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Shaping finite-energy diffraction- and attenuation-resistant beams through
Bessel-Gauss–beam superposition
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In this paper we develop an analytical method for spatial shaping of diffraction- and attenuation-resistant
beams carrying finite power in absorbing media. This can be achieved through suitable discrete superposition of
Bessel-Gauss beams, where the approach can be seen as an extension of the frozen wave method, without the
inconvenience of infinite power flux and spatial periodicity of the resulting beams.
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I. INTRODUCTION

Previously a method for spatial modeling of diffraction- and
attenuation-resistant beams in absorbing media was developed
in Ref. [1]. In general terms, the method allows for obtaining
a beam of light, resistant to attenuation and diffraction, with
a longitudinal intensity pattern that can be chosen a priori
[1–4]. This method, named frozen wave (FW), consists of
suitable superposition of copropagating equal order Bessel
beams, where its experimental confirmation for nonabsorbing
media can be found in [5,6].

Despite the fact that the FW method provides impressive
results, the derived exact analytical solutions possess infinite
power flux and, in the case of nonabsorbing media, they
also present an undesired spatial periodicity along the beam
direction of propagation. It goes without saying that the
aforementioned unphysical behaviors do not appear in the
actual experiments due to the finite size of the aperture needed
to generate the beams. However, for both theoretical and better
understanding of the experimental results, it is necessary to
develop an analytical description of the FWs with finite power
flux and without spatial periodicity along the direction of
propagation. These goals can be achieved, for instance, if one
changes the kind of Bessel beam superposition used from a
discrete to a continuous one. The difficulty in this case lies in
performing the necessary integrations which rarely furnishes
analytical solutions [7]. Another possibility is to perform a
spatial truncation on the initial FW field [2], but, in this case,
the mathematical difficulties for obtaining analytical solutions
are even greater.

In this paper, we present a class of solutions to the
aforementioned problems by obtaining a finite power version
of the FW beams, in both absorbing and nonabsorbing
media, through suitable superposition of discrete Bessel-Gauss
beams. Such constructed FWs are resistant to diffraction and
absorption and will not display the undesired longitudinal
periodicity.

The next section is devoted to a modified version of
the usual FW method, by ensuring that the transverse wave
numbers of the involved Bessel beams are always real
when the material medium is absorbent, something that
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does not occur in the traditional method [1], where the
Bessel beams in loss media possess complex transverse and
longitudinal wave numbers. This modified version presents
the very same problem of infinite power flux, but it can be
more appropriate in dealing with situations where a given
FW beam propagating in an absorbing medium is being
generated outside it, in a nonabsorbing medium (in air, for
instance).

Because it is new, the content of Sec. II is part of the
contribution of the present work, whose main contributions
are given by Sec. III and (especially) by Sec. IV, where the
finite-energy version of the FW method is presented.

II. MODIFIED VERSION OF THE FROZEN
WAVE METHOD AND THE MAIN GOALS OF THE

PRESENT WORK

A good description of the FWs can be found in Refs. [1–4];
however, here we present a modified version of this approach
by requiring that the Bessel beams forming the FW to have
real transverse wave numbers. Theoretically, a Bessel beam
with complex transverse wave number is possible if the
beam is constructed inside a homogeneous absorbing medium
through the superposition of plane waves with the wave
vectors localized on a cone surface. A Bessel beam with a
real transverse wave number in an absorbing medium occurs
when, for instance, the beam is generated in a nonabsorbing
medium and is partly transmitted to the absorbing medium at
normal incidence, something that can occur in many important
applications.

Let us consider a linear, isotropic, and homogeneous
absorbing medium with complex refractive index given
by nref = nr + i ni . The basic idea is to shape, within a
certain spatial range, the longitudinal intensity pattern of
diffraction- and attenuation-resistant beams. We wish the
chosen longitudinal intensity pattern to occur over a cylindrical
surface of radius ρ0 � 0. Mathematically, we wish |�(ρ =
ρ0,φ,z,t)|2 ≈ |F (z)|2, within 0 � z � L. When ρ0 = 0, we
also can choose the spot radius (r0) of the resulting beam. Here,
the function � represent, for instance, the transverse Cartesian
component of a electrical field of the type E = �x̂ + Ezẑ,
where Ez can be calculated (in the case of source free, linear,
isotropic, and homogeneous media) through the Gauss law,
Ez = − ∫

∂x� dz.
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To achieve the above, the following superposition of equal
frequency copropagating Bessel beams of order ν is proposed:

�(ρ,φ,z,t) = Nν e−iωt

N∑
n=−N

AnJν(ηnρ)eiνφeiζnz. (1)

Here, An are constants coefficients and ζn and ηn are the
longitudinal and the transverse wave numbers (respectively)
of the nth Bessel beam in the superposition, related to each
other according to

ηn =
√

k2 − ζ 2
n . (2)

In the above expression k is the complex (total) wave number
given by

k = (nr + ini)
ω

c
= kr + iki . (3)

In addition, Nν = 1/[Jν(·)]max, where [Jν(·)]max is the maxi-
mum value of the Bessel function of the first kind Jν(·).

It is important to pay close attention to the notation used
here: “n” is the summation index in Eq. (1), assuming integer
values in the range −N � n � N , whereas the complex index
of refraction is written as nref = nr + ini , where nr and ni are
the real and imaginary parts of the index, respectively.

In order to proceed, the following choices for the transverse
wave numbers (ηn) and coefficients An are made:

ηn =
√(

n2
r − n2

i

)ω2

c2
−

(
Q + 2πn

L

)2

+
(

ω2

c2

nrni

Q + 2πn
L

)2

,

(4)
which implies ζn = ζr n + i ζi n, with

ζr n = Q + 2πn

L
,

ζi n = ω2

c2

nrni

ζr n

. (5)

and

An = 1

L

∫ L

0
F (z)e−(i 2π

L
n−ζi 0)zdz, (6)

where, according to (5), ζi 0 = (ω2/c2)nrni/Q. Here, Q is a
positive constant related to the transverse dimensions of the
beam as will be discussed later.

To ensure purely real transverse wave numbers (ηn) and
positive values for the real part of the longitudinal wave
number,1 we must have

0 � ζr n � ω

c

√√√√(
n2

r − n2
i

) +
√(

n2
r − n2

i

)2 + 4
(
n2

r n
2
i

)
2

. (7)

Once Q and L are chosen, expression (7), along with the first
equation of (5), provide us with the maximum value of N to be
used in (1). The desired longitudinal intensity pattern, |F (z)|2,
can now be constructed on axis (ρ = 0) or on the surface of
cylinder of radius ρ = ρ0 as follows.

1To guarantee only forward propagating Bessel beams in the
superposition (1).

(i) In the case of on axis pattern (ρ = 0), zero-order Bessel
beams (i.e., ν = 0) are used in the fundamental superposition
(1). Moreover, through a suitable choice of Q, it is possible to
choose the resulting beam’s spot radius according to

r0 ≈ 2.4

η0
. (8)

(ii) In the case of patterns on the surface of a cylinder of radius
ρ = ρ0, higher-order Bessel beams (i.e., ν � 1) are used in
(1). The radius ρ0 of the cylinder can be approximately chosen
if Q is evaluated from[

d

dρ
Jν(η0ρ)

]∣∣∣∣
ρ=ρ0

= 0. (9)

The method described above provides a powerful way for
modeling diffraction- and attenuation-resistant beams which
are useful in many fields such as optical tweezers, optical atom
guiding, remote sensing, free space optics communications,
and so on. However, the beam solution given by Eqs. (1)–(6)
has the drawback of having an infinite power flux. This is
particularly evident in the simple case of nonabsorbing media,
where the resulting FW beam possesses infinite periodicity
(with period L) along the spatial coordinate z. To see this let
us consider the following example.

Example 1. Here we will construct two FW beams with
the same spot sizes and longitudinal intensity patterns, one
of them in a nonabsorbing medium with nref = nr = 2 and
the other in an absorbing medium with nref = nr + ini = 2 +
i 7.5 × 10−7. Both beams have the same optical (free-space)
wavelength of λ = c/f = 632.8 nm, with spot size of radius2

r0 ≈ 9 μm, and with a ladder-shaped longitudinal intensity
pattern on the axis. More specifically, we wish that in each
medium, within the range of 0 � z � L, the corresponding
square beam amplitude to be given by |�(ρ = 0,z,t)|2 ≈
|F (z)|2, with

F (z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for 0 < z < l1,

1 for l1 < z < l2,√
2 for l2 < z < l3,√
3 for l3 < z < l4,

0 for l4 < z < L,

(10)

where l1 = 0.05 m, l2 = l1 + δz, l3 = l2 + δz, and l4 = l3 +
δz, with L = 0.37 m and δz = 0.08 m.

Using the FW method formulated above, Eqs. (1)–(8), with
ν = 0, the desired beam patterns are calculated and plotted in
Fig. 1. The coefficients An (for both cases) are easily calculated
in closed analytical form, but are not shown here explicitly.
From the desired spot size, the calculated values of Q (for
both beams) are approximately the same, Q ≈ 0.99991kr =
1.9857 × 107 m−1. Moreover, for both cases, the maximum
allowed value of N is 210; however, a good result is already
obtained with N = 40.

2Note that a Gaussian beam (in any of the two media) with the same
initial spot size doubles its beam size due to diffraction after only
2.8 mm, and that a plane wave, in the absorbing medium, would have
a penetration depth of only 6.7 cm.
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FIG. 1. (Color online) (a) Desired FW beam intensity in the nonabsorbing medium and its orthogonal projection. (b) The same beam as
in (a) but over an extended longitudinal range, 0 � z � 4L = 1.48 m, where longitudinal periodicity is evident. (c) The desired FW beam in
the absorbing medium and its orthogonal projection. (d) The same beam as in (c) but over a longer longitudinal range, 0 � z � 4L = 1.48 m.
Despite absence of the spatial periodicity, the resulting beam carries infinite power.

Figure 1(a) shows the beam pattern in the nonabsorbing
medium, where F (z) is given by (10) within the range of
0 � z � L = 0.37 m. The orthogonal projection of the beam
in the ρ − z plane is also shown as an inset. Figure 1(b) is a plot
of the same beam, but for a longer longitudinal range of 0 �
z � 4L = 1.48 m, where the spatial periodicity of the beam
pattern is obvious. Figure 1(c) shows the desired FW beam
intensity, Eq. (10), and its orthogonal projection within the
range 0 � z � L = 0.37 m in the absorbing medium, whereas
Fig. 1(d) is the same beam as in Fig. 1(c), but for a longer
longitudinal range of 0 � z � 4L = 1.48 m. In this figure,
while because of the exponential attenuation caused by the
losses the spatial periodicity is not evident; nevertheless, the
beam carries infinite power.

In principle, there are two ways to avoid the infinite
power problem associated with the FW discussed above. One
approach is to use theoretically the same procedure which is
used experimentally, i.e., to make a suitable spatial truncation
of the transverse FW field on the initial z = 0 plane. In such an
approach the radius of the finite circular aperture, responsible
for the truncation, can be chosen in order to guarantee the
desired optical field within the range 0 � z � L and, at same
time, to avoid any spatial periodicity of the beam intensity
outside of it. Consequently, to theoretically obtain the solution
for the “truncated” FW beams, we need to deal with diffraction
integrals. The second approach is to change the summation
of the Bessel function in (1) from discrete to continuous.
Both of these approaches suffer from the same shortcoming:

in most cases, we are faced with complicated integrals
making it impossible to obtain a closed analytical solution,
forcing us to rely on time-consuming indirect numerical
simulations.

In our attempt to acquire a finite energy FW, in Sec. III
we apply an interesting result from the paraxial wave theory
to obtain an apodized version of the FW solution. Lastly, in
Sec. IV, we further modify the apodized beam to achieve the
ultimate goal of the finite-energy solution, namely, to provide
finite-energy diffraction-resistant beams whose longitudinal
intensity pattern can be modeled within a given spatial range,
with the added feature of possessing negligible intensity values
outside it when compared with the beam’s intensity levels in
the main range.

III. FROZEN WAVES BEAMS APODIZED BY A
GAUSSIAN APERTURE

As stated earlier, in this section we use an interesting result
from paraxial optics to obtain a Gaussian apodized version
of the FW beams. Consider a paraxial beam propagating in
a linear, isotropic, homogeneous, but absorbing medium. The
corresponding complex wave function for the monochromatic
field is given by

� = exp(ikz) exp(−iωt)E(x,y,z), (11)
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where the complex envelope E must satisfy

∇2
T E + 2ik

∂E

∂z
= 0. (12)

Here, ∇2
T is the transverse Laplacian and k is the complex wave

number given by (3). It is possible to show that if E(x,y,z) is
a solution of (12), then the following function:

EG(x,y,z) = 1

μ
exp

(
−q2 ρ2

μ

)
E

(
x

μ
,
y

μ
,
z

μ

)
, (13)

with ρ2 = x2 + y2, Re(q) > 0 (a constant), and

μ = 1 + i2
q2

k
z, (14)

is also a solution of (12) [8–10].
The important insight from the above result is that every

paraxial beam solution possesses its own Gaussian apodized
version. From (13) it is easy to see that on the initial
z = 0 plane, EG(x,y,z = 0) = exp(−q2ρ2)E(x,y,z = 0). So,
the parameter q regulates the transverse intensity width of the
Gaussian apodization (ρG = 1/

√
2q) of the beam on the

z = 0 plane.
Now, let’s apply the above results to the FW solution. To do

so, some care must be observed: Eq. (1), with the constraint
given by Eq. (2), is an exact solution of the wave equation,
whereas the result discussed in this section is valid to solutions
subject to the paraxial approximation. However, it can be
shown that within the paraxial approximation the FW solution
can be written exactly as (1), if the following changes are
made:

ηn =
√

2k

√
1 − ζn

k
, (15)

where the transverse wave number also satisfies

ηn =
√

2

√
1 − 1

kr

(
Q + 2πn

L

)
|k|. (16)

Consequently, due to (15), the longitudinal wave number

ζn = ζr n + i ζi n (17)

has its real and imaginary parts given by

ζr n = Q + 2πn

L
,

(18)

ζi n = ki

(
2 − ζr n

kr

)
.

Interestingly, the expressions for all other parameters, in-
cluding coefficients An, remain unchanged. Moreover, if we
require that only forward traveling beams are acceptable and
the transverse wave number, ηn, is purely real then

0 � Q + 2π

L
N � nr

ω

c
= kr . (19)

The expression above provides us with the maximum value of
N , once Q and L are chosen.

With the paraxial FW beam solution in hand Eqs. (1), (16),
(18), and (6), we can obtain the Gaussian apodized version
of the FW by writing (1) in the form of (11) and applying
(13). Consequently, the finite-energy FW solution can be

written as

�(ρ,φ,z,t) = e−iωt eikz
exp

(−q2 ρ2

μ

)
μ

exp

(
−ik

z

μ

)

×
N∑

n=−N

AnJν

(
ηn

ρ

μ

)
eiνφ e

iζn
z
μ , (20)

with μ given by Eq. (14). Equation (20) is indeed a superpo-
sition of Bessel-Gauss beams.

As stated earlier, the new parameter q regulates the
transverse intensity width of the Gaussian apodization at z = 0
and its value has to be chosen in order to guarantee that all
Bessel-Gauss beams in superposition (20) are diffraction resis-
tant in the desired longitudinal spatial range. But, independent
of the choice for q, unfortunately, the present apodized FW
cannot yet properly represent the FW beams with the desired
properties. This becomes clear with the following example,
where for simplicity we have considered a lossless medium.

Example 2. We wish to use (20), along with Eqs. (6),
(8), (16), (17), and (18), and assigned values of q, to obtain
a diffraction resistant beam with intensity spot radius r0 ≈
9 μm and λ = c/f = 632.8 nm in a medium with nref =
nr = 2, where the on-axis longitudinal intensity pattern is
approximately equal to |F (z)|2, with F (z) given by (10). We
choose a set of increasing values for q, or equally a set of
decreasing values for the Gaussian apodization width (104,
800, 500, and 200 times the FW spot size). Results are shown
in Figs. 2(a)–2(d). From Fig. 2(a) it is clear that the desired
ladder-shaped intensity pattern within 0 < z < L = 0.37 m
is obtained very satisfactorily, but, unfortunately, the field
intensity at z > L is also high. In the subsequent figures
[2(b)–2(d)], as the Gaussian apodization width decreases from
104 to 800, 500, and finally 200 times the FW spot size, the field
for z > L begins to lose its intensity, but the same occurs for
the field within the range of 0 � z � L, an undesired result. In
Fig. 2(d) the resulting beam is strongly affected by the narrow
width of the Gaussian apodization and the desired intensity
pattern in the range of 0 � z � L is not obtained even in an
approximate form.

In summary, we see that the proposed solution [Eq. (20)]
can reproduce the desired longitudinal intensity pattern within
0 � z � L only when large values of the Gaussian apodization
width are chosen.3 But, unfortunately, this results in increased
undesired residual intensities in the z > L range, which is
a consequence of the periodicity of the original FW in
lossless media. Of course, to decrease these undesired residual
intensities after z = L, one may use smaller values for the
Gaussian apodization width. But, unfortunately, this in turn
spoils the field to be reproduced within 0 � z � L due to the
natural decay of the BG beam intensity along the propagation
direction. This intensity decay occurs even in the absence of
material absorption, as is the case for the current example.
For (20) to be able to represent the beams with the desired
properties, some changes must be implemented. The next
section is devoted to these changes.

3That is, values for the Gaussian apodization widths much greater
than the spot size of the FW which is being apodized, i.e., ρG =
1/

√
2q � r0.
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FIG. 2. Figures show apodized Bessel-Gaussian FW in a lossless medium with increasing values for the apodization width (ρG). (a)
ρG = 104 r0, (b) ρG = 800 r0, (c) ρG = 500 r0, and (d) ρG = 200 r0. For large values of ρG, FWs display an undesired periodicity
along the direction of propagation, whereas for small values of ρG the beam pattern within the target region 0 � z � L loses its intensity.

IV. MODELING THE INTENSITY PATTERN OF
FINITE-ENERGY DIFFRACTION- AND

ATTENUATION-RESISTANT BEAMS IN ABSORBING
MEDIA: FWS FROM BESSEL-GAUSS BEAM

SUPERPOSITION

In this section we show that a finite-power, analytical,
FW solution without spatial periodicity along the direction
of propagation is possible by using Eq. (20), provided some
modifications to the coefficients An and a suitable redefinition
of the intensity pattern function, |F (z)|2, and its domain are
made. To discuss these modifications, a better understanding
of the terms appearing in Eq. (20) is needed.

A Bessel-Gauss beam is the result of an apodization
made with a Gaussian exp(−q2ρ2) on a Bessel beam
Jν(ηρ) exp(iνφ) exp(iζ z) exp(−iωt), at the initial z = 0 plane.
It can be calculated, in the paraxial approximation, from the
Fresnel diffraction integral [10–14], resulting in

ψBGb(ρ,z,φ,t) = eikz e−iωt
exp

( − q2 ρ2

μ

)
μ

Jν

(
η

ρ

μ

)
eiνφ

× exp

(
− i

η2

2k

z

μ

)
, (21)

where μ is given by Eq. (14) and, as before, the complex
wave number (k) is given by Eq. (3). Moreover, the spot radius

of an ideal Bessel beam is given by ρBb ≈ 2.4/η and the
transverse intensity width of the Gaussian apodization at z = 0
is ρG = 1/

√
2q.

Now, a necessary condition for the Bessel-Gaussian beam
to display a diffraction resistance behavior,4 in the sense
of preserving its spot size over long distances, is ρG �
ρBb ⇒ η � q. Moreover, based on the results of [11,12]
a conservative estimate of the diffraction resistance distance
(ZBG) of a Bessel-Gauss beam is

ZBG ≈ kr

qη
. (22)

In terms of the beam’s attenuation, the product
exp(ikz) exp(−iη2z/2kμ) in Eq. (21) is the main factor
responsible for the beam’s intensity degradation. More specif-
ically, the intensity decrease is dictated by the function G2

BG ≡
| exp(ikz) exp(−iη2z/2kμ)|2, where by using (14) we have

GBG(z) = e−kiz exp

( −η2(ki + 2q2z)z

2[k2
r + (ki + 2q2z)2]

)
. (23)

4Note that we are saying that the Bessel-Gauss beam’s diffraction
resistance is related to its ability to maintain its spot size, not its
intensity, which starts decreasing from the beginning even in a lossless
medium.
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Moreover, we note that Eq. (20) is a superposition of Bessel-
Gauss beams with different transverse wave numbers given
by (15). Each of the Bessel-Gauss terms in the superposition
possesses a different diffraction resistance distance and inten-
sity decreasing factor, according to (22) and (23). However,
the differences among these transverse wave numbers are, in
general, very small. This comes about because, in the context
of the paraxial approximation, the beam spot size has to be
much greater than the wavelength of operation, i.e., r0 � λ.
This condition implies that the value of the parameter Q will
be smaller, but still close to kr = nrω/c. This fact, along with
Eqs. (16), (18), and (19), allows us to affirm that

η−N − ηN

η0
� 1, (24)

i.e., there are just small differences among the 2N + 1
transversal wave numbers ηn of the Bessel-Gauss beams in
superposition (20). With this result at hand, we can say that
the diffraction resistance distances and the intensity decreasing
factor of all Bessel-Gauss beams in superposition (20) are
determined, approximately, by

Z ≈ kr

qη0
(25)

and

G(z) ≈ e−kiz exp

(
−η2

0(ki + 2q2z)z

2
[
k2
r + (ki + 2q2z)2

]
)

. (26)

Equations (25) and (26) are important results as will be seen
in the following discussions.

Finally, we achieve the goal of obtaining finite power,
analytical, FW solutions without spatial periodicity along
the direction of propagation by implementing the five steps
listed below. The required changes for coefficients An and the
suitable redefinition of F (z) and its domain are introduced and
discussed in the second and fifth steps.

Step 1. We assume a FW solution of the form Eq. (20).
Step 2. Once the desired intensity pattern |F (z)|2 is chosen

for a given longitudinal spatial range, we proceed to write such
a range as 0 � z � L/2. In addition, we extend the domain of
F (z) to 0 � z � L, demanding null values for this function in
the extended range L/2 < z � L.

Mathematically, we demand that �(ρ = ρ0,φ,z,t) ≈
|F (z)|2 within 0 � z � L, being

F (z) =
{
F (z) for 0 � z � L/2,

0 in L/2 < z � L.
(27)

The added region L/2 < z � L ensures that F (z) has small
values in that range, while to further ensure very low intensity
for z > L, it is necessary to choose a suitable value for the
parameter q, as discussed in step 4.

Step 3. The values of the transverse and longitudinal
wave numbers, ηn and ζn, are given by Eqs. (16) and (18),
respectively. The value of Q can be obtained from Eq. (8)
or (9), depending on whether we wish to model the beam
patterns on the z axis or on the surface of the axial cylinder,
respectively. The maximum value of N , which defines the
maximum number of terms (2N + 1) in the superposition (20),
can be obtained from (19). Of course, one is not obligated to
use the maximum value of the N , but just enough to obtain a
good result.

Step 4. The value of the parameter q is chosen according to

q = 2kr

L η0
. (28)

This choice for q ensures that all Bessel-Gauss beams
in the superposition (20) arrive at z = L/2 keeping their
nondiffracting characteristics, even if suffering a decrease in
their intensities by a factor of approximately exp(kiL) exp(2).
At the same time, this choice ensures that at z = L the
intensities of the beams have decreased approximately by a
factor of exp(2kiL) exp(8), so that the resulting superposition
is vanishingly small for z > L.

Step 5. The new form of the coefficient An to be used in
superposition (20) is now given by

An = 1

L

∫ L

0

F (z)

G(z)
e−i 2π

L
nzdz. (29)

The reason for this change is the fact that by using the old form
[Eq. (6)] in (20) the resultant FW does not have the desired
pattern [|F (z)|2] in the range [0,L/2]. In fact, the pattern is
attenuated by the square of the second exponential term in
(26). In effect what we have done is a compensation scheme:
the new coefficients An in (29) result in a beam whose (on axis)
intensity is approximately |F (z)/G(z)|2 × |G(z)|2 = |F (z)|2,
which is the desired longitudinal intensity pattern.

Steps 1 through 5 discussed above can now be used to obtain
a finite-energy version of the FW solution. However, before
demonstrating this via an example, we would like to comment
on a useful simplification that can be used to evaluate (29).
Because of not so simple form of the G(z) in (26), integral
in Eq. (29) can be difficult to evaluate analytically. Of course,
one can always rely on numerical integration to calculate (29);
but since we have been working toward obtaining an analytical
FW solution with finite power, let us keep this character of the
solution by obtaining an approximate expression for (29).

For a medium with moderate absorption, i.e., kr � ki , and
assuming η0 � q � ki , and taking into account that in (29)
the contributions to the integral occur only within the range of
0 � z � L/2, it can be shown that

G(z) ≈ e−kiz exp

(−η2
0q

2z2

k2
r

)
. (30)

This implies that

G−1(z) ≈ ekiz exp

(
η2

0q
2z2

k2
r

)
= ekiz

∞∑
m=0

χm

m!
, (31)

where

χ = η2
0q

2z2

k2
r

. (32)

Integral in (29) can now be written as

An ≈ 1

L

∫ L

0

( ∞∑
m=0

χm

m!

)
ekizF (z) e−i 2π

L
nzdz. (33)

In conclusion, for a given intensity pattern |F (z)|2, if Eq. (6)
can be analytically evaluated, Eq. (33) can also be calculated
analytically.
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FIG. 3. (Color online) (a) Finite-energy FW with a step function longitudinal (on-axis) intensity pattern in the nonabsorbing medium and
its orthogonal projection in the detail. (b) The same beam within the longitudinal range 0 � z � 2L = 1.48 m, where we can see there is no
spatial (longitudinal) periodicity. (c) A finite-energy FW representing the desired diffraction- and attenuation-resistant beam in the absorbing
medium and the orthogonal projection in the detail. (d) The same beam within the longitudinal range 0 � z � 2L = 1.48 m.

In many situations it can occur that χ < 1 within the range
0 � z � L/2 and, in these cases, it is enough to consider just
a few terms of the power series in (33). In the following,
to illustrate the efficiency of this method, we apply it to the
example 1 of the first section.

A. Example

Example 3. We wish to use our solution (20) to obtain
two finite-energy diffraction- and attenuation-resistant beams,
one of them in a nonabsorbing medium with nref = nr = 2
and the other one in an absorbing medium with nref = nr +
ini = 2 + i 7.5 × 10−7, both beams at λ = c/f = 632.8 nm,
possessing the same spot size of radius r0 ≈ 9 μm and with
the same ladder-shaped longitudinal (on-axis) intensity pattern
within the range 0 � z � L/2 = 0.37 m, similar to that of
the first example of Sec. I, with negligible intensity in z >

L/2. Therefore, according to step 2, we demand that |�(ρ =
0,φ,z,t)|2 ≈ |F (z)|2 within 0 � z � L, being F (z) given in
this range by

F (z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for 0 � z < l1,
1 for l1 < z < l2,√
2 for l2 < z < l3,√
3 for l3 < z < l4,

0 for l4 < z � L/2,
0 for L/2 < z � L,

(34)

where l1 = 0.05 m, l2 = l1 + δz, l3 = l2 + δz, and
l4 = l3 + δz, with L = 2 × 0.37 m = 0.74 m and δz =
0.08 m.

Now, for both beams, we proceed to implement Steps 3,
4, and 5, obtaining ζn, ηn, Q, q, and An. We note that in this
example it is possible to obtain very good approximations for
the values of An through Eq. (33) by considering just four
terms in the series appearing in that integrand. We also note
that for both beams the maximum value to N is 210, and we
have chosen to use N = 60.

The resulting finite power FWs beam’s intensities are
shown in Fig. 3. Figures 3(a) and 3(b) show the case
of nonabsorbing medium considering different longitudinal
distances, 0 � z � L/2 = 0.37 m and 0 � z � 2L = 1.48 m,
respectively. We can see the diffraction-resistant beam with
the desired longitudinal intensity pattern occurring within the
chosen longitudinal range and, as desired, very low intensities
after it.

Figures 3(c) and 3(d) show the absorbing medium case,
considering different longitudinal distances, 0 � z � L/2 =
0.37 m and 0 � z � 2L = 1.48 m, respectively. We can
see that the desired diffraction- and attenuation-resistant
beam (carrying finite power) is obtained within the cho-
sen longitudinal range, with very low intensities after
it.

For a better visualization of the nondiffracting character of
both beams above, Fig. 4 shows a zoom-in on the orthogonal
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FIG. 4. (Color online) Zoom-in on the orthogonal projections of the beam’s intensities in the cases of (a) nonabsorbing medium and (b)
absorbing medium.

projections of their intensities on the plane (ρ, z). Figure 4(a)
corresponds to the nonabsorbing case and Fig. 4(b) to the
absorbing one.

The beams in the two media are very similar, showing the
high efficiency of the method.

At this point we wish to make some remarks about the limits
of the depth of field of these beams and their experimental
implementation.

With regard to the resistance to the diffraction effects (i.e.,
the maintenance of the spot radius r0), the method can provide
diffraction resistance distances arbitrarily greater than that of
the ordinary beams (krr

2
0 ) just by increasing the initial width

of the Gaussian apodization through an appropriate choice of
the parameter q via Eq. (28). Naturally this implies increasing
the energy and the size of the aperture required to generate the
desired beam.

The situation with relation to the attenuation (absorption)
is not so simple. It should be clear that the energy absorption
by the medium continues to occur normally, the difference is
that the present beams have a sophisticated initial transverse
field pattern capable of reconstructing their central cores till
a certain distance. This process demands energy and there is,
of course, a limitation on the depth of field of these beams.
According to the several cases we have studied, our method
can provide beams resistant to attenuation for distances 10 to
15 times the penetration depth (1/2ki) of an ordinary beam. For
distances longer than this, besides a greater energy demand,
eventually it occurs that the field intensity in the lateral regions
becomes even higher than that of the core, a nondesirable
effect.

Now, concerning the experimental generation of the
diffraction- and attenuation-resistant beams, one could use,
for instance, computer generated holograms (CGH) optically
reconstructed by Spatial Light Modulators (SLMs). This
technique was already used with success in [5,6] for the
generation of FWs in a nonabsorbing medium (air). More
specifically, with the analytical solution of the desired beam
in hand, the information about its amplitudes and phases
at the initial plane can be used to construct the complex
transmittance hologram function and perform the amplitude
CGH. In this case, the efficient generation of the beam

depends on the SLM resolution: the phase and amplitude
of the signal used to create the CGH should not change
significantly within spatial intervals of the order of the SLM
resolution.

V. CONCLUSIONS

In this paper we develop a method, based on suitable Bessel-
Gauss beam superposition, capable of providing finite-energy
versions of the Frozen Waves beams in material absorbing
media. From this approach, we can obtain diffraction- and
attenuation-resistant beams whose longitudinal intensity pat-
tern can be chosen a priori. This intensity pattern can be
concentrated over the z axis, with a beam of spot size r0,
or over a cylindrical surface of radius ρ0.

The method also guarantees a negligible field intensity after
the region where the desired field is localized, thus ensuring
finite-power flux to the resulting beam and eliminating, in the
case of lossless media, the undesirable problem of the periodic
field intensity of the original FWs.

The results here exposed are of theoretical interest, as
they allow the analytical description of finite energy and
spatially shaped diffraction- and attenuation-resistant beams,
showing how a base constituted of Bessel-Gauss beams can
be useful, and also of practical interest, as they facilitate
the predictions of the experiments aimed for generating such
beams, which can be useful in many applications, as in optical
tweezers, optical atom guiding, remote sensing, free space
optics communications, etc.

It is worth noting that we are currently involved in the
experimental verification of the present paper.
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[7] C. A. Dartora, K. Z. Nóbrega, A. Dartora, G. A. Vianad, H.
Tertuliano, and S. Filho, Study of Frozen Waves theory through
a continuous superposition of Bessel beams, Opt. Laser Technol.
39, 1370 (2007).

[8] J. C. Gutiérrez-Vega and M. A. Bandres, Helmholtz-Gauss
waves, J. Opt. Soc. Am. A 22, 289 (2005).

[9] M. Guizar-Sicairos and J. C. Gutiérrez-Vega, Propagation of
Helmholtz-Gauss beams in absorbing and gain media, J. Opt.
Soc. Am. A 23, 1994 (2006).

[10] A. P. Kiselev, New structures in paraxial Gaussian beams, Opt.
Spectrosc. (USSR) 96, 479 (2004).

[11] F. Gori and G. Guattari, Bessel-Gauss beams, Opt. Commun.
64, 491 (1987).

[12] D. N. Schimpf, J. Schulte, W. P. Putnam, and F. X. Kärtner,
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