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The physics involved in the fundamental conservation equations of the spin and orbital angular momenta leads
to new laws and phenomena that are disclosed here. To this end, we analyze the scattering of an electromagnetic
wave field by the canonical system constituted by a small particle, which is assumed to be dipolar in the wide
sense. Specifically, under quite general conditions these laws lead to understanding the contribution and weight
of each of those angular momenta to the electromagnetic torque exerted by the field on the object, which is
shown to consist of an extinction and a scattering, or recoil, part. This leads to an interpretation of its effect
different than that taken up until now by many theoretical and experimental works, and implies that a part of
the recoil torque cancels the usually called intrinsic torque, which was often considered to be responsible for
the particle spinning. In addition, we obtain the contribution of the spatial structure of the wave to this torque,
unknown to this date, showing its effect in the orbiting of the object, and demonstrating that it often leads to a
negative torque on a single particle, i.e., opposite to the incident helicity, producing an orbital motion contrary
to its spinning. Furthermore, we establish a decomposition of the electromagnetic torque into conservative and
nonconservative components in which the helicity and the spin angular momentum play a role analogous to the
energy and its flux for electromagnetic forces. These phenomena are illustrated with examples of beams, also
showing the difficulties of some paraxial formulations whose fields do not hold the transversality condition.
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I. INTRODUCTION

There is a growing interest in phenomena related to the
angular momenta of light and other electromagnetic fields.
Advances in particle manipulation are making experiments,
their assessment, interpretation with theories, and applications
of increasing study and capability. This has opened a new
area of research related to the twisting of both the polarization
and the wave fronts of electromagnetic fields [1–20] and their
effects on matter [21–36,38].

On the one hand, conservation laws for the helicity and
spin of wave fields [7,12–16] were recently established based
on initial extensions [11] of known conservation equations
of electromagnetism. Such laws appear as fundamental as
those for the energy and linear and angular momenta. In
particular, [7] put forward the conservation of spin and orbital
angular momenta separately. On the other hand, studies on
the momenta transfer to matter and their mechanical action
on bodies are enlarging the area of optical manipulation of
objects. Among these, new bizarre effects like negative optical
torques (i.e., opposite to the helicity of the illumination) on
sets of particles have been predicted [35,39] with circularly
polarized plane waves, as well experimentally observed with
Gaussian beams on extended objects [36]. This phenomenon
keeps an analogy with pulling forces [40–42] that have recently
attracted so much attention.

However, theory and experiments on electromagnetic
torques are less developed and understood than their coun-
terparts of optical and electromagnetic forces [38,40–54].
Observations are more difficult to control and to quantitatively
interpret with existing models. With few exceptions [33,35],
most experimental [26,27] and theoretical [28–33,53] studies
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employ a static formulation (perhaps following the path of
pioneering work [21]), which was shown [39] to be incomplete
and not compatible with energy and angular momentum con-
servation. Only for extremely small (i.e., Rayleigh) particles in
terms of the wavelength is the static approximation valid; this
is further discussed in Sec. X, where the total electromagnetic
torque is addressed.

Although several reports [22–25,27,33,38] realize the need
of energy absorption by the object in order that it experiences
a torque, no explicit demonstration exists of the role played in
this effect by the variation of incident spin and orbital angular
momenta, even though they are calculated in some cases after
scattering [8,9,33,34]. Moreover, studies based on the static
approximation [26–29,31,53] deal only with the so-called
intrinsic torque which, as shown below, cannot account for the
angular momentum transfer nor describe the resulting torque
experienced by the object through energy absorption.

In a recent work [55] we established the significance of
the conservation of electromagnetic helicity for scattering
objects and its relevance for energy transfer between small
particles and molecules, as well as for circular dichroism.
Now the aim of this paper is twofold. On the one hand,
we integrate the conservation laws for the spin and orbital
angular momenta, extracting their physical meaning for the
interaction of fields and objects, specifically in the scattering
of a wave field by a small particle. On the other hand, we
predict the contributions of each of these angular momenta
conservation laws to the optical torque exerted by the field
on the object, also taking into account that part due to the
spatial structure of the field. This is illustrated with a generally
magnetodielectric bi-isotropic [56] dipolar particle in the
wide sense, i.e., whose scattering is fully described by the
first-order partial waves (namely, Mie coefficients if it were
a sphere [54,57,58]). This analysis opens a collection of new
phenomena related to the electromagnetic torque, susceptible
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to further investigation from the theoretical and experimental
points of view. Our discussion is classical, however, if one
considers the quantum nature of light; these results may be
obtained in terms of the number operators associated with left
and right circular polarized modes, expressed by the product of
the corresponding annihilation and creation photon operators
(see [59–61]), especially since methods to identify twisted
beams with different topological charge have been devised
[61–63].

A Coulomb gauge is chosen dealing with fields that satisfy
the transversality condition. This allows a separation of the
spin and the orbital angular momenta, thus conferring sense
to the existence of their respective conservation laws [7,13]
separately. It is known, however, that certain formulations of
optical beams have a problem with the transversality condition,
and this is also noticed in this work. Hence, within this context,
and within the validity of these conservation laws, we reach
the following results.

(1) The conservation laws for the spin and orbital angular
momenta lead to their respective contributions to the time-
averaged electromagnetic torque on the object, which from
each of them is composed of two parts: (a) an extinction torque
due to the extraction of the corresponding (spin or orbital)
angular momentum from the incident wave by scattering from
the body, described by the interference between the incident
and the scattered fields; (b) a scattering or recoil torque due to
the scattered field interfering with itself.

(2) The recoil torque due to the orbital-angular-momentum
conservation is equal to that yielded by the spin angular
momentum conservation; both of them sum to produce the
total recoil torque, which is the same as that derived from the
conservation of total angular momentum [39] and coincides
with its emission rate by the electric and/or magnetic dipole
induced on the particle, as it should.

(3) The extinction torque obtained from the spin angular
momentum conservation contains two terms: One is the
so-called intrinsic torque by several authors so far, usually
employed in most studies on dipolar particles based on the
static theory, and which, however, we show to be canceled by
a part of the total recoil torque, which is also intrinsic as it does
not depend on the origin of coordinates; the other term comes
from the spatial structure of the incident field which, in turn, is
equal to twice the corresponding extinction torque yielded
by the conservation of orbital angular momentum. If the
incident wave is a plane, obviously there is no term due to the
field spatial structure; hence, the orbital-angular-momentum
conservation yields no extinction part, which is consistent
with the absence of incident orbital angular momentum in
such a wave. Also, in this latter case, the above-mentioned
cancellation conveys a transfer of spin angular momentum to
the particle accounted for by the remaining part of the recoil
torque through absorption of the incident energy.

(4) Therefore, if the incident field is a plane wave,
according to point 3 above, the existence of a recoil torque
stemming from the conservation of orbital angular momentum
has to come from the incident spin angular momentum, this
being a manifestation of the spin-orbit interaction which is
included in the conservation laws.

(5) For a circularly polarized incident plane wave, if
the particle produces a circularly polarized scattered field,

(for which it is sufficient that its electric and magnetic
polarizabilities coincide), then the electromagnetic torque and
force on that particle become proportional to each other.

(6) Taking into account the spatial structure of the field,
the torques derived from the spin and orbital conservation laws
admit a decomposition into conservative and nonconservative
components, analogous to that of electromagnetic forces.
There is a gradient component of the torque, where now the
wave-field helicity plays a role analogous to that of the energy
for the optical force and hence may be employed as rotational
optical tweezers that aligns the torque acting on the particle
along an equilibrium direction. Likewise, there is a component
given by the spin angular momentum (which coincides
with the helicity flow in the dual-symmetric formulation for
quasimonochromatic fields [7] here employed), analogous to
the radiation pressure, or Poynting vector part, of the force.
In addition, there are other nonconservative components that
describe torques due to circulation of field vortices around the
dipolar object.

(7) In contrast with plane waves, incident fields with
certain spatial structures, and some beams in particular, may
easily produce negative electromagnetic torques on one single
small particle.

II. THE FLOW OF HELICITY

We address time-harmonic fields with electric and mag-
netic vectors: E(r,t) = Re[E(r) exp(−iωt)] and B(r,t) =
Re[B(r) exp(−iωt)], a functional form that also applies to
all potentials and currents. Re denotes real part. Although
such fields are not source free [64,65], they are considered
in regions with no sources so that they admit an angular
spectrum representation of plane-wave components [65,66],
either convergent, divergent, or both, satisfying at kr → ∞
Sommerfeld’s radiation condition. Such fields are, of course,
transversal; namely, they hold Maxwell’s equations: ∇ · E =
0, ∇ · B = 0.

In a nonabsorbing dielectric medium of refractive index
n = √

εμ (ε and μ representing the dielectric permittivity and
the magnetic permeability), the helicity density H , the flow
of helicity density F , and the tensor Nij of density of flow of
helicity flux of this light field are defined in the dual-symmetric
formulation as (cf. [7,13,67])

H = 1

2

(
1

μ
A · B − εC · E

)
, (1)

F = c

2μ
(E × A + B × C), (2)

Nij = c2

2μ

[
EiCj + EjCi − 1

εμ
(AiBj + AjBi)

+δij

(
1

εμ
A · B − E · C

)]
, (i,j = 1,2,3). (3)

In (1) and (2) A and C are vector potentials such that B =
∇ × A and E = −∇ × C and are transversal in a Coulomb
gauge [13]: ∇ · A = ∇ · C = 0. From Maxwell’s equations,

Ȧ = −cE, Ċ = − c

εμ
∇ × A + 4π

ε
K, (4)
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where the overdot means ∂t and c is the speed of light in
vacuum. In writing Ċ in (4) we have taken into account that the
electric current density, which we denote as J , is transversal
since the existence of A and the law ∇ · εE = 4πρ convey that
the electric charge density ρ and any (static) scalar potential
are zero [68], and thus J has been expressed as J = ∇ × K.

The transversality of A and C also amounts through the
two first Eqs. (4) to that of E and B, and hence is compatible
with the above argumentation based on their angular spectrum
[5], fulfilled by most optical wave fields outside near-field
regions. In particular, this also involves that any far-zone
scattered or radiated field, which is given by the propagating
part of its angular spectrum [65,66], is gauge invariant.
This agrees with [5,9] and implies that since both E and
B are gauge invariant, the angular momentum J of these
fields admits a decomposition J = L + F into an orbital L
[proportional to εE · (r × ∇)A + μ−1B · (r × ∇)C] and a spin
F [proportional to εE × A + μ−1B × C; see above] angular
momenta, both L and F also being gauge invariant.

Therefore, it makes sense to study the conservation laws
for the spin and orbital angular momenta separately. However,
as we discuss in one example, sometimes the transversality
condition is not taken into account, dealing with some
representations of optical beams which do not fulfill it, thus
preventing their inclusion in such decomposition of the angular
momentum and, in general, in any theory based on such
transversality equations.

From the above conditions, the definitions H , F , and Nij

hold the continuity equations [7,13],

Ḣ + ∇ · F = −P, (5)

Ḟ + ∇ · Nij = −R, (6)

where the dissipation on transmission of spin flow by interac-
tion of the fields with matter is given by P = 2π (E · K − J ·
C) and R = (2πc/εμ)(K × B + J × A).

Equations (5) and (6) are conservation equations for the
helicity and its flow, respectively, and are as fundamental
as those for the energy, linear, and angular momenta. We
concentrate on (6), where R is linked to the absorption by the
particle, which gives rise, as shown later, to the mechanical
action that it experiences as a consequence of the conservation
of the helicity flow.

The time harmonicity of the fields and potentials converts
the quantities of Eqs. (4)–(6) into

A = − i

k
E, C = − i

ε

[
B
kμ

− 4π

ω
K

]
, (7)

and the time-averaged (denoted by 〈·〉):

H = 〈H 〉 = 1

2k

√
ε

μ
Im(E · B∗), (8)

F = 〈F 〉 = c

4nk
Im

(
εE∗ × E + 1

μ
B∗ × B

)
= Fe + Fm,

(9)

Fe and Fm being the electric and magnetic parts, respectively,
of F , which now coincides with the spin angular momentum
density.

Also,

Nij = 〈Nij 〉 = c2

2knμ
Im[E∗

i Bj + E∗
j Bi − δij E∗ · B], (10)

which is the density of spin angular momentum flow
tensor. i,j = 1,2,3, Im denotes imaginary part, and k =
nω/c, and we have written A = Re[A(r) exp(−iωt)], C =
Re[C(r) exp(−iωt)], J = Re[ J(r) exp(−iωt)], and K =
Re[K (r) exp(−iωt)]. Also P in (5) and R in (6) are replaced
by the respective time-averaged quantities

〈P〉 = π

[
2

ck

√
μ

ε
∇ · Im(K × B∗) − 1

kn
Im( J · B∗)

+ 4π

ck

√
μ

ε
Im( J · K ∗) + Re(E · K ∗)

]
, (11)

〈Ri〉 = −πc

εμ
{cIm(E × J∗)i + Re(B × K ∗)i

+ 2μ

c
∂j [δij Im(E · K ∗) − Im(EiK

∗
j + EjK

∗
i )]}.

(12)

At this point it is pertinent to comment that in the case dealt
with here of time-harmonic fields, Maxwell’s equations and
the above relations show that (8) and (9) are proportional to
Lipkin’s zilches [11], used in recent works as the field chirality
K and flow of chirality S [16,17], as well as the tensor of
spin flow Tij [13]:

K = 〈K 〉 = k2H = k2〈H 〉, (13)

S = 〈S 〉 = k2F = k2〈F 〉, (14)

Tij = 〈Tij 〉 = k2Nij = k2〈Nij 〉. (15)

The dissipative terms that appear in the continuity equations
for K , S , and Tij , are, however, different from those of
(5) and (6). Reference [13] argues that F and Nij are the
quantities with dimensions of angular momentum, rather than
the zilches, and 〈H 〉, 〈F 〉, and 〈Nij 〉 are those to deal
with in measurements. We follow this, although for these
monochromatic fields both kind of magnitudes should, as
shown in (13)–(15), lead to the same interpretation of effects.

III. SCATTERING AND THE CONSERVATION OF SPIN
ANGULAR MOMENTUM

We integrate (6) in any volume v that contains the object
with its distribution of currents. The divergence term is
transformed into the flow of an entity across the surface �

of this volume that will eventually be taken as a large sphere.
Let us first consider a monochromatic, elliptically po-

larized, plane-wave incident on a body of arbitrary form
enclosed in v (cf. Fig. 1). The field at any point of the
surrounding medium may be represented as the sum of the
incident and scattered fields; thus, its space-dependent vectors
are E(r) = E(i)(r) + E(s)(r) and B(r) = B(i)(r) + B(s)(r).

The incident field is written as E(i) = e(i)eik(si ·r),
B(i) = b(i)eik(si ·r), and that scattered in the far zone is written
E(s) = e(s) exp(ikr)/r , B(s) = b(s) exp(ikr)/r , so that, of
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FIG. 1. (Color online) Illustration of an elliptically polarized
plane-wave incident on a polarizable particle of arbitrary shape. The
fields are evaluated at the point P of coordinates (r,θ,φ) and position
vector r = rs (s being the unit vector along r), which eventually
belongs to a sphere of integration of radius r , centered at some point
r0 of the particle. r0 acts as the framework center 0. The point Q is the
projection of P on the plane OXY ; the scattering plane being OPQ.
We show the three orthonormal vectors: s, ε‖ (in the plane OPQ and
in the sense of rotation of θ ), and ε⊥ (normal to OPQ).

course, bi = nsi × ei , ei · si = bi · si = 0; b = ns × e,
e · s = b · s = 0.

Then the time-averaged density of spin angular momentum
flow may be written Nij = N (i)

ij + N (s)
ij + N ′

ij , where

N (i)
ij = c2

2knμ
Im

[
E

(i)∗
i B

(i)
j +E

(i)∗
j B

(i)
i − δij E(i)∗ · B(i)], (10a)

N (s)
ij = c2

2knμ
Im

[
E

(s)∗
i B

(s)
j +E

(s)∗
j B

(s)
i − δij E(s)∗ · B(s)

]
, (10b)

N
′

ij = c2

2knμ
Im

[
E

(i)∗
i B

(s)
j + E

(s)∗
i B

(i)
j + E

(i)∗
j B

(s)
i

+E
(s)∗
j B

(i)
i − δij [E(i)∗ · B(s) + E(s)∗ · B(i)

]
. (10c)

From Eq. (6) we write the rate L at which this density flows
on interaction of the incident wave with the body, in terms of
its outward flux: L = −(n2/4πc2)

∫
�

d�r2Nij · s through the
surface � of any large sphere of radius r with center at some
point r0 of the body. d� is the element of solid angle and s
denotes the outward normal. That is, according to Eq. (6),

L = L(i) + L(s) + L′, (16)

where L(i), L(s), and L′ are respectively the � integrals of
the projections on s of −N (i)

ij , −N (s)
ij , and −N ′

ij on the
surface of the sphere, respectively. Of course, from Eq. (6),
L = (n2/4πc2)

∫
�

drd�r2〈R〉.
From these equations, L(i) = 0, so that (16) becomes

L = L(s) + L′. (17)

The integrals of −N s
ij · s and −N ′

ij · s across � leave the
nonzero terms [cf. (10)]

L(s) = − n2

4πc2

∫
�

d�r2N (s)
ij sj

= n

8πkμ

∫
�

d�r2Im[E(s)∗ · B(s)]s

= − n2

8πkμ

∫
�

d�Im{s · [e(s)∗(s) × e(s)(s)]}s

= − 1

8πkμ

∫
�

d�Im{s · [b(s)∗(s) × b(s)(s)]}s

= − 1

16πk

∫
�

d�Im{εs · [e(s)∗(s) × e(s)(s)]

+ 1

μ
s · [b(s)∗(s) × b(s)(s)]}s, (18)

and

L′ = − n2

4πc2

∫
�

d�r2N ′
ij sj

= n

8πkμ

∫
�

d�R2Im[E(i)∗ · B(s) + E(s)∗ · B(i)]s

= − n

2μk2
Re[B(i)∗(r0) · e(si)]si

= n

2μk2
Re[E(i)∗(r0) · b(si)]si . (19)

In deriving (19) we have used Jones’ lemma based on the
principle of the stationary phase [69,70]:

1

r

∫
d�r2F (s)e−ik(si ·s)r ∼ 2πi

k
[F (si)e

−ikr − F (−si)e
ikr ].

(20)

Notice from (9) and (10) that all these quantities of the con-
servation law (17)–(19) are also time averages. Equation (18)
conveys the ellipticity of the electric or the magnetic field, as
well as the dual-symmetric one containing both e and b. This
electric-magnetic duality is also seen in (19).

Equation (17), together with (18) and (19), constitutes the
law for the moment of the force exerted by the incident wave on
the object, expressed in terms of the flux L of the spin flow ten-
sor Nij across any closed surface surrounding it. As seen, this
stems from the conservation of the spin angular momentum
density and, like the optical force [54], it has a contributionL(s)

of the scattered field plus one L′ arising from the interference
between this scattered field and the incident one.

This force moment L constitutes the contribution to the
electromagnetic torque on the scattering object (acting the
ellipticity of the scattered field as a factor in the integration)
by extinction of the incident spin angular momentum and
its transfer to the body at a rate proportional to a certain
amplitude component of the scattered wave, projected along
the polarization of the incident wave as a result of their mutual
interference in the forward direction s = si .
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IV. CONSEQUENCES FOR A MAGNETODIELECTRIC
BI-ISOTROPIC DIPOLAR PARTICLE

A. Incident plane wave

Let us consider a magnetodielectric bi-isotropic particle,
dipolar in the wide sense, i.e., characterized by its polariz-
abilities: electric αe, magnetic αm, and magnetoelectric αem,
αme, such that, for example, if it is a sphere these quantities
are given by the first-order Mie coefficients a1, b1, and
c1 as αe = i 3

2k3 a1, αm = i 3
2k3 b1, αem = i 3

2k3 c1, αme = i 3
2k3 d1,

respectively [54,57,58]. Then the electric and magnetic dipole
moments, p and m, on the particle, induced by the incident
field are

p = αeE(i) + αemB(i), m = αmeE(i) + αmB(i). (21)

If, in addition, such sphere is chiral, then c1 = −d1 [58] and
hence αem = −αme.

The amplitudes of the fields scattered by this particle in the
far zone are

e(s) = k2 eikr

r

[
ε−1(s × p) × s −

√
μ

ε
(s × m)

]
, (22)

b(s) = k2 eikr

r

[
μ(s × m) × s +

√
μ

ε
(s × p)

]
. (23)

Introducing (22) and (23) into (18) and (19), evaluating the
angular integrals, and substituting the results in (17), we obtain

L(s) = −k3

6
Im

{
1

ε
p∗ × p + μm∗ × m

}
(24)

and

L′ = − n

2μ
Re

[(
1

ε
p · B(i)∗ − μm · E(i)∗

)
si

]
. (25)

Equation (24) is half the rate of radiated angular momentum
by the dipolar object [68], or equivalently half the recoil
optical torque on the particle which one would obtain from the
conservation of the total angular momentum by integration of
Maxwell’s stress tensor Tij :

∫
�

dRd�rs × Tij sj [39].
Interestingly, since p · si = m · si = 0, (25) may also be

expressed as

L′ = 〈�0〉. (26)

〈�0〉 is the extinction electromagnetic torque, analogous to the
extinction energy in the optical theorem [35,54,70],

〈�0〉 = 1
2 Re[p × E(i)∗ + m × B(i)∗]. (27)

Sometimes 〈�0〉 is called “the intrinsic torque” [31,53] exerted
by the incident plane wave on the particle. However, L(s)

[Eq. (24)], is seen to be also an intrinsic torque component.
It is useful to consider a Cartesian framework (cf. Fig. 1)

where the elliptically polarized incident plane wave has
si = (0,0,1), its electric vector being written in a helicity
basis ε± = (1/

√
2)(1, ± i,0) as the sum of a left-hand

and a right-hand circularly polarized plane wave, so that
ei = (eix,eiy,0) = e+

i ε+ + e−
i ε− and bi = (bix,biy,0) =

n(−eiy,eix,0) = b+
i ε+ + b−

i ε− = −ni(e+
i ε+ − e−

i ε−), the
sign ± standing for left-circularly polarized (LCP) (+)
and right-circularly polarized (−), respectively. In such
representation, the incident helicity acquires the form: H i =

(ε/k)Im[e∗
ixeiy] = (ε/2k)S3 = (ε/2k)[|e+

i |2 − |e−
i |2], which

clearly expresses this magnitude as the difference between left
circular and right circular intensities of the field, extensively
exploited in dichroism [16,17,71] and enantiomeric molecule
discrimination. S3 = 2Im[e∗

ixeiy] = |e+
i |2 − |e−

i |2 represents
the fourth Stokes parameter [9,70].

In the case of circular polarization of the incident wave,
eix = e, e is real, and eiy = ±ie depends on whether the light is
left or right circular; also nei = ±ibi and the incident helicity
is H i = ±e2/k. In addition, when the particle satisfies the
first Kerker condition [72–74], thus yielding zero differential
scattering cross section in the backscattering direction, αe/ε =
μαm, then p = ±inm and b(s) = ∓ine(s); i.e., the scattered
field is circularly polarized with respect to the Cartesian system
of orthonormal vectors: (ε⊥,ε‖,s) (see Fig. 1), ε⊥, and ε‖ being,
respectively, perpendicular and parallel to the scattering plane
[55].

In consequence, in circular polarization one has that e(s) =
[e(s) · ε⊥](1, ± i,0) and b(s) = [ne(s) · ε⊥](∓i,1,0). The he-
licity of the scattered field is proportional to its intensity—
H s = ± ε

2k
|e(s)|2—so that since then the flow of helicity

becomes proportional to that of energy, one has that the torque
L [Eq. (17)] and the flow tensor Nij [Eq. (10)] become pro-
portional to the time-averaged force 〈F〉 and Maxwell’s stress
tensor 〈Tij 〉 [68,75]: L = ±(1/k)〈F〉, −Nij = ±(1/k)〈Tij 〉.
This matches with a statement of [13,67] on the existence of a
mapping of the helicity into the energy for circularly polarized
waves.

B. Arbitrary incident wave

The above equations are generalized for arbitrary illuminat-
ing wave fields, expressible in terms of its angular spectrum
of plane-wave components [65,66],

E(i)(r) =
∫
D

e(i)(s)eik(s·r)d�,

(28)
B(i)(r) =

∫
D

b(i)(s)eik(s·r)d�,

the integration being done in the unit sphere D whose element
of solid angle is d�. In this regard, notice that Eqs. (22)
and (23) now constitute the angular spectra of the electric
and magnetic scattered vectors when they are represented
in the form (28). This integration contains both propagating
and evanescent waves [54,65,66], and to include them both,
si in (25) must be replaced with s∗

i , complex conjugated of
si = (sx

i ,s
y

i ,sz
i ), where sz

i =
√

1 − (sx2
i + s

y2
i ) if sx2

i + s
y2
i �

1 (propagating components) and sz
i = i

√
(sx2

i + s
y2
i ) − 1 if

sx2
i + s

y2
i > 1 (evanescent components).

From (28), using the same procedure as before for each
plane-wave component and summing up all of them, an easy
calculation shows that L(s) remains as in (24); however, the
extinction torque L′ now becomes

L′ = n

2kμ
Im

{
1

ε
pj∂iB

(i)∗
j − μmj∂iE

(i)∗
j

}
, (29)
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which may be also expressed as

L′ = 〈�0〉 + 1

2k

√
ε

μ
Im

{
1

ε
(p · ∇)B(i)∗ − μ(m · ∇)E(i)∗

}
.

(30)

Where 〈�0〉 now is

〈�0〉 = 1
2 Re[p × E(i)∗ + m × B(i)∗], (31)

the fields E(i) and B(i) being given by Eqs. (28).
At this stage it is worth observing how taking (21) into

account, Eq. (29) confers, after separating real and imaginary
parts, a physical meaning in terms of the extinction torque
L′ to some quantities associated to “magnetoelectric effects”
introduced in [76].

C. On the torque involved in the conservation of the spin
angular momentum

The above equations not only show that the L quantities
have torque dimensions, as they should, but as mentioned
before they manifest that L(s) is also an intrinsic torque.
Notice on comparing (30) and (31) with (26) and (27) the
two additional terms in (30) due to the spatial structure of
the incident field when this is not a plane wave. This term
accounts for an extrinsic torque component. Also, the second
and third terms of (30) have an analogy with those of the
dipolar component of the electromagnetic force, whereas those
contained in 〈�0〉 keep it with those of the Lorentz’s component
of the optical force. This duality between the E and B vectors
is also evident by comparing (29) with the expression of the
electric (e) plus magnetic (m) forces on a magnetodielectric
dipolar particle [54]. In this connection, the recoil optical
torque, Eq. (24), due to interference of the scattered fields and
which, as said, is also valid for an arbitrary incident field, has
a formal analogy with the electric-magnetic dipole interaction
electromagnetic force: Fe−m [54].

In summary, the torque on the particle L = L(s) + L′
[Eq. (17)] governed by the conservation of the spin angular
momentum, is given by the sum of (24) plus (29) or (30). This
torque has the recoil component L(s) added to L′, which is as
necessary to describe the dynamics as the above referenced
Fe−m component of the force.

However, this scattering torque (24) is only half the recoil
torque exerted by the field on the particle, obtained from the
conservation of total angular momentum [39]. As we shall
see, the other half is obtained from the conservation of the
orbital angular momentum. As expected from the premises
above adopted in this formulation, this is consistent with the
addition of both angular momenta to describe the total transfer
to the body.

V. DECOMPOSITION OF THE TORQUE INVOLVED IN
THE CONSERVATION OF SPIN ANGULAR MOMENTUM

INTO CONSERVATIVE AND NONCONSERVATIVE
COMPONENTS

Like the electromagnetic force [51,52,54], the optical
torque is amenable of a decomposition into conservative and
nonconservative components, as shown next.

At this point we emphasize again that the vectors E(i) and
B(i) satisfy the transversality condition ∇ · E(i) = 0 and ∇ ·
B(i) = 0. From now on we omit the (i) superindex. Taking in
(21) the real and imaginary parts of the polarizabilities and
using the vector identities

Re[(B∗ · ∇)E] = 1
2 (Y + X), Re[(E · ∇)B∗] = 1

2 (Y − X),

Im[(B∗ · ∇)E] = 1
2 (S + R), Im[(E · ∇)B∗] = 1

2 (S − R),

X = Re[∇ × (E × B∗)], (32)

Y = Re[∇(E · B∗)] − knIm[E∗ × E]

+ k0Im[B∗ × B],

R = Im[∇ × (E × B∗)],

S = Im[∇(B∗ · E)]; k0 = ω/c,

we obtain the following expressions for the parts of L = L′ +
L(s) [Eq. (17)]. First, L′ [Eqs. (29) or (30)] becomes

L′ = n

2kμ

{
αR

e

[
k0

μ

ε
∇H − 1

2ε
∇ × Im(E × B∗)

]

+αR
m

[
k0μ

2∇H + μ

2
∇ × Im(E × B∗)

]

+ αI
e

2ε

[
4μk2

c
F − 8πμ

c
∇ × 〈S〉 + ∇Re(E · B∗)

]

+ μαI
m

2

[
4μk2

c
F − 8πμ

c
∇ × 〈S〉 − ∇Re(E · B∗)

]

− 8π
μ

ε

(
αI

me∇〈we〉 − αI
em∇〈wm〉)

− 2nk

c

μ

ε

(
αR

me∇ × Fe − αR
em∇ × Fm

)

+ 8πkμ

c

√
μ

ε

(
αR

me − αR
em

)〈S〉
}
. (33)

The helicity H and the spin angular momentum density that
appear in (33) were defined in Eqs. (8) and (9), respectively.
Moreover, 〈we〉 = (ε/16π )|E|2 and 〈wm〉 = (1/16πμ)|B|2 are
the time-averaged electric and magnetic energy densities,
respectively, and 〈S〉 = (c/8πμ)Re(E × B∗) represents the
time-averaged Poynting vector. The R and I superindices
of the polarizabilities denote their real and imaginary parts,
respectively.

Notice that there are conservative terms containing
αR

e k0∇H and αR
mk0∇H , which represent a gradient optical

torque where now the helicity H plays a role analogous to that
of the field energy for the optical force. This may constitute
the basis of what we shall call rotational optical tweezers,
positioning the particle in equilibrium points where there is
no lateral torque. This is addressed in some of the examples
below. Also the imaginary parts αI

me and αI
em yield gradient

terms of the energies, like in the gradient force components.
These latter terms of the cross polarizabilities change sign if
the chirality of the particle, characterized by αem and αme, is
reversed, a fact that suggests its use for enantiomeric separation
[31]. Likewise, there are conservative terms ∇Re(E · B∗), this
time with the imaginary parts αI

e and αI
m.
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The polarizabilities αR
e and αR

m also appear in curl non-
conservative parts that contain the vortex circulation of the
reactive alternating flow of energy ∇ × Im(E × B∗) [68].
These latter terms are sometimes zero, like for a highly
collimated circularly polarized Gaussian beam. On the other
hand, the αI

e and αI
m nonconservative terms proportional to

F , come from 〈�0〉 in Eq. (30). They are the analogous to the
radiation pressure terms containing the field linear momentum
in the time-averaged force. It is remarkable the analogy
according to which while in this latter case the conservation
of the wave linear momentum leads to the radiation pressure
part of the optical force, in the optical torque the conservation
of the spin angular momentum F leads to terms that similarly
contain this quantity and play the role of a spinning torque.

There are also energy flows in the cross polarizabilities αR
me

and αR
em that contain the curl of both the Poynting vector and

the flow of spin angular momentum and thus represent their
respective vortices surrounding the particle.

Likewise, the recoil torque, Eq. (24), is written as

L(s) = −k3

6

{
4nk

c

[
1

ε2
|αe|2Fe + μ2|αm|2Fm

+ 1

ε2
|αem|2Fm + μ2|αme|2Fe

]

+ 16πμ

c

[
1

ε
Im(α∗

e αem) − μIm(α∗
mαme)

]
〈S〉

− 2

[
1

ε
Re(α∗

e αem) + μRe(α∗
mαme)

]
Im(E × B∗)

}
, (34)

which, in addition to nonconservative terms with electric and
magnetic spins and with the energy flux, has conservative terms
if the particle is bi-isotropic, containing the reactive or stored
energy and its alternating flow [68], Im(E × B∗), which tak-
ing into account the identity, kIm{E × B∗} = (1/2)∇|E|2 −
Re{(E∗ · ∇)E, yields gradient-force-like terms, proportional
to ∇|E|2, which change sign if the particle chirality varies
from left handed to right handed.

Thus, in summary, we see that the helicity and the spin play
a role in the optical torque somewhat analogous to the energy
and the Poynting vector in the optical force.

In the particular case in which the particle is chiral, then
[16] αem = −αme and (33)–(36) reduce to

L′ = n

2kμ

{
αR

e

[
k0

μ

ε
∇H − 1

2ε
∇ × Im(E × B∗)

]

+αR
m

[
k0μ

2∇H + μ

2
∇ × Im(E × B∗)

]

+ αI
e

2ε

[
4μk2

c
F − 8πμ

c
∇ × 〈S〉 + ∇Re(E · B∗)

]

+ μαI
m

2

[
4μk2

c
F − 8πμ

c
∇ × 〈S〉 − ∇Re(E · B∗)

]

− 8π
μ

ε
αI

me∇〈w〉 − 2nk

c

μ

ε
αR

me∇ × F

+ 16πkμ

c

√
μ

ε
αR

me〈S〉
}
, (35)

L(s) = −k3

6

{
4nk

c

[
1

ε2
|αe|2Fe + μ2|αm|2Fm

+ |αme|2
(

1

ε2
Fm + μ2Fe

)]

− 16πμ

c

[
1

ε
Im(α∗

e αme) + μIm(α∗
mαme)

]
〈S〉

+ 2

[
1

ε
Re(α∗

e αme) − μRe(α∗
mαme)

]
Im(E × B∗)

}
, (36)

where 〈w〉 denotes the density of electromagnetic energy:
〈w〉 = 〈we〉 + 〈wm〉.

It is interesting that if the particle, in addition to being chiral,
is dual [72–74], ε−1αe = μαm, then (35) and (36) become

L′ = n

k

{
αR

e

ε
k0∇H + 2αI

e

ε

[
k2

c
F − 2π

c
∇ × 〈S〉

]

− 4π
1

ε
αI

me∇〈w〉− nk

c

1

ε
αR

me∇×F + 8πk

c

√
μ

ε
αR

me〈S〉
}
,

(37)

L(s) = −2k3

3c

{
nk

[
1

ε2
|αe|2F + |αme|2

(
1

ε2
Fm + μ2Fe

)]

− 8π
μ

ε
Im(α∗

e αme)〈S〉
}
. (38)

Thus, the reactive parts disappear. We obtain two kind of terms
in (37) and (38): those conservative in L′ linked to the gradient
of the helicity and energy and those nonconservative in L′ and
L(s) containing the flows of helicity and energy, as well as
their curls. Once again, this has a suggestive analogy with
the gradient, radiation pressure, and curl components of the
optical force [54].

VI. THE ORBITAL ANGULAR MOMENTUM

In the nonabsorbing dielectric medium of refractive index
n = √

εμ the field density of orbital angular momentum L and
of its flow �ij , (i,j = 1,2,3), are defined in the dual-symmetric
formulation here employed, as [7]

L = c

2μ
[E · LA + B · L C], (39)

L = r × ∇, (40)

�ij = c2

2μ
[εiklεjmnrk(Bn∂lAm − En∂lCm)

+BjAi − EjCi], (i,j,k,l,m,n = 1,2,3), (41)

where εikl is the antisymmetric Levi-Civita tensor. In (39) and
(41) A and C are the vector potentials introduced in Sec. II.

Under the premises established in Sec. II, L and �ij fulfill
the continuity equation [7]

L̇ + ∇ · �ij = −M , (42)

where −M represents the dissipation by transfer of orbital
angular momentum on interaction of the fields with matter.
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In addition to (7), the time harmonicity of the fields leads
to the time averages [7]

L = 〈L〉 = c

4nk
Im

{
εE∗ · L E + 1

μ
B∗ · L B

}
, (43)

�ij = 〈�ij 〉 = c2

4knμ
Im{εjkl(B

∗
l L Ek + ElL B∗

k )

+B∗
i Ej + B∗

j Ei}, (i,j = 1,2,3), (44)

where M in (42) is replaced by its average,

〈M 〉 = πc

nk
{Im[J∗ · L E] − Re[J∗ · L E]

− ∂j Im[εiklεjmnxk(∂lKm)E∗
n + E∗

j Ki]}, (45)

xk being the kth-Cartesian component of the position vector r.

VII. CONSERVATION OF THE ORBITAL ANGULAR
MOMENTUM IN SCATTERING

Equation (42) expresses the conservation of orbital-angular-
momentum flow and, again, conveys a density of force
moment, or torque. We next find what this means. As before,
we integrate it on any volume surrounding the scattering
object. The divergence term is then transformed into a flow
across the volume surface � that will eventually be taken as a
sphere of large radius r .

With reference to Fig. 1, let us first consider a monochro-
matic, elliptically polarized, plane-wave incident on an arbi-
trary body. The field at any point of the surrounding medium
is again represented as the sum of the incident and the
scattered field. Then the flow (or time-averaged flow) density
of orbital angular momentum may be written by means of �ij

decomposed as �ij = �
(i)
ij + �

(s)
ij + �′

ij , where

�
(i)
ij = c2

4knμ
Im

{
εjkl

(
B

(i) ∗
l L E

(i)
k + E

(i)
l L B

(i) ∗
k

)

+B
(i) ∗
i E

(i)
j + B

(i) ∗
j E

(i)
i

}
, (46)

�
(s)
ij = c2

4knμ
Im

{
εjkl

(
B

(s) ∗
l L E

(s)
k + E

(s)
l L B

(s) ∗
k

)

+B
(s) ∗
i E

(s)
j + B

(s) ∗
j E

(s)
i

}
, (47)

�′
ij = c2

4knμ
Im

{
εjkl

(
B

(i) ∗
l L E

(s)
k + E

(i)
l L B

(s) ∗
k

+B
(s) ∗
l L E

(i)
k + E

(s)
l L + B

(i) ∗
k

) + Bi ∗
i E

(s)
j

+B
(i) ∗
j E

(s)
i + B

(s) ∗
i E

(i)
j + B

(s) ∗
j E

(i)
i

}
. (48)

From Eq. (42) the rate 
L at which the total orbital flow varies
on interaction of the wave field with the body is given as before
by the outward flux: −(n2/4πc2)

∫
�

d�r2�ij · s through the
surface of any large sphere � of radius r with center at some
point r0 of the region occupied by the object. That is, according
to Eq. (42),


L = 

(i)
L + 


(s)
L + 
′

L , (49)

where 

(i)
L , 


(s)
L , and 
′

L are the � integrals of the
projections on s of −�

(i)
ij , −�

(s)
ij , and −�′

ij , respectively.

L = (n2/4πc2)

∫
�

drd�r2〈M 〉.
From these equations we have that 


(i)
L = 0, so that (49)

becomes


L = 

(s)
L + 
′

L . (50)

Operating with (46)–(48) and using the identity εjlkεkmn =
δjmδln − δjnδlm, the integrals of −�

(s)
ij · s and −�′

ij · s across
� lead to


s
L = − n2

4πc2

∫
�

d�r2�
(s)
ij sj

= − 1

8πk

∫
�

d�r2Im[εe∗(s) · L e(s)]

= − 1

8πk

∫
�

d�r2Im

[
1

μ
b∗(s) · L b(s)

]

= − 1

16πk

∫
�

d�r2Im

[
εe∗(s) · L e(s)

+ 1

μ
b∗(s) · L b(s)

]
. (51)

Using again Jones’ lemma, Eq. (20), we get


′
L = − n2

4πc2

∫
�

d�r2�′
ij sj

= − 1

4k2
Re{εe(i)∗ · [L e(s)]s=si

}

= − 1

4k2
Re

{
1

μ
b(i)∗ · [L b(s)]s=si

}
. (52)

Equations (51) and (52) constitute the conservation law for
the orbital angular momentum of either the electric or the
magnetic field, as well as of the dual-symmetric one with both
e and b. Equation (50), together with (51) and (52), defines
the force moment, or torque, by transfer of this orbital angular
momentum from the incident field to the object, expressed in
terms of the flow of the tensor �ij across any closed surface
surrounding this body. It is very interesting that the rate at
which this incident orbital angular momentum 
′

L [Eq. (52)]
is extinguished by transference to the body is proportional
to a sort of cross-orbital angular momentum given by the
interaction of the incident field with the scattered field in the
forward direction s = si .

Moreover, recalling that the incident field is a plane wave,
and since r = rs, one has for the incident electric orbital
angular momentum

Im[E(i)∗ · L E(i)]

= Im{E(i)∗ikrL [si · s]E(i)}
= Im{e(i)∗ikr[s × si]e(i)} = |e(i)|2kr(s × si), (53)

with an analogous expression for the magnetic momentum.
Then the total incident orbital angular momentum enclosed in
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a sphere of large radius R is s given by∫ R

0
drr2

∫ 2π

0
dφ

∫ π

0
dθsinθ

× Im[E(i)∗ · L E(i) + B(i)∗ · L B(i)] = 0,

as expected. Therefore, the extinction torque from this orbital
angular momentum [Eq. (52)] is zero if the incident wave is a
plane. (However, as we see next, in general, it is not zero for
any arbitrary field.)

On the other hand, the physical meaning of the flow of −�s
ij

[Eq. (51)] corresponds to a force moment of the scattered field
on the particle. This is the consequence for this recoil torque
of the conservation of orbital angular momentum. However,
since the incident plane wave has no orbital momentum, this
recoil contribution has to come from a transfer of the incident
spin angular momentum into the scattered orbital angular
momentum. Hence, this effect constitutes the essence of the
spin-orbit interaction [7,8] as a consequence of the scattering
of the incident field by the object.

VIII. EFFECTS ON A MAGNETODIELECTRIC
BI-ISOTROPIC DIPOLAR PARTICLE: THE

ELECTROMAGNETIC TORQUE INVOLVED IN THE
CONSERVATION OF THE ORBITAL ANGULAR

MOMENTUM

A. Incident plane wave

Let us now address a magnetodielectric bi-isotropic dipolar
particle. Using Eqs. (21)–(23), evaluating the angular integrals
of (51), and substituting the results in (50), we obtain the
extinction torque from the orbital-angular-momentum transfer
to this scattering body:


′
L = − n

4μ
Re

[
1

ε
(p · si)B(i)∗ − μ(m · si)E(i)∗

]
. (54)

Likewise, we get the scattering, or recoil, torque from the
orbital angular momentum:


s
L = −k3

6
Im

{
1

ε
p∗ × p + μm∗ × m

}
. (55)

Equation (55) is identical to (24) for the scattering torque
from the spin. Both recoil torques sum to yield the resultant

scattering torque, which coincides with that derived from the
conservation of the total angular momentum J through the
integration

∫
�

rs × Tij sj ds, [39].
On the other hand, Eqs. (21) and the transversality of

the incident field show that 
′
L given by (54) is zero, as

expected from the above discussion. However, Eq.(55) exhibits
the nonzero scattering contribution 
s

L (recoil torque) to

L [Eq. (50)], which, as mentioned before, expresses the
spin-orbit interaction involving the conversion and transfer of
the spin into orbital-angular-momentum torque by scattering
with the object.

B. Generalization to an arbitrary incident field

The above equations are generalized to an arbitrary illu-
minating wave field expressible by its angular spectrum (28),
which, introduced in (54), yields


′
L = 1

4k

√
ε

μ
Im

{
1

ε
(p · ∇)B∗ − μ(m · ∇)E∗

}
. (56)

This form is equal to half the contribution from the spatial
structure of the incident field to the extinction torque derived
above from the spin conservation, as seen by comparing (56)
with the second term of (30).

On the other hand, Eq. (55) for 
s
L remains valid for an

arbitrary incident field. Thus, we obtain from (50) using (55)
and (56) the following torque involved in the conservation of
orbital angular momentum:


L = 1

4k

√
ε

μ
Im

{
1

ε
(p · ∇)B∗ − μ(m · ∇)E∗

}

− k3

6
Im

{
1

ε
p∗ × p + μm∗ × m

}
. (57)

IX. DECOMPOSITION OF THE ANGULAR MOMENTUM
TORQUE INTO CONSERVATIVE AND
NONCONSERVATIVE COMPONENTS

Using (21) and taking into account the vector identities
(32), we express the two components 
′

L [Eq. (56)] and 
s
L

[Eq. (55)] of the orbital conservation torque [Eq. (57)] of the
transversal fields, again dropping the superindex (i), as


′
L = n

2kμ

{
αR

e

[
k0

μ

ε
∇H − 1

2ε
∇ × Im(E × B∗)

]
+ αR

m

[
k0μ

2∇H + μ

2
∇ × Im(E × B∗)

]

+ αI
e

2ε

[
4μk2

c
(Fm − Fe) − 8πμ

c
∇ × 〈S〉 + ∇Re(E · B∗)

]
+ μαI

m

2

[
4μk2

c
(Fm − Fe) − 8πμ

c
∇ × 〈S〉 − ∇Re(E · B∗)

]

− 8π
μ

ε

(
αI

me∇〈we〉 − αI
em∇〈wm〉) − 2nk

c

μ

ε

(
αR

me∇ × Fe − αR
em∇ × Fm

)+ kμ

n

(
αI

em + αI
me

)
Im(E × B∗)

}
, (58)

and


s
L = −k3

6

{
4nk

c

[
1

ε2
|αe|2Fe + μ2|αm|2Fm + 1

ε2
|αem|2Fm + μ2|αme|2Fe] + 16πμ

c

[
1

ε
Im(α∗

e αem) − μIm(α∗
mαme)

]
〈S〉

− 2

[
1

ε
Re(α∗

e αem) + μRe(α∗
mαme)

]}
. (59)
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If the particle is chiral, αem = −αme, (58) and (59) reduce to


′
L = n

kμ

{
αR

e

[
k0

μ

ε
∇H − 1

2ε
∇ × Im(E × B∗)

]

+αR
m

[
k0μ

2∇H + μ

2
∇ × Im(E × B∗)

]
+ αI

e

2ε

[
4μk2

c
(Fm − Fe) − 8πμ

c
∇ × 〈S〉 + ∇Re(E · B∗)

]

+ μαI
m

2

[
4μk2

c
(Fm − Fe) − 8πμ

c
∇ × 〈S〉 − ∇Re(E · B∗)

]
− 8π

μ

ε
αI

me∇〈w〉 − 2nk

c

μ

ε
αR

me∇ × F

}
, (60)


s
L = −k3

6

{
4nk

c

[
1

ε2
|αe|2Fe + μ2|αm|2Fm + |αme|2

(
1

ε2
Fm + μ2Fe

)]
− 16πμ

c

[
1

ε
Im(α∗

e αme) + μIm(α∗
mαme)

]
〈S〉

+2

[
1

ε
Re(α∗

e αme) − μRe(α∗
mαme)

]
Im(E × B∗)

}
. (61)

When the particle is dual (αe/ε = μαm), Eqs. (60) and (61) become


′
L = n

k

{
αR

e

ε
k0∇H + 2αI

e

ε

[
k2

c
(Fm − Fe) − 2π

c
∇ × 〈S〉

]
− 4π

1

ε
αI

me∇〈w〉 − nk

c

1

ε
αR

me∇ × F

}
. (62)


s
L = −2k3

3c

{
nk

[
1

ε2
|αe|2F + |αme|2

(
1

ε2
Fm + μ2Fe

)]
− 8π

μ

ε
Im(α∗

e αme)〈S〉
}
. (63)

Similar remarks as for the analogous decomposition of the torque from the spin, above, apply to these latter equations.

X. THE TOTAL ELECTROMAGNETIC TORQUE

From all the previous analysis we conclude that the total electromagnetic torque on the particle, 〈�〉, stemming from the
conservation laws of both the spin and the orbital angular momenta, is given by the sum of L [Eq. (17)] [cf. also (24) and (29)
or (30)] and 
L [Eq. (57)], which we express as

〈�〉 = 〈�′〉 + 〈�s〉, (64)

where the electromagnetic extinction torque is

〈�′〉 = L′ + 
′
L = 〈�0〉 + 3

4k

√
ε

μ
Im

{
1

ε
(p · ∇)B(i)∗ − μ(m · ∇)E(i)∗

}

= −〈�0〉
2

+ 3

4k

√
ε

μ
Im

{
1

ε
pj∂iB

(i)∗
j − μmj∂iE

(i)∗
j

}
, (65)

and the electromagnetic recoil or scattering torque reads

〈�s〉 = L(s) + 
s
L = −k3

3
Im

{
1

ε
p∗ × p + μm∗ × m

}
. (66)

As mentioned above, we emphasize that this total torque is also obtained from the conservation of the total angular momentum
〈J〉 [39]. The analysis given here, however, elucidates the contribution of both the spin and the orbital angular momenta through
their respective conservation laws and shows that both torques are added, like the angular momenta.

We notice that, making use of (21), one has [dropping the superindex (i) in all following equations, understanding that we
deal with incident fields]

〈�0〉 + 〈�s〉 =
[
αI

e

2
− k3

3

( |αe|2
ε

+ μ|αme|2
)]

Im(E∗ × E) +
[
αI

m

2
− k3

3

(
μ|αm|2 + |αem|2

ε

)]
Im(B∗ × B)

+
[

αR
me − αR

em

2
− 2k3

3

(
1

ε
Im(α∗

e αem) + μIm(αmα∗
me)

)]
Re(E × B∗)

−
[

αI
me + αI

em

2
− 2k3

3

(
1

ε
Re(α∗

e αem) + μRe(αmα∗
me)

)]
Im(E × B∗). (67)

However, introducing (21) in the optical theorem that represents the conservation of energy [54],

Wa + ck4

3n
[ε−1|p|2 + μ|m|2] = ω

2
Im[p · e∗

i + m · b∗
i ]; (68)
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with Wa standing for the rate of energy absorption by the particle, one has

Wa

ω
=

[
αI

e

2
− k3

3

( |αe|2
ε

+ μ|αme|2
)]

|E|2 +
[
αI

m

2
− k3

3

(
μ|αm|2 + |αem|2

ε

)]
|B|2

+
[
αR

me − αR
em

2
− 2k3

3

(
1

ε
Im(α∗

e αem) + μIm(αmα∗
me)

)]
Im(E · B∗)

+
[
αI

me + αI
em

2
− 2k3

3

(
1

ε
Re(α∗

e αem) + μRe(αmα∗
me)

)]
Re(E · B∗). (69)

It is interesting that for fields such that B = ∓E, (e.g.,
the circularly polarized field scattered from a dual particle,
mentioned in Sec. IV), one has from (67) and (69) that

〈�0〉 + 〈�s〉 = εσ (a)

8πk
Im(E(∗) × E) = nσ (a)

2πc
Fe, (70)

where we have defined the absorption cross section as σ (a) =
(8πk/ω|E|2)W (a). This occurs, in particular, for an incident
circularly polarized plane wave and for some beams, as well
as for a pure electric, or a pure magnetic, dipolar particle
[in this latter case Fe should be replaced with Fm in (70)].
In such situations we see in (70) that the component 〈�0〉
of the extinction torque 〈�′〉 [cf. (65)] is canceled by 〈�s〉,
thus only remaining in the sum (70) that part of 〈�s〉 which
contains σ (a).

More generally, for any wave field, if the particle is
magnetodielectric, although not bi-isotropic (αem = αme =
0), separating in (69) the electric and magnetic parts by
writing Wa = Wa

e + Wa
m and introducing the electric and

magnetic cross sections, σ (a)
e = (8πk/ω|E|2)W (a)

e and σ (a)
m =

(8πk/ω|B|2)W (a)
m , one has on writing the optical theorem (69)

separately for the electric and the magnetic parts

〈�0〉 + 〈�s〉 = ε

8πk
σ (a)

e Im(E(∗) × E) + ε

8πk
σ (a)

m Im(B(∗) × B)

= n

2πc

(
σ (a)

e Fe + σ (a)
m Fm

)
. (71)

These equations are seen to be compatible with (33), (36),
(58), and (59).

Hence, in contrast with some previous work [26–32]
and in agreement with some experiments and calculations
[22–25,33,35,36], these equations show that this particle does
not experience a torque and spins due to the so-far-called
intrinsic torque: 〈�0〉 [which, as we have just seen, is canceled
by a part of the recoil torque on this kind of particles through
the optical theorem relating imaginary parts and moduli of the
permittivities, Eq. (69)], but because it absorbs the incident
energy and, as shown by (70) and (71), receives the spin Fe

and/or Fm through the remaining part of the recoil torque that
contains the absorption cross section. On the other hand, as we
see below, the orbiting of the particle is due to the beam shape
carried out in the torque by the second term of (65).

In this regard, it is thus pertinent to remark that, in
contrast with previous torque theories that do not comply
with the optical theorem, the proportionality factors between
the optical torque and the electric and magnetic spin angular
momenta is given by the absorption cross sections, not by
the imaginary part of the corresponding electric and magnetic
polarizabilities. This is a consequence of the static starting
point and hence of the lack of consideration of the recoil
torque in such theories.

It is well known that the static regime applies for Rayleigh
particles (for which ka 
 1, a being their linear dimension,
i.e., for example their radius if they are spheres) [54,57,70]. In
this quasistatic limit the optical torque obtained in this paper
reduces to the one from such theories.

If, for example, the dipolar particle is purely dielectric
(αm = αem = αme = 0, σ (a)

e is just denoted as σ (a)) Eq. (69),
which becomes −(2/3ε)k3|αe|2 = −αI

e + εσ (a)/4πk, intro-
duced in the recoil torque 〈�s〉 = (1/3ε)|αe|2Im[E∗ × E] [cf.
Eq. (67)], leads to cancellation of 〈�0〉 by the corresponding
αI

e term of 〈�s〉. Hence, Eqs. (64), (65), and (67) lead to a
torque on this particle:

〈�〉 = εσ (a)

8πk
Im[E∗ × E] + 3

4k

√
ε

μ
Im

{
1

ε
(p · ∇)B∗

}
. (72)

We see at once that the first term of (72), which we extend to
the right side of (71), and that represents the spin torque that
we denote as 〈�σ 〉, characterizes the rotation of the particle
on its axis due to the spin transfer by absorption of the incident
energy through σ (a).

In connection with the aforementioned static ap-
proximation, notice again that the above relation-
ship, −(2/3ε)k3|αe|2 = −αI

e + εσ (a)/4πk, becomes αI
e =

εσ (a)/4πk only in the Rayleigh limit [54,57,70].
Concerning the orbital movement due to the field structure,

generally involved in the second term of (65), it is useful to
consider the vast kind of wave fields that posses a vortex [1–4].
Expressing E(r) and B(r), as well as the position vector r, in
cylindrical coordinates (R,φ,z) and extracting the vortex phase
eilφ , we write such incident fields as

E(r) = eilφẼ(r), B(r) = eilφB̃(r), (73)
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with l being the topological charge. So that from (73) and after Eq. (21), we express this term of (65) as

3

4k

√
ε

μ
Im

{
1

ε
(p · ∇)B∗ − μ(m · ∇)E∗

}

= 3

4k

√
ε

μ

{(
1

ε
αR

e − μαR
me

)[
Im(Ẽ · ∇)B̃∗ − l

R
Re(ẼφB̃∗)

]
+

(
1

ε
αR

em − μαR
m

)[
Im(B̃ · ∇)B̃∗ − l

R
Re(B̃φB̃∗)

]

+
(

1

ε
αI

e − μαI
me

)[
Re(Ẽ · ∇)B̃∗ + l

R
Im(ẼφB̃∗)

]
+

(
1

ε
αI

em − μαI
m

)[
Re(B̃ · ∇)B̃∗ + l

R
Im(B̃φB̃∗)

]}
. (74)

For example, if the particle is purely dielectric and isotropic (only αe �= 0), then the right side of (74) reduces to

3

4k

√
ε

μ
Im

{
1

ε
(p · ∇)B∗

}
= 3

4kn

{
αR

e

[
Im(Ẽ · ∇)B̃∗ − l

R
Re(ẼφB̃∗)

]
+ αI

e

[
Re(Ẽ · ∇)B̃∗ + l

R
Im(ẼφB̃∗)

]}
, (75)

which accounts for the particle orbital movement, and ex-
pressing again αI

e in terms of σ (a) through the aforementioned
optical theorem, αI

e = εσ (a)/4πk + (2/3ε)k3|αe|2, shows that
there is an l-number torque component, proportional to
lσ (a)/R, making the particle orbit around the vortex axis via the
transfer of orbital angular momentum by absorption; there is
also another orbital component by transfer through the particle
scattering cross section involved in l|αe|2/R [54,73]. Both
components are amenable to observation [2].

For fields with a well-defined incidence direction, like
optical beams, the term (3/4kn)αI

e Re(Ẽ · ∇)B̃∗ of (75), which
plays for the torque a role analogous to the (1/2)αI

e Im{(E ·
∇)E∗} component of the orbital momentum in the optical force
[52,54], may make negative the resultant longitudinal torque
(i.e., opposite to the incident helicity). This is illustrated below
with incident Bessel and Gaussian beams.

There are more components of this extrinsic torque
[Eq. (75)] in the transversal φ and R directions; but for the
purely dielectric particle the ẑ component of the two terms of
αR

e in (75) is zero for a variety of beams, like those discussed
in the following examples. More complex effects of this sort
remain to be studied in Eq. (74) when αm, αem, and αme are
nonzero.

XI. EXAMPLE 1: INCIDENT BESSEL BEAM

As a first illustration we consider a transversal electric (TE)
Bessel beam [41,77] propagating along OZ in air, with a vortex
of topological charge l, whose electric and magnetic vectors
are

E(i)(r) = e

k
eilφeikzz

[
− lx

R2
Jl(KR) + i

Ky

R
J ′

l (KR) − ly

R2
Jl(KR) − i

Kx

R
J ′

l (KR),0

]
,

B(i)(r) = ekz

k2
eilφeikzz

[
ly

R2
Jl(KR) + i

Kx

R
J ′

l (KR) − lx

R2
Jl(KR) + i

Ky

R
J ′

l (KR),
K2

kz

Jl(KR)

]
,

(76)
k = (kx,ky,kz), K = (kx,ky,0), k = |k| = ω

c
,

ε = μ = n = 1, r = (x,y,z), R = (x,y,0),

incident on a dielectric particle whose induced dipole moment is p = αeE(i).
This beam is elliptically polarized. First, we note that the helicity of this field is

H = e2 lkzK

k4R
Jl(KR)J ′

l (KR). (77)

Then, according to (29) or (30),

L′ = 1

2k
Impj∂iB

(i)∗
j = 〈�0〉 + 1

2k
Im{(p · ∇)B(i)∗}, (78)

with

〈�0〉 = αI
e

e2

k2

lK

R
Jl(KR)J ′

l (KR)(0,0,1) = k2

kz

αI
e H (0,0,1), (79)

which shows that this component of the torque follows the helicity. Also, Eq. (79) manifests a contribution of the vortex charge
l to this part of the torque.
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On the other hand,

L′ = 2
′
L = 1

2k
Im{(p · ∇)B(i)∗} = e2kz

2k4

{
αR

e

lK

R2
[KJl(KR)J ′′

l (KR) + KJ
′2
l (KR) − 1

R
Jl(KR)J ′

l (KR)](x,y,0)

+ αI
e

[
l2

R4
J 2

l (KR) − 2
l2K

R3
Jl(KR)J ′

l (KR) + K2

R2
J

′2
l (KR)

]
(y, − x,0) − 2

lK3

kzR
Jl(KR)J ′

l (KR)(0,0,1)

]}
, (80)

where J ′
l (KR) = dJl(KR)/d(KR).

Equation (80) exhibits an azimuthal dependence (y, − x) = −Rφ̂ of the αI
e terms. (R and φ are the cylindrical coordinates in

the transversal plane of the beam.) Hence, although 〈�0〉 is longitudinal, i.e., along OZ, the beam structure creates and modulates
a transversal azimuthal component ofL′. Moreover, there is a radial torque (x,y) = R r̂ in the αR

e terms due to the helicity gradient.
This is extensive to the torque part: 1

4k
Im{(p · ∇)B(i)∗} [cf. Eq. (57)] coming from the orbital-angular-momentum conservation

law.
It is interesting to analyze the different parts in Eqs. (78)–(80) from the point of view of the decompositions (33) and (58).

There are the conservative components:

1

2
αR

e ∇H = e2

2k4

lkzK

R2
αR

e [KJl(KR)J ′′
l (KR) + KJ

′2
l (KR) − 1

R
Jl(KR)J ′

l (KR)](x,y,0), (81)

1

4k
αI

e ∇Re(E · B∗) = 0. (82)

Equation (81) shows the aforementioned radial gradient torque whose sign oscillates with the distance R to the beam axis.
The nonconservative components,

k

c
αI

e Fe = 1

2
〈�0〉 (83)

and
k

c
αI

e Fm − 2π

kc
αI

e ∇ × 〈S〉

= e2kz

2k4
αI

e

{[
l2

R4
J 2

l (KR) − 2
l2K

R3
Jl(KR)J ′

l (KR) + K2

R2
J

′2
l (KR)

]
(y, − x,0) − 2

lK3

kzR
Jl(KR)J ′

l (KR)(0,0,1)

}
, (84)

having used x2J ′′
l (x) + xJ ′

l (x) + (x2 − l2)Jl(x) = 0.
Also,

− 1

4k
αI

e ∇ × Im(E × B∗) = 0. (85)

On the other hand,

Ls = 
s
L = −k

3
e2|αe|2 lK

R
Jl(KR)J ′

l (KR)(0,0,1), (86)

which is contributed by the electric helicity flow term − k3

6
4nk
c

[ 1
ε2 |αe|2Fe of Eqs. (36) and (59).

Using, as shown above, the optical theorem αI
e − (2/3ε)k3|αe|2 = εσ (a)/4πk and since K2 + k2

z = k2, the resulting torque
becomes

〈�(r)〉 = e2

4πk3
σ (a) lK

R
Jl(KR)J ′

l (KR)(0,0,1) + 3e2kz

4k4

{
αR

e

lK

R2
[KJl(KR)J ′′

l (KR) + KJ
′2
l (KR)

− 1

R
Jl(KR)J ′

l (KR)](x,y,0) + αI
e

[[
l2

R4
J 2

l (KR) − 2
l2K

R3
Jl(KR)J ′

l (KR) + K2

R2
J

′2
l (KR)

]
(y, − x,0)

− 2
lK3

kzR
Jl(KR)J ′

l (KR)(0,0,1)

]}
. (87)

The spin torque 〈�σ 〉 [see Eq. (72)] that results from the sum
〈�0〉 + Ls + 
s

L [cf. Eqs. (83) and (86)] is the first term
of (87) and, as said above, describes the particle spinning
following the incident helicity by transfer of spin angular
momentum through energy absorption. Equation (87) also
shows that, in particular if the wave were plane, this term

would be the only contribution to the torque, there being no
orbiting of the particle, as expected. Otherwise, there is a radial
helicity-gradient term of αR

e and an azimuthal vortex term of
αI

e in (87) due to both the beam transversal structure and the
interaction of the transversal E and B with the longitudinal
B. The latter manifested through the particle scattering and
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FIG. 2. (Color online) Doped Si sphere of radius 230 nm illumi-
nated at λ = 1350 nm, where its electric polarizability dominates
by a TE Bessel beam; K = 0.9k, l = 2, αR

e = 1.095 × 107 nm3,
αI

e = 6.083 × 106 nm3, σ (a) = 0.1. Red line, longitudinal component
of the time-averaged optical torque 〈�〉z; blue line, longitudinal
spin torque 〈�σ 〉 transferred by absorption (its magnitude appears
multiplied by 104); dashed pink line, helicity H of the incident beam
(its magnitude appears multiplied by 105). The three quantities have
circular symmetry with annular spatial distribution in the transversal
XY plane, and thus in this representation they are even functions if
the axis of the radial coordinate R is extended to the left of 0. The
torques and helicity are plotted in nm3 and nm−1, respectively, since
they are normalized to half the incident intensity density: e2.

absorption of the incident beam as seen from the optical
theorem and producing an orbiting of the particle around the
vortex axis OZ at maximum intensity points, which are stable
due to the gradient force.

Figure 2 shows three quantities in the transversal plane,
where they have an annular spatial distribution, for a Si sphere
(refractive index np = 3.5), illuminated at a wavelength near
its dipolar resonance [57,78] and K = 0.9k. The particle
is assumed to have been slightly doped to confer it a low
absorption, so that its spin torque is observable through σ (a).
The optical torque 〈�〉z is dominated by the last term of (87),
which is several orders of magnitude larger than the spin
torque 〈�σ 〉. Also, while the latter follows the incident field
helicity, the former opposes it, thus giving rise to a longitudinal
z-negative optical torque on the particle, which consequently
orbits around the vortex axis in the opposite sense to its
spinning. Diminishing K results in a weaker torque, but does
not change its negative sign. It occurs similarly on varying
l, which only changes the oscillation points along R, slowly
diminishing their amplitudes as |l| grows.

It is also interesting in connection with the gradient torque
(81) and the corresponding behavior of the helicity in Fig. 2
that this optical torque transversal component is maximum and
zero at those points where H changes sign and is extreme,
respectively. These positions coincide with those where the
gradient force magnitude on the particle is maximum and
zero, respectively. Hence, while this latter force tends to place
the object at an equilibrium position of minimum energy, the
gradient torque tends to a zero transversal value, both in its
spinning and orbital movement [cf. Eqs. (33) and (58) for the

spin and angular gradient optical torques]. As anticipated in
Sec. V, this effect can be exploited as an additional degree of
freedom in what we may call rotational optical tweezers.

XII. EXAMPLE 2: INCIDENT GAUSSIAN BEAM

A. TE and TM Gaussian beam

We shall now consider a wave field commonly used in
several works and illustrations. This is a Gaussian beam in air,
both TE and TM, circularly polarized, with spot size 2σ and a
vortex of topological charge l,

E(i)(r) = e(1, ± i,0)eilφeikze
− R2

σ2 ,

B(i)(r) = 1

ik
∇ × E(i)(r) � 1

ik
∂z × E(i)(r) = ẑ × E(i)(r)

= ∓iE(i)(r) = e(∓i,1,0)eilφeikze
− R2

σ2 , (88)

k = (kx,ky,kz), K = (kx,ky,0), k = |k| = ω

c
,

ε = μ = n = 1, r = (x,y,z), R = (x,y,0),

illuminating a dielectric particle whose induced dipole mo-
ment is p = αeE(i).

This is an interesting case because, as we see below,
although some aspects of the forces stemming from the above
paraxial expressions of the E and B vectors are easily obtained,
these fields are not divergenceless and, as we see next, are not
appropriate for any theory based on the free-space Maxwell
equations, ∇ · E = ∇ · B = 0, like the torque formulation
developed here. Neither the total angular momentum density
nor its z flux across a transversal XY plane can be expressed
as the sum of the corresponding spin plus orbital densities and
fluxes, as expected from the remarks of Sec. II.

First, we note that the helicity of this field is

H = ±1

k
e2e

− 2R2

σ2 . (89)

It is convenient to analyze the dynamics exerted by this beam
on a dielectric particle from the point of view of the mean
optical force, which is [48,51,52,54]

〈F〉 = αR
e

4
∇|E|2 + αI

e

4πk

c
P0. (90)

We omit the superindex (i), understanding that in all following
equations we are dealing with the incident field.

The gradient, pulling the particle to the beam axis, is

∇|E|2 = 4

σ 2
e2e

− 2R2

σ2 (−x, − y,0), (−x, − y,0) = −Rr̂,

(91)

the ith component of the orbital momentum P0 being [52]

P0 = c

8πk
Im{E∗

j ∂iEj } = 〈S〉 + c

8πk
Im{(E∗ · ∇)E},

i,j = 1,2,3, (92)

with the mean energy flow

〈S〉 = c

8π
e2e

− 2R2

σ2 (0,0,1) (93)
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and

Im{(E∗ · ∇)E} = e2e
− 2R2

σ2

(
± 2

σ 2
− l

R2

)
(y, − x,0). (94)

Now observe that since for the paraxial TE and TM field (88),
∇ · E �= 0, one has

Im{(E∗ · ∇)E} = Im{(∇ · E)E∗} − 1
2∇ × Im{E∗ × E}. (95)

The existence of the nonzero first term in the right side of
(95) is a fact that should be recalled when expressing the
orbital momentum in terms of the electric spin 〈Fe〉 curl:
∇ × Im{E∗ × E} for fields that are not divergenceless.

Notice that the orbital momentum P0, described by (92)–
(94), contains the term ± 2

σ 2 [cf. Eq. (94)], which is essential to
describing the spin curl component of the force [cf. Eq. (95)],

1

2
∇ × Im{E∗ × E} = ∓e2 4

σ 2
e
− 2R2

σ2 (y, − x,0),
(96)

(y, − x,0) = −Rφ̂,

which, together with

Im{(∇ · E)E∗} = e2e
− 2R2

σ2

(
∓ 2

σ 2
− l

R2

)
(y, − x,0), (97)

yield the expression (94) when they both are introduced in
(95). In fact, the omission of the ± 2

σ 2 leads to the well-known
fundamental paradox of having a zero spin momentum [the
last term of Eq. (95)], while the spin angular momentum Fe

is not zero [79].
Equations (90) and (92)–(94), characterize the force due to

P0, pushing the particle along z with the radiation pressure
characterized by 〈S〉 and in the azimuthal direction due to
Im{(E∗ · ∇)E given by the divergence and spin curl terms of
(95). Also, from the above equations one has that the total
angular momentum J does not hold J = L + F , where J =
r × 〈S〉 and L = r × P0. Neither their corresponding flows
across the transversal XY plane fulfill such decomposition.

One would write the torque R × αI
e 〈S〉, given by the

moment of the radiation pressure with respect to the beam

axis, as azimuthal, − c
8π

e2e
− 2R2

σ2 αI
e φ̂, whereas the torque

R × αI
e

2 Im{(E∗ · ∇)E from the moment of the remaining orbital

part of the force would be longitudinal, −e2e
− 2R2

σ2 αI
e R

2(± 2
σ 2 −

l
R2 ) ẑ (notice this orbital ẑ component being proportional to
the vortex index l and independent of R), to which the

moment of the spin contribution R × αI
e

2 (∇ × Im{E∗ × E})
is ±e2 4

σ 2 e
− 2R2

σ2 αI
e R

2 ẑ. However, as we have already seen,
the torque by transfer of spin to the particle actually comes
from its absorption cross section. If there is no absorption (or
birefringence [22]), there is no spinning of the particle due to
the spin angular momentum.

On the other hand, according to (29) or (30),

L′ = n

2kμ
Im

1

ε
pj∂iB

(i)∗
j = 〈�0〉

+ 1

2k

√
ε

μ
Im

{
1

ε
(p · ∇)B(i)∗

}
= 〈�0〉 + 2
′

L , (98)

with ε = μ = n = 1, k = |k| = ω
c

, and

〈�0〉 = ±αI
e e

2e
− 2R2

σ2 (0,0,1) = kαI
e H (0,0,1), (99)

1

2k

√
ε

μ
Im

{
1

ε
(p · ∇)B(i)∗

}

= e2

2k
e
− 2R2

σ2

{
αR

e

(
± 2

σ 2
− l

R2

)
(−x, − y,0)

±αI
e

(
± 2

σ 2
− l

R2

)
(y, − x,0)

}
.

×
(
ε = μ = n = 1, k = |k| = ω

c

)
. (100)

As expected, Eqs. (98)–(100) show features similar to those
seen above for the Bessel beam concerning the influence of
the structure of the beam, in both the longitudinal and the
transversal components of these torque parts.

On the other hand, the recoil torques are

Ls = 
s
L = ∓ k3

3ε
e2|αe|2e− 2R2

σ2 (0,0,1), (101)

which are contributed by the electric helicity flow term,
− k3

6
4nk
c

[ 1
ε2 |αe|2Fe, of Eqs. (36) and (59).

When the resultant torque [Eq. (64)] 〈�(r)〉 = L + 
L =
L′ + Ls + 
′

L + 
s
L exerted by this beam on the particle is

evaluated, one obtains

〈�(r)〉 = e2e
− 2R2

σ2

{
± ε

4πk
σ (a)(0,0,1)

+ 3

4k

[
αR

e

(
± 2

σ 2
− l

R2

)
(−x, − y,0)

± αI
e

(
± 2

σ 2
− l

R2

)
(y, − x,0)

]}
. (102)

Once again, we obtain in the first term of (102) the spin torque,
with its ± sign, along OZ, proportional to the absorption cross
section, accounting for the particle spinning. We also see in
(102) the helicity gradient radial term, as well as an azimuthal
part proportional to Im{(E∗ · ∇)E} according to Eq. (94).

However, no z component due to orbital angular momentum
transfer is exhibited by (102). This is a consequence of
obviating the fundamental conditions—∇ · E = 0, ∇ · B =
0—in the paraxial representation (88) of the Gaussian beam.
Of course, not all terms of the decompositions (33) and (58) are
valid for this beam. Hence, although some aspects of the force
exerted by a TE and TM beam, like that of (88), are easily
described with such representation of its E and B vectors,
other effects of the dynamics as discussed in Eq. (102) are not
adequately described.
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B. Gaussian beams satisfying the transversality condition

Paraxial expressions of vortex Gaussian beams that, being
∂z � ikz, satisfy the transversality condition should have
E(i)

z = (i/kz)∇⊥ · E(i)
⊥ [52] and E(i)

⊥ = (E(i)
x ,E(i)

y ). A first
example, which we denote as PG1, has the annular spatial
field distribution in the XY plane:

E(i)(r) = eklRl

{
1,±i,

i

kz

e±iφ

[
l

R
(1 ∓ 1) − 2R

σ 2

]}

× eilφeikzze
− R2

σ2 . (103)

Alternatively, a second instance, which we denote as PG2, is
similar to an hypergeometric Gaussian beam in the pupil plane:

E(i)(r) = e

[
1, ± i,

(
± 2

kzσ 2
+ l

kzR2

)
(y ∓ ix)

]
eikzze

− R2

σ2 ,

(104)

B(i)(r) = −i
1

k
∇ × E(i), (105)

r = (x,y,z), R = (x,y,0).

We choose l = 1 and the upper signs in (103) for the PG1
beam. According to the first term of (72), the spin torque 〈�σ 〉
that it induces on the above dielectric dipolar particle is

〈�〉σ = e2k2R2e
− 2R2

σ2
σ (a)

2πk

{
1

kzσ 2
(−y,x,0) + 1

2
(0,0,1)

}
.

(106)

Whereas, by the same token, the PG2 beam gives rise to

〈�〉σ = ±e2e
− 2R2

σ2
σ (a)

4πk

×
{(

± 2

kzσ 2
+ l

kzR2

)
(−y,x,0) + (0,0,1)

}
. (107)

For brevity, we concentrate on these longitudinal z torques, as
this component was the source of the discrepancy encountered
with (88). They are

〈�(r)〉z = e
− 2R2

σ2 R2

[
kσ (a)

4π
+ 6

e2

σ 2
αI

e

(
R2

σ 2
− 1

)]
(0,0,1)

(108)

for the PG1 beam and

〈�(r)〉z = e2e
− 2R2

σ2

{
± σ (a)

4πk
+ 3

k2σ 2

(
l ∓ 1 ± 2R2

σ 2

)
αI

e

}
(0,0,1)

(109)

for the PG2 beam.
Equations (108) and (109) contain the topological charge,

or orbital number, l, coming from the 〈S〉 component of
the orbital momentum P0 [Eq. (92)], which describes the
trajectory of the particle around the vortex following the sign
of l. There is no contribution to this l term of 〈�(r)〉z from
Im[(E∗ · ∇)E] since, for example for PG2, the latter yields

4e2e
− 2R2

σ2 (±4/σ 2)(y,−x,0), whose momentum R × Im[(E∗ ·
∇)E] contributes to the ∓(3/k2σ 2) factor of αI

e in (109). Of
course, again the sign of the incident spin angular momentum is

FIG. 3. (Color online) Doped Si sphere of radius 230 nm illu-
minated at λ = 1350 nm by either of the Gaussian beams PG1
[Eq. (103)] or PG2 [Eq. (104)] with LCP transversal components. l =
1 for PG1, and l = 2 for PG2. σ = 2; μm. αR

e = 1.095 × 107 nm3,
αI

e = 6.083 × 106 nm3. Solid red line, longitudinal component of
〈�〉z due to PG1; solid blue line, longitudinal spin torque 〈�σ 〉
from PG1 (its magnitude appears multiplied by 105); dashed brown
line, longitudinal component of 〈�〉z due to PG2 (its magnitude
appears multiplied by 14); dashed pink line, longitudinal spin torque
〈�σ 〉 from PG2 (its magnitude appears multiplied by 106). The four
quantities have circular symmetry with an annular spatial distribution
in the transversal XY plane, and thus in this representation they are
even functions if the axis of the radial coordinate R is extended to the
left of 0. They are plotted in nm3 since they are normalized to half
the incident intensity density: e2.

followed by the spinning particle as it absorbs incident energy
through σ (a).

Figure 3 shows the annular spatial distribution of the spin
and longitudinal total torques on the Si sphere addressed above,
again illuminated at λ = 1350 nm by either the beam PG1
(with l = 1) or PG2 (with l = 2), choosing the upper sign in
(103) and (104). The longitudinal OZ torque is dominated by
the αI

e term of Eqs. (108) and (109), which is several orders of
magnitude larger than the spin torque 〈�σ 〉. The latter clearly
displays the beam transversal Gaussian shape at whose peak
the particle is stably placed by the gradient force, while it orbits
around the vortex and spins on its axis. Increasing |l| enlarges
the strength of 〈�〉z.

It is remarkable that while the PG2 beam induces a resultant
z torque that follows its helicity like the spin torque, the
interaction of the transversal and longitudinal components of
the PG1 wave field induces a negative electromagnetic torque
on the particle, which consequently orbits around the vortex
axis in opposite sense to its spinning. This example, as well as
the one above concerning a TE Bessel beam, illustrates that,
in contrast with negative radiation pressure and tractor beams
[40–42], the production of negative torques is quite common
and exists beyond illumination with special oscillating spatial
profiles.

We should remark that in the examples here shown, the
torque is enhanced by illumination in the electric dipole
resonance region of this kind of high np particles. By contrast,
we obtained torques one order of magnitude smaller on latex

043843-16



OPTICAL TORQUE: ELECTROMAGNETIC SPIN AND . . . PHYSICAL REVIEW A 92, 043843 (2015)

spheres (np = 1.5) of the same size in the equivalent region
(λ = 700 nm).

XIII. CONCLUSIONS

We have studied the significance and consequences of the
conservation laws of the spin and orbital angular momenta for
the scattering of arbitrary wave fields, satisfying the transver-
sality condition with an object, which we have illustrated by
a magnetodielectric bi-isotropic dipolar particle in the wide
sense. We have shown that these laws describe the respective
contributions of these angular momenta to the different parts
of the torque exerted by the field on the particle, which is
seen to consist of an extinction and a scattering, or recoil,
component. The latter is shown to cancel the often-called
intrinsic torque, contained in the extinction component and
modeled in some previous works, without compatibility with
energy conservation, to account for the optical torque felt by
the body, and that as shown here plays no role in the resultant
optical torque, which is actually felt by the particle through its
absorption cross section. This latter quantity is what remains
from the recoil torque component after the above-mentioned
cancellation.

Each of these two laws describe a half of the recoil
torque acting on the object. The transfer of spin and orbital
angular momenta, on the other hand, arises while they are
extinguished from the incident field. This is described by the
torque extinction parts due to the interference of the incident
and scattered fields. If the incident wave is a plane, and thus it
has no orbital angular momentum, its transfer characterized

by the recoil torque is a manifestation of the spin-orbit
interaction.

The role of the spatial structure of the incident field in the
torque has been established, showing that the contribution from
the spin angular momentum conservation is twice that from the
orbital-angular-momentum continuity law. While the spinning
of the particle through absorption of the incident energy always
follows the incident helicity, its orbiting may result opposite to
the incident spin, this giving rise to a resultant negative optical
torque on a single particle. I have illustrated this with Bessel
and Gaussian beams.

The electromagnetic torque admits a decomposition into
conservative and nonconservative components in which the
helicity and its flow play a role analogous to that of the energy
and the Poynting vector in the optical force. In particular,
the gradient torque has the potential to add a new variable to
optical tweezers setups.

In addition to contributing to an understanding of the physi-
cal mechanisms involved in the transfer of angular momentum
from the field to a body, ruled by these conservation laws,
and their several consequences, this study opens new avenues
of research both from the experimental and theoretical points
of view that, with the improvement of particle manipulation
techniques, adds new degrees of freedom in the analysis
and control of possible fundamental phenomena and their
applications.
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