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Precision estimation of source dimensions from higher-order intensity correlations
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An important topic of interest in imaging is the construction of protocols that are not diffraction limited. This can
be achieved in a variety of ways, including classical superresolution techniques or quantum entanglement-based
protocols. Here, we consider superresolving imaging in the far field using higher-order intensity correlations. We
show that third- and fourth-order correlations can improve upon the first- and second-order correlations that are
traditionally used in classical optics and Hanbury Brown–Twiss-type experiments. The improvement is achieved
entirely by post-processing of the data. As a demonstrator, we simulate the far field intensity distribution of
a circular aperture that emits thermal light and use maximum likelihood estimation to determine the radius of
the aperture. We compare the achieved precision to the Cramér-Rao lower bound and find that the variance of
measurements for the third- and fourth-order correlation functions are indeed closer to the Cramér-Rao bound
than that of the second-order correlation function. The method presented here is general, and can be used for all
kinds of incoherent emitters, geometries, and types of noise.
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I. INTRODUCTION

Visualization of natural phenomena has played a central
role in the development of science and technology. Indeed,
the invention of the telescope shed light on the motion of
planets and stars and the conception of the microscope allowed
investigations into the ingredients of life at the microscopic
level. Historically, every time a new imaging technique was
introduced, science has leaped a step forward. Most recent
advances in imaging include exoplanet detection [1] and the
velocity measurement of molecular markers along DNA [2].
However, the wave nature of light dictates that there are
physical limits to the resolution of optical telescopes and
microscopes, as formulated by Abbe in 1873 [3]. In order
to see smaller details in microscopy we could illuminate
with light of shorter and shorter wavelengths, but this is not
always practical: Highly energetic light may destroy biological
samples, and in astronomy shorter wavelengths are increas-
ingly difficult to access. It is thus useful to find alternative
techniques to improve the resolution of imaging methods that
overcome the diffraction limit. Imaging techniques that yield
finer details than that dictated by the Abbe limit are referred
to as superresolving techniques. In microscopy techniques
such as photoactivated localized microscopy (PALM) [4],
stochastic optical reconstruction microscopy (STORM) [5], and
stimulated-emission depletion microscopy (STED) [6] achieve
superresolved images using fluorescent markers. These meth-
ods combine standard intensity measurements with nonlinear
effects or stochastical processes in combination with prior
information about the sample preparation and post-processing
to achieve the pursued goal of superresolution.

Alternatively, superresolving imaging may also be achieved
using higher-order intensity interferometry [7–9]. Hanbury
Brown and Twiss (HBT) in their seminal experiments demon-
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strated that the second-order intensity correlation function is
proportional to the Fourier transform of the intensity distribu-
tion of a thermal light source [10]. Measuring the intensity-
intensity correlations therefore provides a method to access the
spatial distribution of light emitters. The question then arises
how and to what extent higher-order intensity correlations can
be used to improve the resolution in imaging. Early proposals
using entangled N -photon states promised an increase in
resolution ∝ O(N ) [11]. Recent more practical multiphoton
correlation techniques achieve a similar scaling [7–9], relying
on the precise estimation of certain parameters. To ensure the
optimal performance of such techniques it is thus necessary
to obtain the best estimates possible. In this paper for the
first time rigorous estimation theory is used to demonstrate
how higher-order intensity correlation measurements can
yield a resolution improvement over conventional second-
order intensity interferometry. The general setup is shown in
Fig. 1. As a demonstrator we investigate a planar circular
source that emits spatially incoherent monochromatic thermal
light, which is recorded in the far field by n detectors at
r1, . . . ,rn. The recorded intensities are then correlated in
order to produce the nth-order intensity correlation function.
In this paper, we provide a general framework that allows
us to investigate intensity correlations of arbitrary order
and discuss the advantages and disadvantages with respect
to improved resolution produced by higher-order intensity
correlation measurements. We present a rigorous analysis
of the HBT setup, explicitly calculating the corresponding
likelihood function and Fisher information, allowing us to
determine the lowest possible variance in estimates of the
source. We also perform a maximum likelihood estimation,
enabling us to achieve this bound. An integral part of our
procedure is to treat unknown quantities as parameters to
be estimated, every unknown therefore increasing the size
of the estimation problem. We then demonstrate the method
with a concrete example, making use of simulated data, to
obtain precision estimates of the radius of a thermal source.
We also show how these results can be used to estimate
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FIG. 1. (a) Spatially incoherent, planar source S emitting into
the far field. The intensity measured at the positions r1, . . . ,rn

can be correlated to give the n-point intensity correlation function
G(n)(r1, . . . ,rn), which contains information about the geometry of
S. (b) Implementation simulated here: a circular aperture of radius
100 μm emits monochromatic thermal light with a wavelength of
633 nm, which is recorded with a CCD camera. The intensity
measured by the different pixels of the CCD can be correlated to
calculate G(n)(r1, . . . ,rn) as in (a). The task is to estimate the radius
of the aperture from G(n)(r1, . . . ,rn).

the dimensions of any source, regardless of its geometry or
its photon statistics, as long as the total photon number is
not deterministic (i.e., �n̂ > 0). For any such source, our
method allows us to calculate the Fisher information, providing
maximum likelihood estimates of the source dimensions via
the method of scoring. By explicitly calculating the Fisher
information for different correlation orders n, we then show
that in some instances the Fisher information increases with
correlation order. The exact relationship between the Fisher
information and the correlation order depends strongly on
the particular arrangement of the detectors and the source
geometry.

The idea of exploiting spatial intensity correlations of order
n > 2 to improve resolution has been suggested previously [7–
9,12–14]. In particular in the context of ghost imaging [15–19],
the idea of exploiting higher correlation orders has received
great attention [20–23]. However, to date there has not
been a rigorous theoretical approach to quantify the possible
enhancement in resolution when using higher-order correlation
measurements for HBT-type experiments. We provide that
explanation here and demonstrate its use. The effects of photon
losses are included in our model and we show that higher-order
correlations can continue to perform well, even in the presence
of loss.

The paper is organized as follows: In Sec. II we present
the theoretical model used to determine the higher-order
correlations of the intensity produced in the far field by the
investigated source. We present the exact mathematical ex-
pression for the corresponding nth-order intensity correlation
function and show that in the case of a thermal source it can
be written in terms of the permanent of the correlation matrix

involving the complex degree of coherence. In Sec. III we
present the theory of parameter estimation, which involves
the use of optimized estimators that take the measured data
to return optimal estimates of the parameters of interest. This
allows us to evaluate their performance by use of the Cramér-
Rao bound, expressed in terms of the Fisher information, i.e., it
enables us to derive an explicit expression for the lower bound
of the variance in the estimates of the considered source. In
Sec. IV we present an explicit protocol for obtaining the data of
an nth-order intensity correlation measurement, incorporating
statistical uncertainties as well as additional noise due to, e.g.,
the limited detection efficiency of the detectors. This enables us
to calculate the covariance matrix for the given problem, which
in turn gives access to the Fisher information, the Cramér-Rao
bound, and the maximum likelihood estimation procedure. In
Sec. V we present detailed numerical simulations for different
source geometries and calculate the Cramér-Rao bound for
the source dimension for different orders of the intensity
correlation function, taking into account two kinds of noise, a
constant noise factor at each detector and Gaussian distributed
noise due to detector losses. Finally, in Sec. VI we discuss our
results and present our conclusions.

II. N-POINT INTENSITY CORRELATION FUNCTIONS

We consider a semiplanar source S emitting monochromatic
spatially incoherent thermal radiation that is observed in the
far field. The setup is shown in Fig. 1(a). The second-order
intensity interference for experiments that measure the equal-
time two-point intensity correlation reads

G(2)(r1,r2) = 〈:Ê(−)(r1)Ê(+)(r1)Ê(−)(r2)Ê(+)(r2):〉
∝ 〈:â†(r1)â(r1)â†(r2)â(r2):〉, (1)

where E(±) are the positive and negative frequency parts of the
electric field, â(r) and â†(r) are the annihilation and creation
operators of the field at position r, : : denotes normal ordering,
and ri is the position of the ith detector in the far field.
When viewed in the far field of the source, interference fringes
can be observed in G(2)(r1,r2) under certain conditions [10].
However, we can also consider the equal-time n-point inten-
sity correlation G(n) ∝ 〈:∏n

i=1 â†(ri)â(ri):〉, as increasing the
correlation order n can lead to an increased visibility of the
interference fringes, suggesting we may be able to extract more
information from the higher correlation orders [8,24].

To obtain the higher-order intensity correlations we con-
sider the particular measurement scheme displayed in Fig. 2.
An array of pixels arranged along an axis parallel to the surface
of the source allows one to measure the intensity at a discrete
number of positions. The benefit of such a setup is that we can
capture a large amount of data in one frame. In this section we
establish the theoretical model of the intensity correlations to
any order; the estimation procedure will be discussed in detail
in Secs. III and IV.

To calculate the n-point intensity correlation we make use
of the optical equivalence theorem [25], which states that the
expectation of a normally ordered product of creation and
annihilation operators can be replaced by their left and right
eigenvalues, respectively, if the expectation is replaced by an
ensemble average weighted by the P representation of the
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FIG. 2. Measuring the higher-order intensity correlation functions with an array of pixels. (a) The second-order intensity correlation at
pixel xi = 7 is calculated as the correlation between the intensities at a fixed pixel s2 = 13 (shown as a darker pixel) and at the pixel xi = 7.
(b) and (c) The third-order correlation is defined using two detection schemes, namely via a single fixed pixel that is correlated twice (detection
scheme 1), or two fixed pixels (detection scheme 2). (d) and (e) The fourth-order intensity correlation is defined analogous to the third order.
The reference pixel separation d is a dimensionless number, and the center-to-center separation of adjacent pixels is taken as 5.3 μm throughout
the paper.

state. That is, mathematically, we can write

〈f (â†,â)〉 =
∫

P (α)f (α∗,α) d2α ≡ 〈f (α∗,α)〉P , (2)

where f is any normally ordered function of the creation and
annihilation operators, the first expectation is the quantum
mechanical average, and the subscript P on the second
expectation signifies that it is an ensemble average taken
with respect to the quasiprobability distribution P . With the
help of the optical equivalence theorem, the n-point intensity
correlation G(n)(r1, . . . ,rn) can thus be written as〈

:
∏n

i=1â
†(ri)â(ri):

〉 = 〈∏n
i=1α

∗(ri)α(ri)
〉
P
. (3)

Thermal light exhibits a Gaussian zero mean P representation.
We can therefore apply the Gaussian moment theorem [26] and
make the simplification,

〈∏n
i=1α

∗(ri)α(ri)
〉
P

=
∑
σ∈Sn

n∏
i=1

〈α∗(ri)α(rσ (i))〉, (4)

where Sn is the symmetric group containing all permutations
of the set {1, . . . ,n}. This allows us to write G(n) as

G(n)(r1, . . . ,rn) = |K|2n
∑
σ∈Sn

n∏
i=1

〈â†(ri)â(rσ (i))〉, (5)
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where we have defined Ê(+) = Kâ. We can make a further
simplification by introducing the complex degree of coherence,
defined as [26,27]

γ (r1,r2) = 〈â†(r1)â(r2)〉
[〈â†(r1)â(r1)〉〈â†(r2)â(r2)〉]1/2

. (6)

This allows us to write the n-point intensity correlation
function as

G(n)(r1, . . . ,rn) =
∑
σ∈Sn

n∏
i=1

〈â†(ri)â(ri)〉γ (ri ,rσ (i)), (7)

where we omitted the constant of proportionality K for brevity.
From this expression we see that the n-point correlation for
Gaussian light is equal to the permanent of a matrix �,

G(n)(r1, . . . ,rn) = Perm(�), (8)

where

�ij ≡ [〈â†(ri)â(ri)〉〈â†(rj )â(rj )〉]1/2γ (ri ,rj ). (9)

In general the permanent of a matrix is difficult to calculate.
Therefore, for larger n it is increasingly costly to calculate the
n-point correlations, this may be the main limiting factor for
the use of higher-order correlation functions in imaging.

The advantage of writing G(n)(r1, . . . ,rn) in terms of the
complex degree of coherence is that the complex degree of
coherence in the far field paraxial regime is given by the two-
dimensional Fourier transform of the intensity distribution of
the source [26]. This result is known as the van Cittert–Zernike
theorem [28,29]. We can therefore calculate the far field
intensity correlations of any order for any source geometry,
provided that we can determine the Fourier transform of the
intensity distribution.

As an example, consider a circular source of uniform
intensity and angular diameter ϑ = 2 tan−1(a/L) ≈ 2a/L

where a is the radius of the source and L is the distance from
the source to the observation plane. The far field complex
degree of coherence is the two-dimensional Fourier transform
of a circle with radius a [30],

γ (r1,r2) = 2J1
(

1
2ϑk|r1 − r2|

)
(

1
2ϑk|r1 − r2|

) , (10)

where J1 is the first-order Bessel function of the first kind and
k is the wave number. The n-point correlation function then
becomes

G(n)(r1, . . . ,rn) =
∑
σ∈Sn

n∏
i=1

〈â†(ri)â(ri)〉

× 2J1
(

1
2ϑk|ri − rσ (i)|

)
(

1
2ϑk|ri − rσ (i)|

) . (11)

Figure 3 shows the second-, third-, and fourth-order inten-
sity correlation functions for a uniform disk along a one-
dimensional detection device.

III. ESTIMATION THEORY

In the previous section we saw that intensity correlation
measurements in the far field depend on the parameters

FIG. 3. (Color online) The second- (dashed), third- (dotted), and
fourth-order (solid) intensity correlation functions of Eq. (11) as a
function of the separation between the scanning pixel r1 = x and the
reference pixels at s2 for the remaining arguments, with normalized
intensity 〈â†(ri)â(ri)〉 = 1 and ϑ = 5 × 10−4 rad. The width of the
curves is directly proportional to the angular diameter of the source
ϑ . The higher visibilities of G(3) and G(4) over G(2) suggest that
higher-order correlation functions may outperform regular Hanbury
Brown and Twiss estimation of the source diameter. In this paper, we
show rigorously using estimation theory that this can indeed be the
case and specify the conditions.

describing the source geometry. In this section we examine
how we can use these measurements to practically obtain
spatial information about the source. To this end we employ
parameter estimation theory, which involves the use of an
estimator θ̂ that takes the measured data x = (x1, . . . ,xM )
in M measurements (the pixels in the detector) and returns
estimates of the parameters of interest θ = (θ1, . . . ,θl). In order
to extract the spatial information in the most efficient way,
we can apply a maximum likelihood estimation procedure.
Maximum likelihood estimation relies on maximization of the
joint probability distribution of our data, and we therefore
need to characterize the probability distribution from which
the correlation functions are sampled [31].

Once we have determined the conditional probability
p(x|θ ) of obtaining the measurement outcomes x given the
values of the parameters θ = (θ1, . . . ,θl), we can determine
the performance of our estimates using the Cramér-Rao bound
(CRB). The CRB provides a lower bound for the variance of
our estimators in terms of the Fisher information matrix,

Var(θi) � [I(θ)]−1
ii , (12)

where the Fisher information matrix I(θ) is given by

[I(θ)]ij =
∑

x

p(x|θ)

(
∂ ln[p(x|θ)]

∂θi

)(
∂ ln[p(x|θ)]

∂θj

)
. (13)

Note that the sum over x may be an integral if the values of
xi form a continuum. In practice, intensity measurements in
modern optical detectors yield a digital signal with discrete
values.

The exact probability distribution p(x|θ ) of the correlation
functions will be a complicated expression depending on the
number of images N—not to be confused with the number
of pixels M in each image. However, since the measurements
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of the correlation functions are averages over a (preferably)
large data set, the central limit theorem dictates that these
measurements will be normally distributed [32]. Assuming
that we make N measurements of the correlation functions
at M discrete detector positions, the data will follow an M-
dimensional normal distribution:

p(x|θ) = exp
(− 1

2 (x − μ(θ))TC−1(θ)(x − μ(θ))
)

√
(2π )M |C(θ )|

, (14)

where μ is the tuple of expectation values of the distribution at
each of the sampling points: μT = (〈x1〉, . . . ,〈xM〉), T denotes
the transpose, and C is the covariance matrix between pairs of
measurements Cij = Cov(xi ,xj ) = 〈xixj 〉 − 〈xi〉〈xj 〉.

For a multivariate-normal distribution the elements of the
Fisher information matrix are given by [31]

[I(θ)]ij =
(

∂μ

∂θi

)T

C−1

(
∂μ

∂θj

)
+ 1

2
Tr

[
C−1 ∂C

∂θi

C−1 ∂C
∂θj

]

≡ [I1(θ)]ij + [I2(θ)]ij , (15)

where we define the first term (depending on μ) as [I1(θ)]ij ,
and the second term as [I2(θ )]ij . Since the optical field
exhibits strong transverse correlations in the detection plane,
the covariances will not be negligible, and we must therefore
explicitly evaluate these covariances in order to perform
maximum likelihood estimation. In the next section we explain
how the correlation functions are measured and incorporated
into the parameter estimation procedure.

Finally, in order to find the maximum likelihood estimate
we use an iterative method called scoring [31]. The process is
described by the recursion relation,

I(θ (k))θ (k+1) = I(θ (k))θ (k) + ∂ ln[p(x|θ)]

∂θ

∣∣∣∣
θ=θ (k)

, (16)

where θ (k) is the kth iteration of the parameters θ , and X|θ=θ (k)

denotes evaluation of the quantity X at the value θ = θ (k). In
order to begin the scoring algorithm we require an initial value
θ (0). Provided the initial value is sufficiently close to the actual
value, the algorithm should continue without difficulty. If no
prior knowledge exists about the parameters to be estimated,

approximate values can be obtained by simple methods (which
by no means achieve the CRB) that can then be used as the
initial values θ (0).

IV. MEASURING THE CORRELATION FUNCTIONS

For simplicity we suppress the y dependence in ri = (xi,yi)
and consider only the one-dimensional problem where a single
“moving” detector xi scans across a set of M discrete positions
x1, . . . ,xM and the remaining n − 1 detectors are kept fixed
(see Figs. 2(b)–2(e)]. We refer to the fixed detectors as the
reference pixels and write the reference pixel positions as
x2 = s2, . . . ,xn = sn. We distinguish between two detection
schemes, namely one where all reference pixels are identical
(scheme 1), and one where all reference pixels are different
(scheme 2). Taking N images means performing N inde-
pendent measurements of the intensity I (xi) at all pixels
xi = x1, . . . ,xM and calculating the sample average of the
intensity moments,

G(n)(x1, . . . ,xn) = 1

N

N∑
k=1

n∏
i=1

Ik(xi), (17)

where Ik(xi) is the kth measurement of the intensity at
position xi . Given the reference pixels {s2, . . . ,sn}, we can
abbreviate G(n)(xi,s2, . . . ,sn) ≡ G(n)(xi), and the data that
are used in the estimation procedure is then given by x =
(G(n)(x1), . . . ,G(n)(xM )). This is still quite a general descrip-
tion and includes, for example, the experimental arrangement
used in Ref. [8]. We use G(n) to denote a measurement of the
correlation function. This is not to be confused with the true
correlation function G(n) as given by Eq. (7). It is an important
distinction since the measured correlation G(n)(xi) is a random
variable due to the finite size of the sample N , whereas G(n)(xi)
is the expectation value of the correlation function, only in the
limit N → ∞ do the two coincide. The relation between the
standard statistical quantities and the correlation functions are
collated in Table I.

In addition to the statistical noise due to the finite sample
size N , any realizable detection scheme will introduce ad-
ditional noise into the measurements. One important source

TABLE I. Statistical quantities and their counterparts in the nth-order intensity correlation measurements. The random variable Xi is the
product of the intensity measurements at positions xi , s2, . . . ,sn, and the index i ∈ {1, . . . ,M} runs over all the detector positions (pixels).
After N measurements, we define a sample mean Xi that is itself a fluctuating quantity. This is not to be confused with the first moment 〈Xi〉,
which is not a random variable. Since the sample mean is an unbiased estimate of the first moment, the expectation value of the sample mean
is equal to the first moment. The covariance of any pair of sample averages is not equal to the covariance of the variables but N−1 times
the covariance. This quantifies the fact that taking more data (increasing N ) reduces the variation of the sample averages. As N → ∞ the
sample averages coincide with the expectation values and the Xi are no longer random variables. The first moment is only proportional to the
correlation function G(n) due to the efficiency factor in the measured intensity in Eq. (18).

Statistics nth-order intensity correlation measurements

Random variable Xi I (xi) I (s2) . . . I (sn)

kth measurement X
(k)
i Ik(xi) Ik(s2) . . . Ik(sn)

Sample mean Xi = 1
N

∑N

k=1 X
(k)
i G(n)(xi) = 1

N

∑N

k=1 Ik(xi)Ik(s2) . . . Ik(sn)

First moment 〈Xi〉 = 〈Xi〉 〈G(n)(xi)〉 = 〈I (xi) I (s2) . . . I (sn)〉 ∝ G(n)(xi,s2, . . . ,sn)

Covariance Cov (Xi,Xj ) = 1
N

Cov (Xi,Xj ) Cov (G(n)(xi),G(n)(xj )) = 1
N

Cov (I (xi) I (s2) . . . I (sn),I (xj ) I (s2) . . . I (sn))
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of noise is reduced detection efficiency of the pixels. Often
this is treated as a constant parameter η. However, when
calculating the intensity correlations we necessarily sample
the higher moments of the detector noise. It is therefore
important that we acknowledge the random nature of the
noise in order to correctly deduce its effects. Physically
we would expect the noise to be sharply peaked around some
constant value with some small but nonzero variance. We
would also expect the random noise to be independent across
the pixel array since the pixels themselves are independent.
We model this additional noise as uncorrelated, normally
distributed noise with mean and variance 〈η(xi)〉 = ν and
〈η(xi)2〉 − 〈η(xi)〉2 = ς2, respectively [33]. We can therefore
write

Ik(xi) = ηk(xi)Ĩk(xi), (18)

where Ĩk(xi) is the kth realization of the random intensity at
pixel xi as measured by an ideal detector, and ηk(xi) is the kth
realization of the noise at pixel xi . The expectation of G(n)(xi)
is then given by

μi = 〈G(n)(xi,s2 . . . ,sn)〉

= 1

N

N∑
k=1

〈Ik(x1)Ik(s2) . . . Ik(sn)〉

= 1

N

N∑
k=1

〈Ĩk(xi)Ĩk(s2) . . . Ĩk(sn)〉

× 〈ηk(xi)ηk(s2) . . . ηk(sn)〉, (19)

which is to be used in Eq. (14). We assume that the noise
and intensity are stationary random variables, so we can

immediately perform the sum removing the factor N−1.
The first factor in Eq. (19) is, by definition, the intensity
correlation 〈Ĩk(xi)Ĩk(s2) . . . Ĩk(sn)〉 = G(n)(x1,s2, . . . ,sn). The
second factor in Eq. (19) is in general some combination of
moments of the normal distribution characterized by ν and ς

(see Appendix).
As shown in Fig. 2(a), we calculate the two-point intensity

correlation G(2)(x,s2) between any pair of pixels (x,s2) as a
function of the position of the pixel at x and the stationary
position of the second pixel at s2. Note, however, that when
measuring a correlation function in this way the individual
data points that are calculated may not be independent: The
correlation between any pair of data points, e.g., G(2)(x1,s2)
and G(2)(x2,s2), depends on the correlations between all
the measured intensities Ik(x1), Ik(x2), and Ik(s2); since the
measurement relies on the statistical dependence of these
intensities, the resulting values of G(2)(x1,s2) and G(2)(x2,s2)
will not, in general, be statistically independent. The same
argument holds for higher-order correlations. In principle
it is possible to avoid correlations between the data points
altogether by taking each measurement in a completely
independent manner. Hanbury Brown and Twiss did just this in
their original experiments. However, the price paid for taking
data in such a way is a much greater total measurement time.
A more efficient way to collect the data would be to make use
of an array of detectors (usually pixels of a CCD camera) to
take all the measurements simultaneously. As long as we are
careful to take into account the correlations that arise in the
data when measured in this manner then we are free to use
this efficient method of data collection. In the following we
assume that the data are collected in such a way and are careful
to calculate the correlations in the data explicitly.

The elements of the covariance matrix in Eq. (14) are given
by

Cij ≡ Cov(G(n)(xi),G
(n)(xj )) = 〈G(n)(xi)G

(n)(xj )〉 − 〈G(n)(xi)〉〈G(n)(xj )〉

= 1

N2

N∑
k,l=1

〈Ik(xi)Ik(s2) . . . Ik(sn)Il(xj )Il(s2) . . . Il(sn)〉 − μiμj , (20)

where Cov denotes the covariance between the measured intensity correlations at pixel xi and xj . Since k and l label the individual
images that are statistically independent, we can split the sum into two parts:

Cij = 1

N2

⎛
⎜⎜⎜⎝

N∑
k=1

〈Ik(xi)Ik(s2) . . . Ik(sn)Ik(xj )Ik(s2) . . . Ik(sn)〉 +
N∑

k,l = 1
k �= l

〈Ik(xi)Ik(s2) . . . Ik(sn)〉〈Il(xj )Il(s2) . . . Il(sn)〉

⎞
⎟⎟⎟⎠ − μiμj .

(21)

Since we treat the intensities as stationary random variables, we can simply perform the sums over k and l to obtain

Cij = 1

N
(〈I (xi)I (xj )I (s2)2 . . . I (sn)2〉 − μiμj )

= 1

N

[
G(2n)(xi,xj ,s2,s2, . . . ,sn,sn)〈η(xi)η(xj )η(s2)η(s2) . . . η(sn)η(sn)〉 − μiμj

]
. (22)

We see that the covariances between our data G(n)(xi) and
G(n)(xj ) depend on correlation functions of order 2n. The

term 〈η(xi)η(xj )η(s2)η(s2) . . . η(sn)η(sn))〉 is evaluated in the
Appendix. We now have a complete characterization of the
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probability distribution p(x|θ ) and can therefore calculate
the Fisher information to determine the lower bound on the
variance of our estimates of θ via the CRB and can also perform
a maximum likelihood estimation procedure to estimate the
dimensions of the source. In the next section we present
numerical simulations of this estimation procedure.

V. NUMERICAL SIMULATIONS

To determine the performance of our estimates, we produce
simulations of the experiment shown in Fig. 1(b), where
a circular aperture of radius of a = 100 μm emits uniform
thermal light of wavelength λ = 633 nm. The complex degree
of coherence of such a source in the far field is given by
Eq. (10). To simulate the experiment we again make use of
the optical equivalence theorem and the P representation.
The P representation for thermal light takes the form of a
complex multivariate normal distribution. The simulation of
the experiment is then performed by sampling from a 2M-
dimensional normal distribution corresponding to the real and
imaginary parts of α(x1), . . . ,α(xM ), i.e., α(x) = a(x) + ib(x)
with covariances,

〈a(xi)a(xj )〉 = 〈b(xi)b(xj )〉 = 1
2 〈I 〉 γ (xi,xj ),

〈a(xi)b(xj )〉 = 0. (23)

Here we have assumed a uniform far field intensity distribution
of the thermal source, i.e., 〈I (xi)〉 = 〈I (xj )〉 ≡ 〈I 〉.

We include the effect of pixel noise by adding an additional
normal random variable to each of the intensities with
mean ν and variance ς2. The intensity correlations are then
calculated from the simulated field by means of Eq. (17),
which are in turn used to estimate the dimensions of the
source parameters. We require averaging over a large set of
data in order to apply the central limit theorem and treat
the data as normally distributed. Here the parameter 〈I 〉 is
also treated as an unknown parameter to be estimated. The
importance of this cannot be overstated: If we instead treat 〈I 〉
as a constant, any slight deviation from the exact value can
lead to catastrophic failure of the estimation procedure. It is
therefore imperative that the unknown parameter 〈I 〉 should
be treated as a nuisance parameter in order to perform the
maximum likelihood estimation. Although there appear to be
four unknown parameters: θ = (a,〈I 〉,ν,ς ), we will see in
Secs. V A and V B that we can often combine the parameters
〈I 〉 and ν into the new parameter 〈Ieff〉 = ν〈I 〉; ν and ς can be
combined into the new parameter χ = ν/ς . These represent
the effective intensity recorded by the detector in the presence
of inefficiencies characterized by 〈η〉 = ν and the ratio of the
average pixel inefficiencies to the standard deviation of the
inefficiencies.

Once we generated the simulated data from the 2M-
dimensional normal distribution described above and added
the noise, we estimated the parameters a, 〈Ieff〉, and χ based
on different orders of intensity correlations and the scoring
method. The maximum likelihood estimation procedure was
repeated 1000 times such that a statistical variance (�a)2

Sim for
the simulated data could be calculated, and we can compare
this to the lower bound on the variance (�a)2

CRB based on the

Cramér-Rao bound:

(�a)2
CRB � [I]−1

aa , (24)

where we now must find the inverse of the 3 × 3 Fisher
information matrix I. There are two main cases to consider.

A. Constant detector loss

First, we analyze the special case of a detection system
with constant loss for each pixel (i.e., ς = 0). For this
particular noise model, the choice of reference pixel positions
does not affect the noise terms in Eqs. (19)–(22), since
〈ηk(xi)ηk(s2) . . . ηk(sn)〉 = νn for all choices of reference
pixel positions. We find the choice s2 = s3 = · · · = sn ≡ s =
�M/2 to be of particular interest since it simply involves
taking powers of the measured intensity I (s)n−1, and it is the
central pixel on a one-dimensional CCD. This allows us to
compare the effects of the post-processing without the need
to consider complications regarding the exact placement of
the reference pixels, s2, . . . ,sn. The inherent simplicity of this
arrangement also allows us to calculate the correlations up to
arbitrary order since the correlation functions G(n) and G(2n)

take the compact forms,

G(n)(xi,s, . . . ,s) = 〈I 〉n(n − 1)![1 + (n − 1)|γ (xi,s)|2],

G(2n)(xi,xj ,s, . . . ,s)

= 〈I 〉2n(n − 2)!{1 + |γ (xi,xj )|2
+ (n − 2)[2Re(γ (xi,xj )γ (s,xi)γ (xj ,s))

+ |γ (xi,s)|2 + |γ (xj ,s)|2 + |γ (xi,s)|2|γ (xj ,s)|2]}.
(25)

We can therefore make the re-parametrization suggested
above, leaving us with the parameters θ = (a,〈Ieff〉) to esti-
mate. Figure 4(c) shows the Cramér-Rao lower bound on the
variance for our estimate of a for the four correlation functions
G(2) to G(5), and Fig. 4(d) shows the estimate of a with the
actual standard deviation �aSim. The numerical results are also
collated in Table II.

The best estimates of the spatial dimensions of the source
occur for n = 3, whereas the estimates get progressively
worse as the correlation order is increased beyond third
order. Therefore, to extract the maximum amount of spatial
information from our data, correlations of third order should
be used. We stress the importance of this finding as it requires
no additional measurements to be made other than those made
to measure G(2). Indeed, in principle it would even be possible
to use the data collected by Hanbury Brown and Twiss to
measure the angular diameter of Sirius [10] with improved
resolution. We also note that there is nothing in our treatment
that uniquely picks out the spatial correlation functions; in the
same manner we could equally discuss temporal correlations
(see, e.g., [9]). Interestingly, estimates of the effective intensity
〈Ieff〉 do not follow the same pattern as those for a. If we wish
to estimate 〈Ieff〉 the best performance is given by G(2), with
higher orders performing worse.
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(a) (c)

(b) (d)

FIG. 4. (Color online) Results of the numerical estimation of the
source diameter a (μm) and the corresponding variance (�a)2,
in comparison with the Cramér-Rao bound (CRB). Choosing the
reference pixels in a distributed manner as in Figs. 2(c) and 2(e)
leads to a CRB value of the variance as shown in (a), with the
estimate and standard deviation shown in (b). Here we have chosen a
detection efficiency ν = 0.5 with ς = 0.01. Due to the computational
complexity of the problem only correlation orders up to n = 4 have
been calculated. Choosing the central pixel as the reference pixel as
in Figs. 2(b) and 2(d) leads to a CRB value of the variance as shown
in (c), with the estimate and standard deviation shown in (d). This
configuration does not allow us to include the detector efficiency as
a random variable in the estimation procedure (see text for details).
For comparison, the numerical values in this figure are collated in
Tables II and III.

B. Detector loss as a random variable

Second, we demonstrate the effect of a small nonzero ς ,
representing a system with uncertainty in the detector loss
mechanism. The effect of this additional noise is shown
in Fig. 5, where we plot the variance of the estimator for
the second-order intensity correlation function against the
standard deviation ς . As expected, the addition of noise in
the detection process reduces the precision in our estimator.

In order to perform the estimation, first we must evaluate the
second term in Eq. (19), which is the nth moment of the noise
distribution. Having considered the case where all reference
pixels are the same in the previous section, we now restrict
ourselves to only considering cases where no two reference
pixel positions are the same, i.e., s2 �= s3 �= · · · �= sn, such

TABLE II. Results of the maximum likelihood estimation for the
correlation functions G(2) to G(5) and the Cramér-Rao lower bounds.
The estimation procedure was performed on 1000 simulated data sets.

n a (μm) (�a)2
Sim(μm2) (�a)2

CRB(μm2)

2 99.978 0.181 0.162
3 99.968 0.151 0.150
4 99.932 0.249 0.244
5 99.826 0.543 0.434

FIG. 5. (Color online) Variance (�a)2 of the estimator â for G(2)

against the standard deviation of the noise ς (dimensionless). Average
detector efficiencies ν = 0.2 (dashed), ν = 0.5 (dotted), and ν = 0.9
(solid).

that we can determine the effect of separating the reference
pixels. In this regime the nth moment of the noise distribution,
〈η(xi)η(s2) . . . η(sn)〉, is given by

〈ηk(xi)ηk(s2) . . . ηk(sn)〉 = νn + νn−2
n∑

j=2

δxisj
ς2

= νn

⎛
⎝1 +

n∑
j=2

δxisj
χ2

⎞
⎠. (26)

We therefore find it necessary to re-parametrize the problem
using the parameters θ = (a,〈Ieff〉,χ ) as mentioned above.
Eq. (26) represents an nth moment of the noise distribution,
and the Kronecker deltas arise from the independence of
the distribution for individual pixels. The 2nth moment of
the noise distribution appearing in Eq. (22) is calculated in
the Appendix.

In order to find the optimum position of the refer-
ence pixels, we define the dimensionless number d = |si −
si+1|, the separation between adjacent reference pixels, and
plot the standard deviation as a function of d. Figure 6
shows the standard deviation for G(2) to G(4) as a function
of d. Interestingly, the higher-order correlations outperform
G(2) only for some values of d. For G(3) we find that the
optimum positions correspond to separations where the two
reference pixels become uncorrelated. This occurs whenever
the complex degree of coherence between the two pixels
is approximately equal to zero. Since the complex degree
of coherence for the system is proportional to the Bessel
function J1, the optimum separations d correspond to the
zeros of this function. For G(4) the exact position of the
optimum is more complicated, due to the fact that the zeros
of J1 are not uniformly distributed. However, the optimum
positions are approximately located at the position where
adjacent reference pixels are uncorrelated from their nearest
neighbours. Table III shows the variance of the estimators
for the first three correlation functions as calculated from
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FIG. 6. (Color online) Standard deviation of the estimator â for
G(2) (dashed), G(3) (dotted), and G(4) (solid) as a function of reference
pixel separation d = |si − si+1| for detection scheme 2, given a
circular aperture of radius a = 100 μm. The gray vertical lines
correspond to the first and second zeros of the Bessel function J1.

the CRB and directly measured in the simulations. We see
that the measured variance in our estimators closely follows
that obtained from the CRB. The results of the maximum
likelihood estimation and the Cramér-Rao bound are given in
Table III.

Another interesting feature of Fig. 6 is the ability for G(4)

to outperform G(2), a feature that does not occur for fixed
reference pixels. This behavior is reminiscent of the “magic
angles” in Refs. [7,8], where the detectors had to be placed
at different specific positions (the magic angles) in order to
obtain the (n − 1)-fold increased sinusoidal modulation in the
scanning detector.

The exact relation between the variance of the estimators
and the correlation order also depends on the geometry of
the source. Figure 7 shows the dependence of the variance
as a function of the reference pixel separation for a slit of
width a = 200 μm. The complex degree of coherence for
such a geometry is given by the sinc function. Since the
zeros of the sinc function are uniformly distributed, it is
possible to achieve independence for all the reference pixels
simultaneously. Figure 7 shows that for the optimal choice of
d the estimator for G(4) outperforms G(2) and is about as good
as G(3).

TABLE III. Results of the maximum likelihood estimation for the
correlation functions G(2) to G(4) and the Cramér-Rao lower bounds,
with a reference pixel separation of d = 182 that corresponds to the
first zero of J1. The estimation procedure was performed on 1000
simulated data sets.

n a (μm) (�a)2
Sim(μm2) (�a)2

CRB(μm2)

2 99.976 0.194 0.175
3 99.980 0.126 0.123
4 99.957 0.169 0.157

FIG. 7. (Color online) Standard deviation of the estimator â for
G(2) (dashed), G(3) (dotted), and G(4) (solid) as a function of reference
pixel separation d = |si − si+1| for detection scheme 2, given a slit
of width a = 200 μm. The gray vertical lines correspond to the first
and second zeros of the sinc function.

VI. DISCUSSION AND CONCLUSIONS

We have discussed the exact role of higher-order intensity
correlations with respect to parameter estimation of the inten-
sity distribution of thermal sources, and demonstrated that it is
beneficial to post-process the data in such a way as to measure
intensity correlations of order n > 2. We have also shown
how the post-processing can be optimized with respect to the
placement of the reference pixels, in order to find the most
informative measurements. A major benefit of this method is
that it does not require particularly elaborate experimental
arrangements. Indeed, in certain circumstances it is even
possible to increase the precision simply by taking powers
of the measured intensities. Since we explicitly account for
correlations between the data points [see Eqs. (20)–(22)], all
the measurements can be made simultaneously, thus reducing
considerably the measurement time required to obtain the
data. While we have framed the discussion in the context of
detector pixels on a CCD camera, the same methods apply
to any array of field detectors, including telescopes. By fully
determining the probability distribution function (PDF) for
measurements of intensity correlation functions, including
the covariance matrix of the correlated data, we are able to
determine the Fisher information for such experiments. This
allows us to calculate the maximum achievable precision via
the Cramér-Rao bound and also to saturate that bound by
performing a maximum likelihood estimation.

The techniques presented here can in principle be used
to estimate the source dimensions of any object that emits
incoherent light, including quantum emitters. In many cases
the Gaussian moment theorem does not apply and extra care
must be taken in the calculation of the correlation functions
G(n)(x1,s2, . . . ,sn). As long as the measured intensity is a
random variable then the PDF for the data can be considered
again as a multivariate normal when averaged over many
measurements. Also, the estimated parameters need not be
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spatial parameters of the source: As long as the PDF depends
on the parameters to be estimated in a deterministic way our
procedure can be used to perform the estimation. The inclusion
of a realistic noise model allows the effect of detection noise
to be accounted for, thus allowing the estimation to proceed in
the presence of noise.

The experimental implementation of this procedure is not
exceedingly challenging, as it requires the same kind of
techniques as used in the original HBT experiment some 60
years ago. A number of critical points must be met though.
First, when measuring the intensity correlation functions,
the integration time of the detectors must be well below
the coherence time of the radiation to ensure that each
measurement captures a single longitudinal mode of the
radiation. In addition, the area of each detector (pixel) must
be much smaller than the coherence area of the source
such that a single pixel can be considered as measuring a
single transversal mode. This ensures that every detection
event samples no more than a single mode volume (i.e., the
speckle size). Second, our use of the central limit theorem
implies that we have to use a large data set that reduces
statistical uncertainties to a minimum and provides a good
signal-to-noise ratio. This is a well-known requirement for any
maximum likelihood estimation procedure. Third, we have
assumed uniform mean intensity across the entire CCD. In
practice this can be challenging as a natural source might have
a nonuniform intensity profile, or there might be additional
spurious interference effects at the detector (e.g., an etalon
effect due to the protective glass of a CCD camera). Finally,
we have assumed that the detector noise is uncorrelated, which
means that the pixel efficiencies can be considered random
and there is no cross-talk between the pixels. The latter two
requirements can in principle be included in the modeling of
the experiment, but this comes at the cost of a significantly
increased complexity of the correlation functions.

The ability of higher-order intensity correlations to display
more information than lower order correlations is often a
source of confusion. In fact, the original Hanbury Brown and
Twiss experiment caused great controversy, and its eventual
resolution heralded the beginning of quantum optics as a
mature discipline [34]. The improved estimation capability
is most clearly demonstrated when the reference pixels are
all the same s2 = s3 = · · · = sn. We can then take the output
of two photodetectors and simply by taking powers of one
of the outputs we can gain a more precise estimate of the
angular diameter of the source. We could understand this
increase in precision by comparing the measurements of
the first and second order correlation function as in the
original HBT experiment. Here we use the same set of data
when measuring the first-order correlation function, i.e., the
intensity distribution in the far field, as we use to measure the
second-order intensity correlation, and yet a measurement of
the intensity reveals almost no information about the source
since the intensity of a thermal source in the far field is constant
across x. In contrast, the second-order intensity correlation
function is highly dependent on x, which allows for a lensless
measurement and therefore a precise estimate of the angular
diameter of the source (see Fig. 3). When considered as another
method of post-processing the data, it is no more surprising
that higher-order correlations outperform the second-order

correlation than the second-order correlation outperforming
first-order intensity measurements.

Our method is rather general, and there is nothing in
our treatment that uniquely picks out the spatial correlation
functions, in the same manner we could equally discuss
temporal correlations. Future work will focus on (multimode)
squeezed light and single photon sources. Since all correlation
functions can be determined from the same data set, it would
be advantageous to combine all of the estimates achieved via
different n into a single estimate. In order to do this properly we
would need to know exactly how all of the individual estimates
are correlated to determine the appropriate weights for the
combined estimate and its error. The difficulty in determining
the correlation is in knowing how the maximum likelihood
estimation procedure affects the correlation, if at all. Once this
is known, it should be possible to determine the weights and
obtain the final estimate.

In conclusion, we found that higher-order correlation func-
tions can substantially improve estimation of the parameters
that characterize the geometry of an incoherent light source.
As long as the source and the detection system are properly
modelled, the procedure can be implemented with current
technology.
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APPENDIX: MOMENTS OF THE NOISE DISTRIBUTION

In this Appendix we evaluate the moments of the noise
distribution for the general case and for the case of a Gaussian
noise distribution as considered in Sec. IV. First, we need
to evaluate the term 〈η(xi)η(s2) . . . η(sn)〉 which appears in
Eq. (19). In Sec. V we calculated this term for the Gaussian
noise distribution; here we calculate it for the general case.
Denoting J1 = 〈η(s2)〉 . . . 〈η(sn)〉 and S = {s2, . . . ,sn} we find

〈η(xi)η(s2) . . . η(sn)〉 =
{〈η(xi)〉J1 if xi /∈ S

〈η(xi )2〉
〈η(xi )〉 J1 if xi ∈ S

, (A1)

if none of the reference pixels are equal, i.e., s2 �= s3 �= · · · �=
sn. If instead we use detection scheme 1, where all the reference
pixels are the same, we find

〈η(xi)η(s2)n−1〉 =
{

〈η(xi)〉J2 if xi �= s2

〈η(xi)n〉 if xi = s2
, (A2)

where J2 = 〈η(s2)n−1〉.
Now we evaluate the second term in Eq. (22),

〈η(xi)η(xj )η(s2)2 . . . η(sn)2〉. Since the noise is treated as un-
correlated between the pixels, the expectation value factorizes
into 〈η(xi)〉〈η(xj )〉〈η(s2)2〉 . . . 〈η(sn)2〉 if xi and xj are not
equal to each other or any of the positions s2, . . . ,sn. However,
more generally, the expression is more complicated. Denoting
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J3 = 〈η(s2)2〉 . . . 〈η(sn)2〉 we obtain

〈η(xi)η(xj )η(s2)2 . . . η(sn)2〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈η(xi )4〉
〈η(xi )2〉J3 = a if xi = xj ∈ S

〈η(xi)2〉J3 = b if xi = xj /∈ S

〈η(xi )3〉
〈η(xi )2〉

〈η(xj )3〉
〈η(xj )2〉J3 = c if xi �= xj ; xi,xj ∈ S

〈η(xi)〉〈η(xj )〉J3 = d if xi �= xj ; xi,xj /∈ S

〈η(xi )3〉
〈η(xi )2〉 〈η(xj )〉J3 = e if xi �= xj ; xi ∈ S; xj /∈ S

〈η(xi)〉 〈η(xj )3〉
〈η(xj )2〉J3 = f if xi �= xj ; xi /∈ S; xj ∈ S

, (A3)

and for detection scheme 1,

〈η(xi)η(xj )η(s2)2n−2〉 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈η(xi)4〉 if xi = xj = s2

〈η(xi)2〉J4 if xi = xj �= s2

〈η(xi)〉〈η(xj )〉J4 if xi �= xj ; xi �= s2; xj �= s2

〈η(xi)〉〈η(xj )2n−1〉 if xi �= xj = s2

〈η(xj )〉〈η(xi)2n−1〉 if xj �= xi = s2

, (A4)

where J4 = 〈η(s2)2n−2〉. For a general noise distribution, each term in these piecewise functions can be associated with a parameter
to be estimated. The use of a general noise distribution can therefore be incorporated in the theory but comes at the expense of a
greater number of estimation parameters. The benefit of using a Gaussian noise model is that there are only two additional noise
parameters corresponding to the first and second moments of the Gaussian distribution, or a combination of them as in Sec. V,
(ν, χ ).

To give a more visual presentation of the noise correlations, we can represent the resulting piecewise function, Eq. (A3), in
matrix form Mij = 〈η(xi)η(xj )η(s2)2 . . . η(sn)2〉,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b d d e d d d e . . .

d b d e d d d e . . .

d d b e d d d e . . .

e e e a e e e c . . .

d d d e b d d e . . .

d d d e d b d e . . .

d d d e d d b e . . .

e e e c e e e a . . .

...
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

where we have made use of the fact that f = e since the noise is assumed to be the same for all pixels.
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