions to
reduce losses in the coatings [25].

The diamond membrane is fabricated from a 〈100〉-cut elec-
tronic grade single-crystal diamond plate. The bulk diamond
was laser cut laterally, producing (20 ± 10)-μm-thick diamond
membranes polished to a surface roughness of approximately
5 nm rms. One of the resulting membranes was cleaned in a
piranha solution and bonded with Van der Waals forces to a
silicon carrier wafer, and approximately 2 μm was etched from
the membrane surface using an ArCl2 inductively coupled
plasma reactive ion etching (ICP RIE) recipe [26–28]. The
etching process reduced the surface roughness to <0.2 nm
rms (measured over one optical wavelength squared). The
membrane was then removed from the carrier, similarly
cleaned in piranha, etched on the other side (again removing
2 μm with ArCl2), and finally bonded to the macroscopic
mirror flat. Finally, a third ArCl2 etch was performed to thin
the membrane to approximately 10 μm.

To assemble the cavity, the mirror flat is fixed to a tip-
tilt mount, while the fiber is clamped to a three-axis manual
and piezo stage. The tip-tilt mount enables angular alignment
of the cavity mode, while the three-axis stage allows for the
study of different regions of the membrane as well as precision
control of the cavity length. Figure 1(c) shows an image of the
assembled device.

III. EFFECT OF THE MEMBRANE ON CAVITY MODES

A. Cavity finesse

Introducing the membrane into the cavity affects the
linewidth of its resonances. To determine the cavity finesse,
we scan the position of the fiber mirror while monitoring the
cavity’s transmission and reflection at a fixed wavelength near
637 nm (provided by a tunable diode laser). In this case, we
define the finesse as the ratio of the free spectral range (FSR
≈λ/2) to the resonance full width at half-maximum (FWHM)
measured as a function of the length of the cavity, and we
denote it by FL:

FL = FSR in length

FWHM in length
. (1)

Note that for the membrane-in-cavity system, this is not
necessarily the same as finesse obtained by measuring the
resonance spacing and linewidth as a function of laser
frequency.

We measure the finesse by first performing a long scan
of the cavity length to observe the resonance spacing as a
function of the voltage applied to the piezo stage. By scanning
the length over about 20 μm (roughly 60 FSR), we can fit
the observed resonances to extract the free spectral range
and calibrate the piezo stage nonlinearity. Subsequent voltage
scans over shorter length ranges (0.6 μm) provide high-
resolution data for extracting the cavity linewidth. At each
position of interest, we measure 64 transmission and reflection
peak data sets to gather statistics on the cavity linewidth. This
procedure is followed for all measurements of FL presented in
Figs. 1–4.

We characterize the transmission and reflection curves for
the TEM00 fundamental mode using the same fiber mirror for
an empty or “bare” cavity, and for a membrane-in-cavity, as
illustrated by sample data sets in Fig. 1(d). These measure-
ments are corrected for calibrated losses in the measurement
apparatus (outside of the cavity), and they are normalized to the
peak reflected power. To determine cavity linewidth, we fit the
transmission and reflection data sets to Lorentzian and Fano
line shapes, respectively; in practice, the reflection signal gives
better signal to noise and was used to calculate cavity finesse.
The asymmetric resonances seen in reflection can arise from a
slight displacement of the ablation dimple from the fiber core
(see Appendix A).

As discussed below, the observed finesse varies with the
length of the cavity, the transverse location on the membrane,
and the frequency of the laser. At best, we observe a peak
finesse of FL ≈ 37 000 for the bare cavity and FL ≈ 17 000
for the membrane-in-cavity setup. When we observe different
locations on the flat mirror’s surface, we find the finesse
for the empty cavity typically fluctuates by a few thousand,
most likely due to surface contamination or spatially varying
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FIG. 2. (Color online) (a) Cavity spectrum obtained by coupling a broadband LED through the flat mirror, and scanning the length of the
cavity. An approximate analytic fit [Eq. (3)] to the resonances is overlaid. The error in the x-axis calibration is ±0.2 μm. (b) A numerical
simulation of the normalized finesse FL of the cavity resonances including the Guoy phase and mirror stack. Lines indicating the cavity
resonances associated with air and diamond regions are overlaid to illustrate the avoided crossings. (c) Finesse vs laser wavelength measured
for three different regions of the diamond membrane, corresponding to different membrane thicknesses. The raw finesse data were binned using
the Freedman-Diaconis rule [29] to show the underlying distribution, and the binned data are shown through opacity. The mean finesse values
are plotted as lines. (d) Simulated finesse vs laser wavelength for a lossless cavity. The absence of scattering losses leads to high finesse over a
much larger wavelength range.

surface roughness. With the diamond present, however, the
finesse fluctuates by a much larger factor, with no observable
cavity resonances in many locations. At first glance, one
might presume these fluctuations arise from similar physics,
i.e., roughness, contamination, or even crystal defects in
the diamond itself. However, as discussed below, such large
finesse fluctuations are primarily caused by spatial variations
in the diamond layer thickness, which affects the cavity mode
structure in an important and predictable way.

B. Mode structure

We characterize the cavity mode structure by illuminating
the flat mirror with a broadband LED source, and measuring
the spectrum of the light transmitted into the fiber with a
grating spectrometer. By gathering data as a function of cavity
length, we observe the evolution of multiple longitudinal and
transverse modes [see Fig. 2(a)].

The measured white-light spectrum exhibits a canted peri-
odic structure that is markedly different from the behavior of a
bare cavity. These features can be quantitatively reproduced by
a simple one-dimensional (1D) model. We consider lossless
mirrors at each end of the cavity, with a 180◦ phase shift
on reflection (facing the cavity) to approximate the dielectric
mirror stack terminated at the high index material (Ta205 in
this case). Between the mirrors are a slab of diamond of
thickness td and index nd , and a layer of air with thickness
L − td and index nair = 1 [see Fig. 1(a)]. In the limit of perfect
mirrors, the resonant frequencies ν are given by solutions to

the transcendental equation,

(1 + nd ) sin

(
2πν

c
[L + td (nd − 1)]

)

= (1 − nd ) sin

(
2πν

c
[L − td (nd + 1)]

)
. (2)

Note that while the resonances occur regularly every c/2ν as
the length of the cavity shifts, the variation with frequency is
less straightforward. For resonances with a longitudinal mode
number much greater than 1, Eq. (2) can be approximated by
writing ν in terms of its deviation δν from an integer multiple m

of the average free spectral range, ν = δν + mc/{2[L + (nd −
1)td ]}, and neglecting δν on the right-hand side of Eq. (2) [30],
yielding

ν ≈ c

2π [L + (nd − 1)td ]

{
πm − (−1)m

× arcsin

[
nd − 1

nd + 1
sin

(
mπ [L − (nd + 1)td ]

L + (nd − 1)td

)]}
. (3)

Fitting Eq. (3) to the fundamental mode frequencies in the
cavity spectrum results in an estimated membrane thickness
of td = 10.5 ± 0.2 μm and the cavity lengths given on the x

axis of Fig. 2(a), where the fit results are shown by the dashed
lines. Note that we fit resonances over the full 20 μm range
of the stage (not shown) to produce these estimates, and we
included a cubic nonlinearity in the piezo stage response; the
region displayed in the figure is representative of the goodness
of fit. The fit deviations arise because the model neglects
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FIG. 3. (Color online) Numerical cavity simulations including
wavefront curvature and loss as a function of resonance wavelength.
(a) Simulated cavity transmission, illustrating the cavity lengths
for which the simulation was performed (dashed line). Steeper-
sloped regions correspond to diamondlike modes, while shallower-
slopes correspond to airlike modes. (b) Simulated finesse FL for
different sources of loss in the membrane-in-cavity system. For each
simulation, enough loss was added to bring the measured finesse in
length down to 17 000. (c) Simulated Purcell enhancement for the
same models as in (b). Note that the legend at the bottom applies to
both (b) and (c).

the transverse Gaussian field profile and Guoy phase of the
cavity mode, which can lead to errors in the estimated length
of up to half a FSR (λ/4) [31]. The fit also allows us to

determine the cavity length during transmission and reflection
measurements, albeit with an increased uncertainty (roughly
±0.3 μm) [32].

The model also provides some intuition about the system.
If the membrane-air interface were perfectly reflective (i.e.,
nd → ∞), it would divide the cavity into two, and the normal
modes would separate into “diamond” modes and “air” modes,
wherein the field is entirely localized in either the diamond
or air, respectively. Since the diamond thickness is fixed,
the diamond mode frequencies [horizontal lines in Fig. 2(b)]
would not depend on the longitudinal position of the fiber
mirror, while the air modes would decrease in frequency as
the air gap increases in length [slanted lines in Fig. 2(b)].
Indeed the frequency spacings for these modes would reveal
the diamond thickness and cavity length: �νdi = c

2nd td
and

�νair = c
2 (L−td ) for the diamond and air modes, respectively.

With finite nd , these modes are coupled to one another, leading
to the large avoided crossings observed in the spectrum;
“diamondlike” modes have a shallow slope, while the “airlike”
modes have a steeper slope. This behavior is very similar
to that of a membrane-in-the-middle system [30], where the
air-diamond dielectric interface plays the role of a weakly
reflective, vanishingly thin membrane.

Our analysis above focused on the fundamental mode, and
indeed, for an ideal spherical ablation dimple, light from the
fiber core should couple primarily to the Gaussian TEM00

mode. Nevertheless, some higher-order modes are also visible
in the spectrum. Similar features observed in the white-light
spectrum for the bare cavity are used to extract the effective
radius of curvature of the fiber mirror (R = 61.0 ± 1.4 μm),
as noted in Sec. II and detailed in Appendix B.

In addition to the analytic 1D model used to find the
cavity resonance frequencies, we developed a numerical three-
dimensional model for the cavity modes that incorporates
wavefront curvature within the cavity and the full dielectric
mirror stack. This model includes an approximation that the
air-diamond interface follows the curvature of the Gaussian
wavefronts, in order to prevent coupling between transverse
modes via refraction. Figure 2(b) shows simulated cavity
resonances in the absence of any loss, calculated over the same
length and frequency range as the white-light transmission
data. The cavity parameters used are those extracted from
the fit in Fig. 2(a), and full calculation details are provided
in Appendix C. The color of each data point shows the
calculated value ofFL normalized to the naive finesse estimate
of π

T
, where T is transmission per pass of one mirror, and all

other loss processes are neglected. The highest finesse values
are obtained when the laser frequency is tuned to an airlike
mode, approaching the naive estimate. Conversely, if the laser
frequency is tuned to a diamondlike mode, the measured
finesse will be consistently lower than expected.

We emphasize that our models thus far assume no losses,
meaning the aforementioned finesse fluctuations arise entirely
from interference effects. The finesse limitations can be
understood by considering the effect of attaching a diamond
membrane to the flat mirror. The dielectric coatings used
for our mirrors are terminated with a high-index material,
and they are optimized for use in air. Diamond has a high
index of refraction (nd = 2.417), which effectively lowers the
reflectivity of the flat mirror, corresponding to a decrease
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in finesse for modes in which the electric field is more
confined to the membrane. Quantitatively, the lossless 1D
analytic model predicts that the finesse of the diamondlike
modes is reduced by a factor of 2/(n2

d + 1) ≈ 0.3. Conversely,
if low-index-terminated mirrors were used, the diamondlike
modes would exhibit the naive finesse while the airlike modes
would have finesse reduced by 2/(1/n2

d + 1) ≈ 0.6.
A central prediction of this calculation is that the mode

structure can cause dramatic finesse variations with laser
wavelength. Moreover, because the mode structure shifts with
td , peak finesse values should occur at different frequencies
for different membrane thicknesses. Figure 2(c) shows the
measured finesseFL as a function of laser wavelength for three
regions on the diamond membrane with marginally different
thicknesses [33]. The square data points correspond to raw
finesse data (binned using the Freedman-Diaconis rule [29]
to show the underlying distribution) where opacity illustrates
measurement frequency. The mean finesse is plotted with a
line. For each region, the peak finesse occurs at some wave-
length corresponding to an airlike mode. The finesse decreases
as the laser is tuned away from this wavelength, and the electric
field becomes more localized in the diamond membrane.

While the qualitative features of our data in Fig. 2(c) are
similar to the lossless model predictions, the drop in finesse
is notably larger and steeper. For comparison, Fig. 2(d) shows
the numerically simulated finesse for the ideal lossless system,
which exhibits much more gradual variations. As discussed
quantitatively below, the discrepancy can only be explained
by including loss primarily at the air-diamond interface, such
as scattering from roughness or contamination. The sharp
wavelength dependence again arises from interferometric
effects: when there is an electric field node at the air-diamond
interface, field-driven surface losses are strongly suppressed.
In this geometry, a node appears at the air-diamond surface
only for the airlike mode, providing a mechanism for the sharp
finesse peaks in Fig. 2(c).

To quantitatively understand the effects of loss, we add dif-
ferent absorption and scattering mechanisms to the numerical
transfer matrix model described in Appendix C. We consider
loss in the mirrors, loss caused by scattering at the diamond
interfaces, and absorption in the diamond. The mode-mixing
mechanisms for loss discussed in Sec. V should be minimal at
the short cavity lengths used in Fig. 2(c), and they would not
produce the repeatable behavior with wavelength we observe,
so we do not consider them here. Loss inside the mirrors
and diamond is modeled by adding complex components
to the refractive indices of the layers. Scattering by surface
roughness of the diamond membrane is added by adjusting
the interface reflection and transmission coefficients according
to [34,35]

rij = r
(0)
ij e−2(2πσni/λ)2

, (4)

tij = t
(0)
ij e−(1/2)[2πσ (ni−nj )/λ]2

, (5)

where rij (tij ) is the amplitude reflection (transmission)
coefficient going from material of index ni into material of
index nj , σ is the rms surface roughness, λ is the wavelength
in vacuum, and r

(0)
ij and t

(0)
ij are the lossless Fresnel coefficients.

These reflection and transmission coefficients are used in

the transfer matrix describing each diamond surface. To
quantitatively compare the effects of each individual source
of loss, we increase its strength sufficiently to bring the peak
finesse FL down to our observed value of 17 000 (while
holding other sources of loss at zero). We then calculate
the cavity modes and linewidths for the cavity parameters
extracted from the fit in Fig. 2(a) over the cavity lengths
illustrated in Fig. 3(a).

Figure 3(b) shows FL as a function of wavelength, as
predicted by several loss models. As noted earlier, scattering
at the air-diamond interface behaves qualitatively differently
from the other loss models, and most closely approaches the
features we observe in Fig. 2(c). Because there is always a
node at the high-index-terminated mirror surface, scattering
from the diamond-mirror interface does not produce such sharp
features.

Figure 3(b) also includes simulations using our best
estimate for the specific losses in our system. Enough mirror
loss was added to bring the finesse down to 37 000 (peak finesse
measured for the bare cavity), and we set the diamond-mirror
interface roughness to 0.19 nm rms (as measured for similar
samples). To match the features in Fig. 2(c), we added suffi-
cient scattering at the air-diamond interface to produce a peak
inFL [see Fig. 3(b)] with a FWHM of 1.14 nm [the linewidth of
the central peak in Fig. 2(c)]. Finally, absorptive loss was added
to bring the peak FL value down to 17 000. Notably, a very
large air-diamond surface roughness (σ = 3.5 nm rms) was
required to reproduce the features of Fig. 2(c). This roughness
is far larger than values <0.2 nm rms measured on diamond
samples etched by ArCl2, and it indicates that some additional
surface scattering or contamination is likely to blame.

After optical measurements were concluded, AFM mea-
surements of the membrane revealed a greater surface rough-
ness than expected. We observed roughness between 0.8 and
23 nm rms in the nominally smooth areas of the membrane,
with the majority of measurements around 1 nm rms. The
increased roughness was likely caused by the third ArCl2
etch (while bonded to the mirror), which produced noticeable
surface damage in some areas of the membrane [see Fig. 1(c)];
the regions used in these experiments appeared unaffected, but
in fact they suffered roughening.

The discrepancy between the measured roughness and the
model predictions can only be explained by another loss
mechanism sensitive to the magnitude of the electric field
at the surface of the diamond. Surface absorption (caused,
for example, by contamination deposited in the final etch)
could provide such a mechanism. Indeed, when we add
a thin, lossy, dielectric layer to the diamond-air interface
in our model, we see sharp features in the finesse as a
function of wavelength similar to those seen from roughness.
However, we cannot differentiate between surface roughness
and absorption in the finesse features, and roughness must
certainly be present whereas surface absorption is merely
possible, so we include only surface roughness in the presented
calculations. Nevertheless, in either case it is likely that
significantly reduced losses could be obtained with better
surface preparation. Based on our simulations, a clean surface
with state-of-the-art surface roughness σ = 0.19 nm rms is
compatible with finesse >106 for airlike modes and >50 000
for diamondlike modes.
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IV. ESTIMATION OF PURCELL ENHANCEMENT

A figure of merit for cavity systems is the Purcell factor Fp,
which describes the spontaneous-emission enhancement of an
emitter into the cavity mode. The enhancement depends on the
position of the cavity mode maximum relative to the emitter, as
well as the orientation of the emitter dipole relative to the mode
polarization. The fiber cavity geometry allows considerable
optimization of these mode-matching factors: in addition to
searching for defects of appropriate depth in the membrane to
lie at an antinode, transverse alignment, a slight axial shifting
of the wavefronts with cavity length due to Guoy phase effects,
and adjustable cavity polarization (via fiber rotation) can all
be used to optimize overlap in situ. The opportunity to search
for defects allows use of as-grown NV centers as well as the
selection of emitters with desired properties. Moreover, the
dipole axes of an NV center can be controlled with electric
fields [36], in principle enabling perfect orientation overlap
even for 〈100〉 membranes.

To predict the Purcell enhancement that could feasibly be
observed in this cavity system, we therefore consider Fp for
an optimally located and oriented emitter [37,38],

Fp = 3cλ2

4π2nd�ν

|Emax|2∫∫∫
n2(r)E2(r)dr3

. (6)

Here, �ν is the cavity linewidth in frequency, λ is the resonant
wavelength, E(r) and n(r) are the electric field and index of
refraction within the cavity, and Emax is the electric field at the
emitter in the diamond, assuming perfect emitter orientation
and location. Notably, the Purcell factor depends on the
linewidth in frequency, not length. As we are not currently able
to directly measure the cavity spatial mode and �ν, we use
our model and measurements of FL to provide a theoretical
estimate of the Purcell enhancement available in this cavity
geometry.

In our analytic 1D model, it is straightforward to calculate
the mode integrals of Eq. (6) and the linewidth �ν in terms
of the mirror finesse F (a function of only the lossless mirror
reflectivity). This yields a simple result in the limit of large F :

F (A)
p = F 6λ2

n3
dπ

3w2
0

, (7)

F (D)
p = F 12λ2(

n3
d + nd

)
π3w2

0

, (8)

where F (A)
p (F (D)

p ) is the Purcell enhancement for airlike
(diamondlike) modes, and w0 is the 1/e2 intensity radius of
the cavity waist. Note that in the limit nd → 1, these match
what one would obtain from the standard Purcell formula
(3λ3/4π2)(Q/V ) with a mode volume of V = (π/4)w2

0L [37]
and Q = 2LF/λ.

The two types of modes have different Purcell factors
because they have different vacuum electric field maxima in
the diamond and different cavity linewidths in frequency. The
variation in �ν has contributions from the reduced reflectivity
of the flat mirror (due to the diamond layer) as well as the
relative round-trip times of the diamond and air half-cavities.
Such effects are similar to finesse oscillations observed in
optomechanical systems [39]. Remarkably, in the high finesse
limit of the lossless 1D model, the length dependence of the

vacuum electric field maximum in diamond precisely cancels
the length dependence of �ν, yielding the simple expressions
above.

For lossless systems, F matches the peak value of FL,
and one might be tempted to use Eqs. (7) and (8) with our
observed peak finesse and cavity geometry to determine the
Purcell enhancement of our device. Such a calculation (using
F = 17 000, w0 = 2.2 μm, and λ = 637 nm) would predict
F (A)

p ≈ 20 and F (D)
p ≈ 33. However, adding in loss does not

simply reduce F : the location of the loss (in diamond or air)
will affect the modes differently, and in general we find that
using Eqs. (7) and (8) with F = max(FL) overestimates the
best Purcell enhancement for realistic systems where loss is
associated with the diamond.

Figure 3(c) shows the Purcell factor calculated using
the numerical model with the different loss mechanisms
described in the previous section. While mirror absorption
produces similar results to the predictions of Eqs. (7) and
(8), qualitatively distinct behavior appears from the surface
losses that likely limit our system. In particular, we predict a
maximum Purcell enhancement of approximately 20 for our
current device geometry. However, our analysis also suggests
that significant improvements can be obtained. For example,
if surface losses can be limited to the observed roughness
after ArCl2 etching (<0.2 nm rms), and higher reflectivity
mirror coatings are used, a cavity finesse of 50 000 can be
maintained even with an antinode at the air-diamond interface.
Using a 30 μm radius-of-curvature mirror (attainable in our
laser ablation setup), a 5-μm-thick membrane, and a cavity
length of 10 μm, a maximum Purcell factor of around 200
could be reached. Such a cavity would also couple efficiently
to the fiber mode (>85% with perfect alignment and low-loss
mirrors [40]) and have a linewidth ∼300 MHz, which is large
enough to accommodate minor spectral diffusion but small
enough to resolve the excited-state structure of the NV center.

V. FINESSE CHANGES WITH CAVITY LENGTH

Beyond the absorption and scattering processes considered
above, a thick diamond membrane could also induce an
additional, potentially important source of loss, namely mixing
between transverse modes of the cavity. Our numerical
model has assumed that the air-diamond interface follows
the spherical wavefront of the cavity mode, allowing for a
description of the cavity eigenstates in terms of two Gaussian
beams in the diamond and air regions. The real planar interface,
however, deviates from this requirement, and it can thereby
couple the TEM00 mode into higher-order Hermite-Gaussian
modes. Because high-order transverse modes have a larger
spatial extent, this mechanism could induce additional losses
caused by clipping at the small fiber mirror. This type of
loss would behave differently from those discussed previously
because it would depend on the length of the cavity, with
greater losses expected when higher-order modes approach
degeneracy with the fundamental.

To estimate such losses, we apply nondegenerate pertur-
bation theory (see Appendix D) to calculate the first-order
eigenstates of the membrane-in-cavity. The fraction of those
eigenstates clipped at the fiber mirror can then be calculated
to determine the loss per round trip. We begin with zero-order
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FIG. 4. (Color online) (a) Finesse as a function of length mea-
sured for a bare cavity. In (a) and (b), binned raw finesse data are
shown through opacity, while the mean finesse as a function of length
is indicated by the solid line. (b) Finesse as a function of length
measured for a cavity containing a 10.5 μm diamond membrane.
The length axis is changed from (a) so that the beam radius on the
fiber mirror takes on the same values over the range of collected
data. (c) A simulation of finesse as a function of length including
perturbative coupling to higher-order modes evaluated for different
mirror clipping radii.

modes from the three-dimensional model discussed in
Appendix C. We then treat the volume of diamond between the
curved, wavefront-matching surface and the true flat interface
as the perturbative volume. The first-order correction to the
eigenstate is given by [41]

ψ1 = κ00

∑
m
=00

∫∫∫
ψm(r)

(
n2

d − 1
)
φ00(r)dr3

κm − κ00
ψm, (9)

where the eigenstate is ψ ≈ φ00 + ψ1, φ00 is a TEM00 zero-
order cavity mode derived from our model, ψm is the mth
zero-order mode (including all longitudinal and transverse
mode numbers), κm = (ωm

c
)2 contains the eigenfrequency ωm

for the mth mode, and the integral is taken over the volume of
the perturbation. The overlap integral couples only even-order
transverse modes, and it falls off quickly with transverse
mode number. In practice, we have included transverse
mode numbers whose sum is �6. Because the denominator
grows quickly as the mode frequencies diverge, we consider
corrections only from the two longitudinal modes closest in
frequency to ω00.

To examine the importance of these perturbative couplings
experimentally, we measured finesse as a function of cavity
length with and without the membrane [see Figs. 4(a) and
4(b)]. The bare cavity finesse exhibits a decreasing slope as

a function of cavity length, which arises from coupling to
lossy higher-order modes caused by the Gaussian shape of
the fiber dimple [42,43]. We offset the x axes of the bare
cavity and membrane-in-cavity so that the beam radii on
the fiber mirror would match, varying from 2.5 to 3.6 μm
over the length range presented in Figs. 4(b) and 4(c). For
the membrane-in-cavity, in addition to the decreasing slope
seen for the bare cavity, we measured intermediate drops in
finesse at specific cavity lengths. Since we use the same fiber
mirror in both data sets, these dips must be associated with
the membrane, and they could be caused by coupling to lossy
higher-order transverse modes. For comparison, we simulated
the cavity finesse (ignoring all other loss processes) using
the first-order correction to the electric field wave function
[Eq. (9)] for different clipping radii on the fiber mirror, outside
of which all light is assumed to scatter out of the cavity. The
result is shown in Fig. 4(c), which exhibits qualitatively similar
drops in finesse at certain resonant lengths.

We lack the detailed surface profile data to accurately
parametrize our membrane and fiber dimple topography, so
the simulations cannot include the exact perturbations present
in the measurement (for example, it likely also contains a
wedge, which would couple TEM00 and TEM10 modes).
Nevertheless, our calculations demonstrate that the finesse
reductions observed at specific cavity lengths in Fig. 4(b)
could reasonably be caused by this mechanism. Perhaps more
importantly, these data illustrate that perturbative losses are
not a major impediment to working with planar membranes,
even at relatively large thicknesses >10 μm and over a range
of cavity lengths. Furthermore, as the diamond thickness
diminishes, the perturbative coupling drops, indicating that it
should be a negligible effect for few-micron-thick membranes.

VI. CONCLUSION

We have shown that high finesse ∼17 000 can be main-
tained in a Fabry-Perot microcavity even with incorpora-
tion of a thick diamond membrane. The membrane mod-
ifies the cavity modes, leading to variations in linewidth
for different membrane thicknesses or different resonant
frequencies. Our simulations indicate that surface losses
dominate, producing qualitatively different behavior from
bulk absorption. Membrane-induced coupling to higher-order
transverse modes, conversely, does not greatly impact device
performance. We anticipate that, despite the large surface
losses, the current cavity will allow about a 20-fold Purcell
enhancement for diamond-based emitters, which in the case
of the NV center would direct more than a third of its emission
into the zero phonon line. Furthermore, device performance in
this case is limited by surface roughness or contamination that
is well above the currently attainable limits [27,28].

When cooled to cryogenic temperatures and locked to the
NV resonance frequency, such devices could significantly
enhance the efficiency of photon-mediated entanglement
between distant defects [44]. Moreover, the cavity linewidth
is below the typical spacing between spin-resolved resonant
optical transitions in the NV center, enabling exploration
of spin-dependent cavity effects. With improved diamond
surface treatment and higher reflectivity mirrors, finesse ∼105

should be possible [12], and shorter cavities with smaller
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radius-of-curvature mirrors could enhance the cavity cooper-
ativity by another order of magnitude [17]; even with current
fabrication capabilities, Purcell enhancements in the range
of 200 appear within reach. Ultimately, this highly tunable
open-cavity geometry could offer a route toward an efficient
or even deterministic interface between single photons and
solid-state spins.
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APPENDIX A: ESTIMATION OF BARE
CAVITY PARAMETERS

The following section describes a method for extracting
some parameters of the bare fiber cavity system given measur-
able quantities and a one-dimensional model shown in Fig. 5.
These calculations permit us to understand the asymmetric
line shapes observed for both the bare and membrane-in-cavity
systems.

In this model, the mirrors have real amplitude transmission
and reflection coefficients t and r , and we account for a loss
per round trip in the cavity of 1 − e−2α ≈ 2α. Assuming that
light is launched into the cavity through the fiber, Ein is the
incident electric field, E0

ref is the reflected field that is coupled
back into the fiber core, E′

ref is the reflected field that is not
coupled into the fiber core, and Etrans is the field coupled
to the (free space) transmitted mode. The field circulating
within the cavity is represented by Ecirc, which is defined just
to the right of the left-hand mirror; the change in amplitude
and phase incurred in one round trip is represented by the
round trip gain: grt = e−2αe− 2iLω

c . We consider imperfect cavity

t t

L

Etrans

Ein

Eref
’

Eref
0

grt

-r -r rr

Ecirc

FIG. 5. (Color online) The one-dimensional model used to esti-
mate bare cavity parameters. L is the cavity length, r and t are the
mirror amplitude reflection and transmission coefficients, grt is the
round-trip gain of the cavity, and Ein, E0

ref , E′
ref , Etrans, and Ecirc are

the electric fields at the input, reflected into the fiber, reflected into
other modes, transmitted, and circulating in the cavity, respectively.

coupling, where ε1 is the overlap between the fiber and cavity
modes, and ε2 is the coupling coefficient between the cavity
and transmitted modes (for our analysis, we set ε2 ≈ 1). If
the ablation spot is not perfectly centered on the fiber core, the
promptly reflected light that is coupled back into the fiber mode
can be described by a complex coupling coefficient η, which
has a magnitude less than unity as well as a nonzero phase for
imperfect alignment. The relevant relationships between these
parameters are given by

E0
ref = −e−2α− 2iLω

c rtε1Ecirc + rηEin, (A1)

Ecirc = e−2α− 2iLω
c r2Ecirc + tε1Ein, (A2)

Etrans = e−α− iLω
c tε2Ecirc. (A3)

Solving for the transmitted and reflected powers (|Etrans|2 and
|E0

ref|2), normalized to the input power (|Ein|2), yields the
power reflected (Pr ) and transmitted (Pt ):

Pr = r2
∣∣[t2ε2

1 + ( − e2α+ 2iLω
c + r2

)
η
]∣∣2

e4α + r4 − 2e2ar2cos
[

2Lω
c

] , (A4)

Pt = e2αt4ε2
1ε

2
2

e4α + r4 − 2e2αr2cos
[

2Lω
c

] . (A5)

We set η = a + ib and expand the cosine terms to second order
in �L, where L = mλ/2 + �L and m is an integer, resulting
in power line shapes of the form

Pr = (a1 + a2 �L)

π

(
δL
2

)2

(
δL
2

)2 + �L2
+ y0, (A6)

Pt = a3

π

(
δL
2

)2

(
δL
2

)2 + �L2
, (A7)

where δL is the FWHM cavity linewidth measured in length,
and

y0 = (a2 + b2)r2 + at2ε2
1 , (A8)

a1 = πt2ε2
1
a(r4 − e4α) + r2t2ε2

1

(e2α − r2)2
, (A9)

a2 = 4πb e2αr2t2ε2
1ω

c(e2α − r2)2
, (A10)

a3 = π
e2αt4ε2

1ε
2
2

(e2α − r2)2
. (A11)

Note that this produces a Fano line shape in reflection. The
parameters {y0,a1,a2,a3} can be extracted from our data by
fitting the transmission and reflection curves and calibrating
the input power. In addition, we use measurements of the
finesse F and the following relationships to fully constrain the
cavity parameters:

F = π

α + t2
, (A12)

t2 + r2 + α = 1, (A13)

as well as the known laser frequency ω and ε2 = 1. With these
expressions, one can solve for all of the cavity parameters of
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interest. For example, using data acquired in a bare cavity of
length 12.2 ± 0.3 μm, and expanding in α to first order about
zero, we obtain

t = (8.8 ± 0.2) × 10−3,

r = −0.999 957 ± 0.000 001,

a = 0.61 ± 0.02,

b = 0.14 ± 0.04,

ε1 = 0.69 ± 0.03,

α = 8 ± 1 ppm.

This yields a power transmittance of T = 78 ± 3 ppm, which
agrees with the quoted coating value of T = 70 ± 10 ppm.
The combined absorption and scattering losses were quoted to
be <24 ppm, which also agrees with the derived α value.

Note added: While in the final stages of preparing this paper,
we became aware of detailed theoretical and experimental
exploration of the origin of asymmetric line shapes associated
with misalignment of fiber cavities [45,46].

APPENDIX B: CALCULATING THE EFFECTIVE
RADIUS OF CURVATURE

The Gaussian-shaped ablation dimple can be approximated
by a parabola near the center, which has a well-defined radius
of curvature. This radius is appropriate for cavity modes with
small beam diameters on the mirror. As the cavity length is
increased, the mode diameter grows and the approximation
breaks down. In this regime, it is more accurate to estimate the
effective mirror radius from the spacing of the higher-order
TEM modes. If �νtrans is the difference in frequency between
adjacent transverse modes with the same longitudinal mode
(e.g., TEMm,n and TEMm,n+1), the effective radius of curvature
is

R = L

[
1 − cos2

(
�νtrans

νFSR
π

)]−1

, (B1)

where L is the length of the cavity, and νFSR = c/2L is the free
spectral range. Using this equation to analyze the TEM00 and
TEM01/TEM10 modes in the white-light spectrum measured
for the bare cavity, we estimate an effective radius of curvature
of 61.0 ± 1.4 μm for a bare cavity length of 13.3 μm and a
beam radius of 2.6 μm on the fiber mirror. The same beam
diameter would correspond to a cavity length of 22 μm for a
cavity containing a 10.5 μm diamond membrane, as the beam
diverges less in the higher refractive index medium. Deviation
from the radius of curvature extracted from a parabolic fit to our
interferometry measurement (R ≈ 50 ± 1 μm) arises because
the finite diameter mode samples a range of curvatures within
the Gaussian dimple.

APPENDIX C: NUMERICAL CAVITY MODEL

We have developed a numerical model to calculate the
fundamental Gaussian cavity mode for a half-symmetric cavity
containing a diamond membrane bonded to the flat mirror. The
model first solves for the Gaussian beam parameters (waist
radius and position) in both the air and diamond sections
assuming a curved diamond surface lying along the mode

FIG. 6. (Color online) A diagram illustrating the 1/e2 intensity
radius of the zero-order Gaussian modes in the diamond and air
(solid lines). The mode in diamond has a waist with radius w1 at
the flat mirror, while the mode in air has a waist with radius w2 a
distance x02 from the mirror flat. The perturbation volume considered
in Eq. (9) (dashed lines) is the difference between the presumed
diamond interface lying along the mode wavefront and the planar
diamond surface.

wavefront (see Fig. 6). As boundary conditions, we require
that the beam diameters and radii of curvature are equal at
the air-diamond interface to ensure electric field continuity.
In addition, the radius of curvature in air should match the
ablation radius of curvature at the fiber mirror, while the mode
waist in diamond should lie at the flat mirror. With these
four requirements, once can solve for the required radius of
curvature for the air-diamond interface, the beam waists w1

and w2 corresponding to the modes in diamond and air, and
the effective waist position x02 for the air mode.

Once the two Gaussian modes in the air and diamond
regions are known, one can solve for the resonant frequencies
and lengths of the cavity using transfer matrix theory applied
to the left- and right-traveling electric fields within the cavity
structure (see Fig. 7).

Mirror
Flat

FiberMirror MirrorDiamond Air

Ein

Eref

Etrans

Mgma Dad Ld Dda La Mamg

FIG. 7. (Color online) A diagram indicating the relevant transfer
matrices used to calculate the resonant cavity frequencies and lengths.
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Here, we model the full geometry of the flat mirror as a one-
dimensional 29-layer dielectric stack where the right-moving
electric field travels from glass into air; the transfer matrix
describing this process is Mgma . Conversely, the fiber mirror
is modeled as the inverse matrix (Mamg = M−1

gma). Since the
mirrors are defined for air termination, we need to include an
additional matrix to model the air-diamond interface at the
flat mirror (Dad ). As mentioned above, we assume that the
second air-diamond interface (Dda) follows the curvature of
the wavefronts at that position (dashed line in Fig. 6). The
propagation matrices in the air and diamond include the Guoy
phase, and they are given by

Ldiamond =
[
e− 2πnd

λ
td+iφ1(td ) 0

0 e
2πnd

λ
td−iφ1(td )

]
,

Lair =
[
e− 2π

λ
(L−td )+iφ2(L−x02) 0

0 e
2π
λ

(L−td )−iφ2(L−x02)

]
,

where φi(x) = arctan (xλ/πw2
i ) is the Guoy phase, td is the

diamond thickness, L is the cavity length, w1 and w2 are the
1/e2 radii at the diamond and air waists, respectively, and x02

is the effective beam waist position for the mode in air (see
Fig. 6). The full transfer matrix for the cavity is[

Etrans

0

]
= S

[
Ein

Eref

]
, (C1)

where

S = Mamg La Dda Ld Dad Mgma. (C2)

Using the transmission curves calculated with this model, the
linewidth in frequency and length can be determined. The field
within the diamond and air regions can be found by evaluating
subsets of the transfer matrices to find the amplitudes in the
air and diamond, which are then multiplied by appropriate
Gaussian modes.

When adding loss to this model, the dielectric indices used
in the mirror stack and diamond were given small complex
components; in addition, the interface matrices Dda and Dad

were modified according to Eqs. (4) and (5).

APPENDIX D: NONDEGENERATE
PERTURBATION THEORY

The Hermite-Gaussian family of modes represents the
eigenstates of a spherical resonator, satisfying the Helmholtz
equation [47]. Introducing some small volume of material with
a different refractive index can break the cavity symmetry,
leading to a set of cavity eigenstates that can be expressed as
a linear combination of the unperturbed cavity modes [41].

In our case, the zero-order modes correspond to solutions
in the presence of a membrane whose interface is curved to

follow a wavefront (see Fig. 6). They are defined by[∇2 + κin
2
0(r)

]
ψ0

i (r) = 0, (D1)

where ψ0
i are the zero-order modes of the system, κi = (ωi

c
)2

contains the corresponding eigenfrequencies ωi , and n2
0(r)

is the index of refraction inside the cavity assuming an
air-diamond interface following the mode wavefront. These
zero-order eigenfunctions may be found exactly as a (real-
valued) Hermite-Gaussian family of modes with different
parameters in the air and diamond regions (see Appendix C).
The orthonormalization condition is∫∫∫

ψ0
m(r)n2

0(r)ψ0
n (r)d3r = δmn, (D2)

where δmn is the Kronecker delta, the integral is taken over the
cavity volume, and subscripts m and n encode all transverse
and longitudinal mode indices.

We wish to calculate the perturbative effect of the mem-
brane planarity, which is equivalent to introducing a small
piece of dielectric representing the difference between the
curved surface and a flat one. We are interested in a funda-
mental transverse mode (which is nondegenerate), for which
the exact eigenstate ψ satisfies{∇2 + κ

[
n2

0(r) + λV(r)
]}

ψ = 0, (D3)

where V(r) = n2
d − 1 inside the perturbation volume (and zero

outside), λ is some small number, and κ corresponds to the new
eigenfrequency. We can express both ψ and κ as a power series
in λ:

ψ = ψ0
0 +

∞∑
n=1

λnψn, (D4)

κ = κ0 +
∞∑

n=1

λn�n, (D5)

where ψ0
0 and κ0 correspond to the nondegenerate fundamental

mode eigenstate of the unperturbed system, and ψn, �n are the
nth-order corrections. Considering only the terms of Eq. (D3)
to order λ, one finds[∇2 + n2

0(r)κ0
]
ψ1 = −[

�1n
2
0(r) + κ0V(r)

]
ψ0

0 , (D6)

and one can thereby derive the first-order correction to the
eigenstate:

ψ1 = κ0

∑
m
=0

∫∫∫
ψ0

m(r)V(r)ψ0
0 (r)dr3

κm − κ0
ψ0

m, (D7)

where ψ0
m is the mth-order mode of the unperturbed system,

and we have set λ = 1. Here m labels all longitudinal and
transverse modes to which the zero-order Gaussian mode ψ0

0
can be coupled by the perturbation.
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