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Nonlinear coupling in discrete optical waveguide arrays with quadratic nonlinearity
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We demonstrate nonlinear coupling in a discrete optical system. This is achieved in waveguide arrays with
quadratic nonlinearity, where the symmetries of the nonlinearly interacting waveguide modes are used to suppress
the usually dominating nonlinear effects within individual waveguides. We derive a mathematical model to
describe the nonlinear coupling in such waveguide arrays and show experimentally the profound effects of this
nonlinear coupling mechanism on second-harmonic generation.
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I. INTRODUCTION

Discrete models are routinely used in mathematical physics
to predict the behavior of complex physical systems. When
describing coherent physical processes in a discrete ap-
proximation, the system under investigation is split into
several coherent subsystems or oscillators. The state of the
system is described by the amplitudes of the eigenmodes
of these individual oscillators. Changes to the state of the
system happen due to either dissipation or energy exchange
between modes. Energy exchange may take place locally
between different modes of the individual oscillators or as
coupling between modes of different oscillators. In general,
both energy exchange channels can linearly or nonlinearly
depend on the mode amplitudes. The often assumed linearity
of such processes is just an approximation, valid only for
small mode amplitudes. In fact, many well-known discrete
models include also nonlinear effects, both as locally acting
nonlinearities as in the discrete nonlinear Schrodinger equation
[1] and as nonlinear coupling. Discrete models with nonlinear
coupling include the Fermi-Pasta-Ulam chain [2], used in
the first numerical experiment to calculate the motion of
a string, and the Ablowitz-Ladik equation [3], which was
heavily investigated in mathematical physics for its richness
of interesting solutions.

The simple principles of the discrete approximation allow
us to describe different physical settings with very similar
mathematical models. In recent years, this mathematical
similarity has been used to experimentally study otherwise
inaccessible systems by investigating more easily accessible
model systems. Optical waveguide arrays (WGAs) [4] are
a discrete model system with great experimental flexibility
due to their geometric variability [5] and the precision
in preparing the system as well as the excitation states.
Utilizing linear evanescent coupling between neighboring
waveguides in WGAs, they have been successfully employed
to model electron dynamics in one-dimensional [6,7] and two-
dimensional crystals [8,9]. Additionally, WGAs with a local
nonlinearity acting in each waveguide are a successful test bed
for the predictions made by the discrete nonlinear Schrodinger
equation. Most notably, discrete solitons with different dimen-
sionality have been observed experimentally [10-12].
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Despite the fact that nonlinear coupling in discrete systems
was heavily investigated theoretically [13] and a plethora
of interesting phenomena has been described, e.g., solitons
[14-16] and breathers [17] as well as their dynamics [18,19]
and connections to energy transport in proteins [20], an
experimental realization had been missing until now. Several
theoretical contributions investigated WGASs in nonlocal non-
linear media [21-23], where nonlinear interactions between
several waveguides are possible. These have been realized
experimentally in nematic liquid crystals [24,25]. However,
since the source of the nonlocality in these structures is the host
medium of the WGAs, they cannot be adequately described
with a discrete model.

Here we study nonlinear coupling in WGAs induced by
the evanescent overlap of waveguide modes with modes of
neighboring waveguides. Figure 1(a) shows a scheme of a
one-dimensional WGA as considered here. The transversely
periodic refractive index profile creating the waveguides is
indicated in black. In the discrete approximation, the guided
eigenmodes of each waveguide are considered separately
and we plot the electric-field profile of waveguide modes of
waveguides n and n 4+ 1 with the blue lines. The overlap
of the evanescent tails of the mode with the neighboring
waveguide and its guided modes enables linear coupling
between waveguide modes [26]. In nonlinear materials this
overlap will also trigger nonlinear interactions between modes
of neighboring waveguides. This nonlinear coupling has not
yet been investigated, since it naturally is much weaker than
local nonlinear interactions within each waveguide due to the
stronger fields in the waveguide core.

In this contribution we develop a strategy how nonlinear
coupling can be experimentally studied in discrete WGAs
with second-order or quadratic nonlinearity. This nonlinearity
enables parametric three-wave mixing. In particular, we con-
sider periodically poled WGAs made by titanium indiffusion
in lithium niobate [27]. Recently, it has been shown for such
WGAS that the use of higher-order waveguide modes enables
novel nonlinear effects [28,29]. These higher-order modes are
crucial for making the nonlinear coupling accessible experi-
mentally, as they allow us to suppress local nonlinear effects
by using their symmetries. We experimentally demonstrate
the profound consequences of nonlinear coupling on discrete
light propagation by studying second-harmonic generation
(SHG), where waveguide modes at the fundamental wave
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FIG. 1. (Color online) Scheme of the periodic refractive index
distribution defining a waveguide array (black) with a mode in one
waveguide (blue), showing the evanescent overlap of the electric field
of the mode with neighboring waveguides. (b) Interaction chart of
different possible nonlinear second-harmonic-generation processes in
a waveguide array with nearest-neighbor interaction. Blue rectangles
denote one of the fundamental wave modes and red squares the
second-harmonic mode. The labels in the individual diagrams denote
the coefficient used to describe the respective nonlinear interactions.

(FW) frequency interact with modes at the second-harmonic
(SH) frequency obeying St = 20V .

The remainder of this paper is structured in the following
way. In Sec. II we analyze theoretically the nonlinear coupling
in lithium niobate WGAs. In Secs. III and IV we describe
different aspects of our experimental results. Finally, in
Sec. V we summarize and discuss various applications of this
nonlinear coupling.

II. COUPLED-MODE EQUATIONS

We first develop a mathematical model to describe different
SHG interaction mechanisms in WGAs with nonlinear cou-
pling. We restrict our consideration to TM-polarized modes
with the main electric-field component along the y direction,
parallel to the ¢ axis of the Z-cut lithium niobate WGA
used. Considering nonlinear interactions between neighboring
waveguides allows for several different spatial positions of the
interacting FW and SH modes, which are schematically shown
in Fig. 1(b). Up to now, only the local case was investigated,
where both FW and the SH components are propagating in the
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same waveguide as shown in the left column of Fig. 1(b). The
strength of the local nonlinear interaction for TM-polarized
modes is quantified by the nonlinear overlap y [30]:

o0
f f xSV We g gy (1)

Here ¢ is the dielectric constant, X333 is the component of the
nonlinear tensor that couples TM-polarized electric fields of
FW and SH modes, Py is the normalization power of the guided
modes, and the e (x,y) with u € [FW,SH] are the electric-
field profiles of FW and SH modes in the nth waveguide,
respectively.

Spatial combinations of the FW and SH modes resulting
from nonlinear coupling are depicted in the two right columns
of Fig. 1(b). Here one of the three interacting modes stems
from a neighboring waveguide and overlaps with the others
just with their evanescent tails. The spatially displaced mode
can be either FW or SH and can be shifted to the left or right
neighboring waveguide, leading to the four different nonlinear
coefficients
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where the local field profiles e/, are the same in each waveguide
if a homogeneous WGA 1is assumed. Nonlinear interactions
with all three modes in different waveguides are also possible,
but will be neglected here since the interaction strength is
orders of magnitude weaker than the nonlinear coupling
coefficients derived above.

The considered lithium niobate WGAs are made by tita-
nium indiffusion and consist of waveguides with a transversely
symmetric waveguide profile where the refractive index obeys
n(xo + x,y) = n(xo — x,y) with respect to the center of
the waveguide x. Consequently, the waveguide modes are
either symmetric (even) el (xo +x y) = el (xo — x,y) or an-
tisymmetric (odd) e (xo + x,y) = —el (xo — x,y). Defining a
symmetry parameter S = 1(—1) for even (odd) SH modes in
this case allows us to reduce the number of nonlinear coupling
coefficients
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For SHG with equal FW modes as considered here, this
simplification is independent of the FW mode symmetry.

Utilizing the nonlinear coefficients described above, we
derive the following coupled-mode equations for the propaga-
tion of continuous-wave (cw) light in quadratically nonlinear
WGAs with nonlinear coupling (see the Appendix Al for
details):
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FIG. 2. (Color online) Electric-field profiles of the first-order
FWO0O0 (left) and first- and second-order SHOO and SHO1 modes for
a single waveguide of the waveguide array used in our experiments.
The dashed lines denote the symmetry axes at x = xo = 0.

Here the u) are the slowly varying amplitudes of FW and
SH modes in the nth waveguide, c* are the respective linear
coupling constants, a* are the loss coefficients, and Ap is the
phase mismatch between the interacting modes. The first terms
on the right-hand sides of the two equations (5) describe local
SHG in WGAs [28]. The terms in the square brackets appear
due to the nonlinear coupling.

To estimate the strength of the various nonlinear inter-
actions we numerically obtain mode profiles of FW and
SH modes of the WGA used in the experiments (see the
Appendix, A3 for details). Results for the electric field of
TM-polarized modes at wavelengths of 1500 nm (FW) and
750 nm (SH) are shown in Fig. 2. We find that the first-order
FW and SH modes FW00 and SHOO, respectively, are even.
The next-higher-order mode SHOI is odd. In general, a propa-
gating FW mode can interact simultaneously with several SH
modes [31], where the strength of the interaction is controlled
by the wavelength-dependent phase mismatches. Optimal
SHG efficiency with a certain SH mode can be achieved
for vanishing phase mismatch AB, which we experimentally
realize by selecting a suitable FW wavelength [32]. The
phase-matching wavelengths of SHG between the FW00 mode
and SHOO and SHO1 modes are around 1520 and 1500 nm
respectively. The period of our WGA sample is d = 12.5 pum,
leading to linear coupling constants of ¢F" = 360 m~! for the
FW and 5" = 154 m™! for the SHO1 mode. The SHOO mode
is not coupled due to its highly localized mode profile. Based
on the geometric parameters of the WGA and the simulated
mode profiles, we calculate the nonlinear coefficients defined
above for the respective phase-matching wavelengths, which
are summarized in Table I. For SHG with the even SHOO mode,
the local nonlinear coefficient is two orders of magnitude
larger than the nonlinear coupling coefficients. Hence, the local
contributions dominate the nonlinear interactions, resembling
the case that was intensively studied in the past. However,
for SHG with the SHO1 mode the local nonlinear coefficient

TABLE I. Local nonlinear coefficients and nonlinear coupling
coefficients for the interaction of the FW00 with the first two SH
modes SHOO and SHO1. The coefficients are calculated for the phase-
matching wavelengths given in the second column.

Mode Wavelength (nm) y (as/m) y1 (as/m) > (as/m)
SHO0 1520 22980 328 25
SHO1 1500 0 320 —78
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vanishes since the overlap (1) is always zero for odd SH
modes. This suppression of the local nonlinearity enables
the experimental observation of nearest-neighbor nonlinear
coupling.

We note that due to fabrication tolerances in realistic waveg-
uides, we cannot expect an absolutely symmetric refractive
index profile. Hence, a small residual local nonlinearity is
expected, but will be neglected in our simulations. This is
justified also by our experimental system; the used waveguides
made by titanium indiffusion are very symmetric, as will be
confirmed by our measurements.

In the following we discuss and experimentally demonstrate
two key features of the nonlinear coupling for the experimen-
tally accessible case of SHG with the FW00 and SHO1 modes
depicted in Fig. 2. These features are the dependence of the
generated SH on the FW beam symmetry and a nonlinear
anisotropy resulting from such a symmetry constraint.

III. SYMMETRY DEPENDENCE OF
SECOND-HARMONIC GENERATION

For SHG to the SHOI mode the generated SH fields in
the left- and right-hand nearest neighbors of a particular
waveguide n have a phase difference of = due the electric-
field profile of the SHOI mode. The symmetry parameter
is § = —1 and the nonlinear coupling terms in Eqs. (5)
are all differences between FW amplitudes residing in the
nearest neighbors of the considered waveguide. For an FW
beam exciting several waveguides, which is locally symmetric
around waveguide ny with ”5:11 = ui‘fil, no SH is generated
in ng since the contributions from the neighbor waveguides
interfere destructively. Furthermore, for FW beams with global
symmetry, where u," = u,"  for all n, SH generated at
equal distances from the center waveguide n( will destructively
interfere in ny. This leads to a complete absence of SH in the
central waveguide ny in this case.

We experimentally show the symmetry dependence of the
nonlinear coupling by investigating SHG in the SHO1 mode
with FWO00 excitation in only one waveguide. In this case,
the FW undergoes discrete diffraction [26]. The resulting
FW intensity distribution is symmetric with respect to the
excitation site for all propagation distances. In the WGA being
tested, the phase-matching wavelength to the SHOI mode
in a single waveguide is 1496.7 nm. For excitation of the
FWO00 mode in waveguide ny = 0, the measured SH output
intensity distribution, integrated over the vertical y direction,
is shown in Fig. 3(a) dependent on the FW wavelength. Since
different components of the FW angular spectrum are phase
matched at different wavelengths within the measurement
range [32], a complicated spatiospectral pattern arises. Owing
to the symmetric FW evolution, the measured SH intensity is
symmetric with respect to the input waveguide. Contrary to
our expectations, we find SH also in the excitation waveguide.

To determine the modal content of the generated SH we
investigate the two-dimensional SH intensity distributions.
Figure 3(b) shows an image of the SH intensity distribution for
an FW wavelength of 1496.7 nm, corresponding to the slice
indicated by the solid white line in Fig. 3(a). The mode profiles
measured in almost all waveguides resemble the two-peaked
intensity distribution of the SHOl mode, which can only be
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FIG. 3. (Color online) (a) Spatially resolved normalized SH out-
put power of the WGA for single-waveguide FW excitation in waveg-
uide 0 dependent on the FW wavelength. (b) Intensity distribution of
SH waveguide modes for FW excitation wavelength of 1496.7 nm.
The shown waveguides are indicated by the solid white line in (a).
(c) Normalized SH power at the same wavelength as in (b), as
indicated by the dotted white line in (a). Depicted are experimental
results [black (gray) lines] and simulation of SHG to the SHO1 mode
(black circles) and SHOO mode (gray diamonds).

generated in the presence of nonlinear coupling. However,
the mode in waveguide O is an SHOO mode with just a single
intensity maximum; no SHO1 is present. In Fig. 3(c) we plot the
SH power at the phase-matching wavelength, corresponding to
the dotted white line in Fig. 3(a), with the red line and compare
it with simulations. The power in the central waveguide, which
is carried by the SHOO mode, is shown by the light red line. Our
simulations take into account SHG to the SHOI mode using
Eqgs. (5) and to the SHOO mode using the usual coupled-mode
equations with local nonlinearity [31]. The simulation results
for the SHO1 mode (black circles) and for the SHOO mode
(gray diamonds) agree very well with the measurement. In
particular, the expected suppression of the SHO1 mode in the
central waveguide, a clear signature of the nonlinear coupling
underlying the generation of the SHO1 mode, is found in both
experiment and simulation. Additionally, the appearance of the
SHOO mode in only the central waveguide is also reproduced
by the simulations. Although strongly phase mismatched with
an expected phase-matching wavelength of around 1520 nm,
the SHOO mode is generated due to its large local nonlinear
coefficient. It is generated only in the central waveguide,
where the exciting FW power propagates only for a short
distance before being coupled to the neighboring waveguides
due to strong discrete diffraction. Thus, the interaction length
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between the FW00 and SHOO modes is on the order of only
one coupling length [33], leading to an effectively relaxed
phase-matching condition and enhanced generation efficiency.

IV. NONLINEAR ANISOTROPY

The dependence of nonlinear coupling on the FW beam
symmetry leads to an anisotropy of the nonlinear interaction
strength for SHG from FW discrete plane waves, which we
experimentally demonstrate in the following. Discrete plane
waves of the form u), (z) = w{(z) exp(ik/n + ik"z) are the
eigenmodes of the WGA with weak linear coupling. Here wj
are the plane-wave amplitudes, whereas «* and k* are the
transverse and longitudinal wave numbers, respectively. For
k™ = mm, m € 7Z,FW plane waves are locally (and globally)
symmetric with respect to all waveguides and nonlinear
coupling into the SHOl mode is completely suppressed.
However, for other transverse propagation constants, i.e.,
other propagation directions of the discrete plane waves,
this particular symmetry is lifted and SHG due to nonlinear
coupling is expected.

To investigate this anisotropy more rigorously, we derive
coupled-mode equations for the amplitudes of the plane waves
with nonlinear coupling and S = —1. To this end we insert the
definitions of the discrete plane waves into the coupled-mode
equations (5) and find a new set of coupled-mode equations
for the amplitudes of the plane waves. Under the assumption

of transverse phase matching 5% = 2«FV these are
0 W | i FW FW _  FW s FWe SH
igZWo iewg" = —wp” ypwy g
i SH 4 joSHySH _ ABwSH = _fW Fw?2 (6)
i—wy" + i wy wy = =g VowlWo -

0z
We find an effective nonlinear coefficient

ww (™) = iy sin(e™) = 2iyy sinc™Y), (7)

where the local nonlinearity y is neglected. As expected, the
strength of the nonlinear interaction between FW and SH
plane waves, which is mediated by the nonlinear coupling,
depends on the transverse wave number «*V. The imaginary
part of the effective nonlinear coefficient ypw is plotted in
Fig. 4(a), where we used the parameters of Table I for the FW00
and SHO1 modes. Indeed, the nonlinearity is O for transverse
wave numbers of 0 and £=7. The largest nonlinear interaction is
expected for k™ = % arccos[(y1 — vVy{ + 2¥4)/2y»], which
for the parameters used in Fig. 4 is about k™ = £0.467. The
nonlinear interaction strength ypw is purely imaginary and
hence SHG induces a phase shift of /2 to the SH wave with
respect to the FW.

We measured SHG to the SHO1 mode with a broad Gaussian
FWO0O0 excitation approximating a plane wave in the same
WGA as used before. To control the transverse wave number of
the FW beam, the excitation is tilted. The integrated SH power
generated in all waveguides dependent on FW transverse wave
number ¥V and FW wavelength is shown in Fig. 4(b). As
previously shown for SHG with local nonlinearity, the phase-
matching wavelength depends strongly on the FW transverse
wave number [32]. The expected phase-matching wavelength
of FW00 and SHO1 plane waves is indicated by the white

043832-4



NONLINEAR COUPLING IN DISCRETE OPTICAL ...

@F 1900

: ow) [as/m

—
S
(=
(=]

Im(y

—~
(=3
=~

1498

1496

wavelength [nm]

1494

(c)

0 L 1
-1 -0.5 0 0.5 1

SH power [arb.units]

transverse wave number k" [in units of 7]

FIG. 4. (Color online) (a) Imaginary part of the effective non-
linear coefficient for SHG of discrete plane waves. The interacting
modes are FW00 and SHO1 with the nonlinear coupling coefficients
of Table I. (b) Second-harmonic power dependent on FW transverse
wave number and FW wavelength for SHG of plane waves. The white
line indicates simulated phase-matching wavelengths to SHO1 plane
waves with 5% = 2™V, (¢) Normalized SH power integrated over
the wavelength range shown in (b). Depicted are experimental (red
circles) and simulation results (black line).

line and corresponds well to the measured power maxima.
Strong SH generation is found for wave numbers around the
expected maximum of the nonlinear coefficient. We compare
our measurement results, integrated over the investigated
wavelength range, with simulations of the coupled-mode
equations (5). The results agree very well and are plotted in
Fig. 4(c) with the red circles and a black line, respectively.
A measured residual SH at kW% =0 can be explained by
differences between the waveguides that break the symmetry
of the exciting FW wave, thus enabling SHG. The maximum
of the SH power in measurement and simulation appears
for transverse wave numbers of k™% ~ 0.557, slightly larger
than expected from the analytic expression of the effective
nonlinearity plotted in Fig. 4(a). This is due to experimental
shortcomings. In contrast to a spatially infinitely extended
plane wave, the experimental FW beam has a Gaussian shape
with a finite full width at half maximum of eight waveguides.
Hence, diffraction and spatial walkoff influence the efficiency
of SHG and lead to a shift of the efficiency maximum.

V. CONCLUSION

We described nonlinear coupling between nearest-neighbor
waveguides in discrete WGAs. We proposed to employ
mode symmetries to control local nonlinear effects in each

PHYSICAL REVIEW A 92, 043832 (2015)

waveguide, thus enabling experimental access to the nonlinear
coupling. Owing to the properties of our experimental system,
WGAs in lithium niobate, our description considered the
case of symmetric waveguides, where the modes are either
symmetric or antisymmetric. For waveguides with arbitrary
refractive index profiles a more general description using all
four nonlinear coupling coefficients is necessary. Designing
such waveguides would allow us to control the strengths of the
nonlinear coupling coefficients individually. Furthermore, in
this case local nonlinearities and nonlinear couplings could be
designed to have comparable strengths, allowing for the study
of their interplay.

In experiments measuring SHG from FWO0O0 to SHO1 modes
we were able to prove the action of the nonlinear coupling.
This embodies an experimental realization of a discrete system
with nonlinear coupling, similar to the often-used Ablowitz-
Ladik equation. By using cascading [34], nonlinear coupling
could also be studied in WGAs with an effective third-order
nonlinearity. We expect for such settings to support spatial
stationary states, the properties of which could be the topic of
further studies.

Specifically, we could experimentally show the predicted
dependence of SHG on the beam symmetry and the resulting
nonlinear anisotropy. Such symmetry dependence is not
known for SHG in WGAs with nonlinearities only within
the waveguides. The dependence of the generated SH on
the FW beam symmetry could find applications in nonlinear
signal analysis. It prohibits the generation of a SH from
spatially homogeneous FW signals, allowing for SHG only
at inhomogeneities in intensity or phase of the exciting beam.
As such, the nonlinear coupling could be used for all-optical
edge detection in propagating beams in a similar way as
vortex beams are used in microscopy for the discrimination
of inhomogeneities in imaged samples [35].

We believe that this nonlinear effect will be of interest
in many discrete systems where mode symmetries could be
used in nonlinear interactions. Examples may include the
generation of discrete solitons, photon pair generation with
spontaneous parametric down-conversion in waveguide arrays
[36], or even nonlinear effects in Bose-Einstein condensates
[37]. Furthermore, WGAs with such nonlinear coupling may
be used to simulate other yet unaccessible systems with
discrete nonlinear coupling, e.g., arrays of QED cavities [38]
or lattice gauge theories [39].
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APPENDIX

1. Derivation of coupled-mode equations and coefficients

To derive our discrete propagation equations (5) we closely
followed the standard approach described in Ref. [30] using
the reciprocity theorem. Here we explain only the parts of the
derivation concerning the nonlinear coupling. We start from

043832-5



SETZPFANDT, SOHLER, SCHIEK, AND PERTSCH

the master equation describing the dynamics of the amplitude
of a waveguide mode i under the action of a slowly varying
small perturbation AP,

N ke (—if"2),
zazu () = 4Po / / dx dy e (x,y)AP(r)e

(A1)
where e (x,y) describes the field profile of the mode n and g*
is its propagation constant along the propagation direction z.
Assuming SHG where the frequencies of the interacting fields
obey 03" = 20"V and TM polarization for all fields, we can
write the nonlinear polarization induced in the nth waveguide

by nonlinear interaction with its nearest neighbors as

PP(z) = oxin(2)

1
% ot pliB z—iolt) 4 o o
> | (Gueereens

' =FW,SH
n',n"=n—-1nn+1

1 W, W
X <§u“,,e“,,e(’5 ot 4 c.c.)]. (A2)

The z dependence of the susceptibility is due to the quasi-
phase-matching (QPM) grating of our samples, created by
periodic sign flipping of the nonlinear coefficient with period
Aqpm. We approximate the QPM grating by a cosine function,
the first order of its Fourier series. Insertion of Eq. (A2) in
Eq. (A1) leads us to the (nonlinear part of the) coupled-mode
equations (5), where we used the definitions of the nonlinear
coefficients (1)—(3), the phase mismatch Ag = 28V — gSH
27 / Agpm, and the normalization of the mode amplitude u, =
ii, exp(i AB).

2. Sample technology

The WGA used in the experiments was manufactured by
titanium indiffusion in congruent lithium niobate [27]. In the
indiffusion process, 7-um-wide stripes of titanium with a
thickness of 100 nm were indiffused for 8.5 h with a temper-
ature of 1333 K. The waveguides created in this process have
very low losses of @™ = 0.047 cm~! and &5 = 0.092 cm~!
To enable phase matching in the experimentally accessible
wavelength range, a quasi-phase-matching grating with an
average period A = 16.751 um was created by electric-field
poling of the whole sample after the indiffusion process.
The average period of the quasi-phase-matching grating was
synthesized by using a mixture of two different domain sizes.
The utilized WGA had a period of d = 12.5 um and a length
of 51 mm.

PHYSICAL REVIEW A 92, 043832 (2015)

3. Mode properties and coefficients

To obtain the properties of the modes and the linear and
nonlinear coupling constants used in Eq. (5) we numerically
calculated the mode profiles of the waveguides used. The
refractive index profile of the waveguides was described
by an analytical model for the diffusion of titanium in
the lithium niobate host material [40,41]. Necessary input
values are the diffusion process parameters given in the
preceding section and the diffusion constants D, = 4.5 um
and D, =5.78 um. Waveguide modes of isolated waveg-
uides with the thus-obtained refractive index profile are
calculated by the finite-element method. The nonlinear and
linear coupling coefficients were calculated by numerical
integration of the calculated modes and refractive index
profiles, respectively. To obtain such a coefficient with modes
in neighboring waveguides, one of the modes in the calculation
was numerically shifted by one WGA period. The calculated
nonlinear coefficients are given in Table I; the linear cou-
pling constants are ¢ =390 m~' and ¢SH = 154 m~!. To
double-check the simulations we experimentally deduced the
FWO0O coupling constant from diffraction patterns for single-
waveguide excitation, finding a value of ¢f% =360 m™~!,
which was used in the simulations together with the other
simulated values. The same deviation from the simulations
as for the linear FW coupling constant is expected also for
the other coefficients used, which does not influence our
conclusions.

4. Experimental methods

To generate SHG in WGAs, cw light from a wavelength-
tunable diode laser (TUNICS Reference) was coupled into the
waveguide array with a 10x microscope objective. To excite
discrete plane waves, the excitation beam was shaped by a
cylindrical lens with a focal length of 300 mm to obtain an
elliptical input beam with a horizontal (vertical) full width half
maximum diameter of 103(5) um, exciting eight waveguides
simultaneously. The transverse wave number of the FW input
was changed by laterally shifting the input beam in front of the
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