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We present a perturbation technique to study the linear and nonlinear output characteristics of coherent photon
transport in a parity-time (PT )-symmetric double-microcavity system where one passive cavity contains a single
quantum emitter. It is found that (i) for the linear transmission of a low-power input probe field, the output spectra
of the proposed PT -symmetric system exhibit a single transparent resonance dip and two symmetric, strongly
amplifying sidebands, i.e., an inverted dipole-induced transparency; and (ii) for the nonlinear transmission of
the input probe field, giant optical third-order nonlinearities with high linear transmission rate and vanishing
nonlinear absorption can be achieved efficiently when the system parameters are tuned properly so that a
PT -symmetry phase transition occurs. The obtained results can be useful for quantum information processing,
quantum nondemolition measurements of photons, and optical signal processing.
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I. INTRODUCTION

In recent years, a special class of physical systems with a so-
called parity-time (PT ) symmetry has attracted considerable
interest due to its potential applications [1–4]. The notions of
PT symmetry are originally proposed within the framework
of quantum mechanics as an alternative criterion for a
non-Hermitian Hamiltonian that possesses a real eigenvalue
spectrum [1,2]. Up to now, thePT symmetry has been realized
experimentally in a variety of physical systems [5–18]. Due
to the equivalence between the mathematical frameworks of
quantum mechanics and optics, more recently, the photonic
system (e.g., two coupled cavities [10,14–16]) has become
an excellent platform for exploring the fundamentals of PT
symmetry and tailoring the light-matter interactions, with
non-Hermiticity denoted by optical gain and loss [10–18].
For the ideal PT -symmetric setting, the necessary condition
requires the balanced gain and loss so that the eigenvalues end
up on the real axis. These PT -symmetric systems can exhibit
some interesting, counterintuitive properties, especially at a
type of exceptional point (EP) in parameter space, where
pairs of eigenvalues collide and become complex [3,4].
Specifically, below the EP, PT -symmetric Hamiltonians can
be characterized by a real eigenvalue spectrum in spite of the
fact that they are non-Hermitian. This condition corresponds
to an unbroken PT symmetry. On the contrary, above the
EP, the spectrum ceases to be real and starts to become
complex. This condition corresponds to a spontaneously
broken PT symmetry. A phase transition from the unbroken-
PT symmetry to broken-PT symmetry appears when tuning
the parameter in the system Hamiltonian. As a result, the
corresponding optical modes can propagate preferentially
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in one desired spatial location or another, showing either
strong gain or loss [19–23]. The PT -symmetric physics
that follows from the above-mentioned unique properties has
enabled applications ranging from power oscillations violating
left-right symmetry [22,23], loss-induced or gain-induced
transparency [5,6], unidirectional invisibility [7–9], low-power
optical isolation [10–13], efficient photon or phonon lasing
[14–17], to ultralow-threshold optical chaos [18], etc.

On the other hand, an optical microcavity coupled to a
quantum emitter (QE) is an almost ideal cavity quantum
electrodynamics (QED) system for implementing a series of
important devices owing to its high-quality factor Q and small
mode volume V (see, e.g., the review of Refs. [24–27]).
As a natural extension of a single-cavity QED structure,
two or more coupled microcavities containing QEs have
been widely studied both theoretically and experimentally.
However, it should be pointed out that all of these previous
investigations were carried out with coupled passive cavities
without a PT -symmetric architecture (i.e., lossy cavities,
without optical gain). Recently, attention has also focused on
the realization and study of PT -symmetric optical systems
where one passive cavity is coupled to the other active
cavity (i.e., gain cavity) by manipulating the gain-to-loss ratio
[10,11,14–16]. It has been shown from these studies that in
the PT -symmetric system, introducing optical gain to one
of the two cavities can balance the passive loss of the other.
For instance, both Peng et al. [10] and Chang et al. [11],
respectively, realized remarkable PT -symmetric behaviors in
coupled whispering-gallery-mode (WGM) microresonators by
properly adjusting the gain in one active resonator and the loss
in the other passive resonator. Moreover, the field localization
in the passive resonator and an accompanied enhancement of
optical nonlinearity leading to nonreciprocal light transmission
are found in such an optical compound structure. Additionally,
Peng et al. [14], Feng et al. [15], and Hodaei et al. [16],
respectively, reported several types of novel single-mode laser

1050-2947/2015/92(4)/043830(9) 043830-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.043830


LI, ZHAN, DING, ZHANG, AND WU PHYSICAL REVIEW A 92, 043830 (2015)

behaviors by delicately manipulating the gain-to-loss ratio in
the PT -symmetric double cavity.

It is well known that direct interaction between single
photons cannot occur according to QED. Optical nonlinearity,
for example, via a single QE coupled to a driven cavity, enables
the photon-photon interaction. Thus, it is of great importance
to achieve high-degree optical nonlinearity at very low mean-
photon level, which lies at the heart of several proposals
for quantum information processing, quantum nondemolition
measurements of photons, optical signal processing [28,29],
and other areas. A variety of methods to generate the strong
nonlinear effects between photons have been put forward
through an optical passive cavity [30–39]. However, here the
dependence of light transmission and optical Kerr nonlinearity
on the PT symmetry in a passive-active double-microcavity
system via containing a single QE in the passive microcavity
is discussed. An important property of the proposed PT -
symmetric scheme for generating high transmission rates and
giant optical Kerr nonlinearities is very weak driving power.
Besides, the optical response for a weak external field works
in a low-Q cavity (total Q factor) where the coupling strength
between the two-level QE and the cavity is smaller than
the cavity decay rate which contains an intrinsic loss rate
and an external loss rate. These conditions allow a more
practical system parameter range for physical realization,
relaxing the requirements of Refs. [37–39]. Physically, the
PT -phase transition plays a key role in the field localization-
induced dynamical-intensity accumulation, giving rise to the
gain dependence of the linear transmission rates and the
enhancement of optical Kerr nonlinearities. By following
the cavity-scanning technique described in Ref. [40], it also
may provide a method to distinguish the PT -symmetric phase
and the PT -broken phase via the experimentally detectable
linear transmission spectrum or the Kerr-nonlinear coefficient.

This paper is organized as follows: In Sec. II, we describe a
physical model, i.e., a compound cavity-QED system with
PT symmetry. Using a perturbation technique, we derive
analytical expressions for the linear transmission coefficient
and third-order Kerr-nonlinear coefficient of the output field
in the weak-excitation approximation. In Sec. III, we discuss
linear transmission features by tuning the system parame-
ters and provide the corresponding physical explanation. In
Sec. IV, we study in detail optical nonlinearities under the
three different configurations (regimes): a passive single cavity
(non-PT -symmetric regime), coupled passive-passive double
cavity (non-PT -symmetric regime), and coupled passive-
active double cavity (unbroken PT -symmetric regime or
brokenPT -symmetric regime). We also discuss the influences
of the QE-cavity detuning and the QE decay rate on optical
nonlinearities. Finally, we conclude and give some remarks on
our work in Sec. V.

II. THEORETICAL MODEL, EQUATIONS OF MOTION,
AND ANALYTICAL SOLUTIONS

As illustrated schematically in Fig. 1, the hybrid system
is made up of two directly coupled single-mode cavities via
optical tunneling and a two-level QE (atom or atomlike). One
of the cavities is passive (i.e., loss), which is represented
by bosonic annihilation and creation operators (â1, â

†
1) with
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FIG. 1. (Color online) Schematic depiction of a PT -symmetric
device including the passive cavity-QED system (with cavity mode
â1 and QE transitions σ̂±) coupled to an active cavity â2, with a
tunneling strength J and a tunable gain-to-loss ratio κ1, κ2. The
passive cavity mode â1, which is driven by an external probe field Sin

with frequency ωp and amplitude Ep , is coupled to a QE (gray sphere)
with the QE-cavity coupling strength ga . The QE can be modeled as
a two-level quantum system. The gray sphere shows the energy-level
structure of the QE. Sout is the output of the driving laser field. See
text for more details.

resonance frequency ω1 and cavity decay rate κ1. The two-level
QE (a ground state |1〉 and an excited state |2〉) with transition
frequency ωe is placed in the first passive cavity, and the cavity
mode â1 is coupled to the |1〉 ⇔ |2〉 transition of QE with the
coupling strength ga (also called vacuum Rabi frequency).
We refer to this cavity coupled to the QE as the passive
cavity-QED system. The second cavity, denoted by bosonic
annihilation and creation operators (â2, â

†
2) with resonance

frequency ω2 = ω1 and cavity decay rate κ2, is active (i.e.,
gain) and is coupled to the first passive cavity owing to the
finite overlap of cavity photonic wave functions [10,14–16].
The photon-tunneling (or photon-hopping) strength J between
the two cavities can be efficiently modulated by the distance
between them. At the same time, an initial single-frequency,
continuous-wave (CW) classical input field, which we call the
probe field Sin(t) = Epe−iωpt with the carrier frequency ωp and
the amplitude Ep, is applied to coherently drive the first passive
cavity mode. The Hamiltonian of this composite system in the
presence of a driving probe field is given by

H = �ωeσ̂+σ̂− + �ω1â
†
1â1 + �ω2â

†
2â2 + i�ga(â1σ̂+ − â

†
1σ̂−)

+ �J (â†
1â2 + â

†
2â1) + i�

√
κe[Sin(t)â†

1 − S∗
in(t)â1], (1)

where the rotating-wave approximation (RWA) and the
electric-dipole approximation (EDA) have been made. In
Eq. (1) above, the first, second, and third terms account for the
energy of the uncoupled cavity-QE system. The fourth and fifth
terms describe the QE-cavity coupling and the cavity-cavity
coupling, respectively. The remaining term represents the
driving of the passive cavity by an external laser field. In
the derivation of the Hamiltonian, the energy of the QE
ground state |1〉 is set as zero for the sake of simplicity.
�ωe is the energy of the electronic state |2〉, that is to say,
ωe is the frequency of the QE’s optical transition between
the ground state |1〉 and the excited state |2〉. The symbol
σ̂− = |1〉〈2| (σ̂+ = |2〉〈1| = σ̂

†
−) stands for the descending

(ascending) Pauli operator of the QE. On the one hand,
the cavity intrinsic loss or gain rate κj (loss: κj > 0; gain:
κj < 0, j = 1,2) is related to the intrinsic quality factor Qj by
|κj | = ω0/Qj . Thus, (i) κ1 > 0, κ2 > 0 and (ii) κ1 > 0, κ2 < 0
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define, respectively, a passive-passive cavity-QED system and
a passive-active cavity-QED system. On the other hand, the
parameter κe is the coupling loss rate between the passive
cavity and the taper waveguide, related to the coupling quality
factor Qe by κe = ω0/Qe. Without loss of generality, above
we have assumed ga and J to be real numbers.

Via transforming the above Hamiltonian (1) into the
rotating frame at the frequency ωp of the probe laser
field by means of Hfree = �ωp(σ̂+σ̂− + â

†
1â1 + â

†
2â2), U (t) =

e−iHfreet/� = e−iωpt(σ̂+σ̂−+â
†
1 â1+â

†
2 â2), and Hrot = U †(t)HU (t) −

iU †(t) ∂U (t)
∂t

= U †(t)(H − Hfree)U (t), we can derive the result-
ing effective Hamiltonian as

Hrot = �(� + δ)σ̂+σ̂− + ��â
†
1â1 + ��â

†
2â2

+ i�ga(â1σ̂+ − â
†
1σ̂−) + �J (â†

1â2 + â
†
2â1)

+ i�
√

κe(Epâ
†
1 − E∗

pâ1), (2)

where � = ω0 − ωp (setting ω1 = ω2 = ω0) and δ = ωe −
ω0 are, respectively, the detunings of the cavity resonance
frequency ω0 from the probe laser ωp and the QE transition
frequency ωe from the cavity mode ω0. In the above, Ep is the
classical amplitude of the monochromatic driving laser field
propagating in the output waveguide, which is normalized to
a photon flux at the input of the cavity and directly related
to the power Pin propagating in the output waveguide by the

relationship |Ep| =
√

Pin
�ωp

.

Our analysis is based on the semiclassical Heisenberg-
Langevin equations that are derivable from the Hamiltonian
of Eq. (2). Including losses in both the cavity and QE, as well
as the cavity excitation, we apply the Heisenberg-Langevin
formalism to attain the Heisenberg-Langevin equations of
motion (setting the observable o = 〈ô〉, where ô is any
operator) together with the standard input-output relation
[41,42] as follows:

da1

dt
= −(i� + κ1/2 + κe/2)a1 − gaσ− − iJ a2 + √

κeEp,

(3)

da2

dt
= −(i� + κ2/2)a2 − iJ a1, (4)

dσz

dt
= −γs(σz + 1/2) + gaa

∗
1σ− + gaa1σ

∗
−, (5)

dσ−
dt

= −[i(� + δ) + γs/2]σ− − 2gaa1σz, (6)

Sout = Sin − √
κea1, (7)

with σz = (〈σ̂+σ̂−〉 − 〈σ̂−σ̂+〉)/2 being the half-population
difference between the excited state |2〉 and the ground state
|1〉. Equations (3) and (4) describe the dynamics of both passive
and active cavity modes. Equations (5) and (6) describe the
dynamics of the two-level QE. γs is the spontaneous decay
rate of the two-level QE. Here, the quantum correlations
of the photon electron have been safely neglected in the
semiclassical approximation, which is valid in the concerned
weak-coupling regime, i.e., ga < (κ1 + κe)/2 and by using a
classical low-power driving field [43,44].

Now, we will seek the steady-state solution of Eqs. (3)–(7)
in the weak-excitation approximation, where the intensity of
the cavity field is small because of the weak-probe driving.
In the weak-excitation limit, the perturbation approach can be
applied to both the cavity modes and the two-level QE, which
is introduced in terms of perturbation expansion as

a1 = λa
(1)
1 + λ2a

(2)
1 + λ3a

(3)
1 + · · · , (8)

a2 = λa
(1)
2 + λ2a

(2)
2 + λ3a

(3)
2 + · · · , (9)

σz = σ (0)
z + λσ (1)

z + λ2σ (2)
z + λ3σ (3)

z + · · · , (10)

σ− = σ
(0)
− + λσ

(1)
− + λ2σ

(2)
− + λ3σ

(3)
− + · · · , (11)

where λ is a continuously varying parameter ranging from zero
to unity. Our analysis works in the weak-excitation limit, where
the electron in the two-level QE is predominantly populated
in the initial ground state |1〉. In this situation, we directly
have the results σ (0)

z = −1/2 and σ
(0)
− = 0 for the zeroth-order

electronic operators. We substitute the above perturbation
expansion (8)–(11) into Eqs. (3)–(6) and keep the terms up
to the third order in the amplitude of the cavity field. Solving
them again can yield the following results for the amplitude of
the cavity field a1:

a
(1)
1 =

√
κed1

g2
a + d1d2

Ep, (12)

a
(2)
1 = 0, (13)

a
(3)
1 = 2g4

a

γs

(
g2

a + d1d2
)
(

1

d1
+ 1

d∗
1

) √
κed1

g2
a + d1d2

×
∣∣∣∣

√
κed1

g2
a + d1d2

∣∣∣∣
2

Ep|Ep|2, (14)

where d1 = i(� + δ) + γs/2 and d2 = i� + κ1/2 + κe/2 +

, with 
 = J 2

i�+κ2/2 originating from the coupling of the
second cavity. Obviously, the term d2 is closely dependent
on J and κ2. When J = 0, we have the result 
 = 0 and thus
the PT -symmetric arrangement reduces to a single passive
cavity structure. Since Ep is the input driving field, all of the
nonzero terms in Eqs. (12)–(14) are dependent on Ep.

By using the input-output relation (7), the transmission field
Sout can be obtained as follows:

Sout = Ep − √
κea

(1)
1 − √

κea
(3)
1

= χ (1)Ep − χ (3)|Ep|2Ep, (15)

with the respective coefficients χ (1) = 1 − κed1
g2

a+d1d2
and χ (3) =

2g4
aκ

2
e

γs (g2
a+d1d2) (

1
d1

+ 1
d∗

1
) d1
g2

a+d1d2
| d1
g2

a+d1d2
|2.

From the above expression (15), it is easy to see that Sout is
proportional to Ep and |Ep|2Ep, respectively. Therefore, such
an expression can correspondingly be an analogy to the linear
and third-order nonlinear polarization. The term Sout exhibits
the linear response and the Kerr-nonlinear response of the
coupled QE-cavity compound system to the input probe field.
Specifically, |χ (1)|2 stands for the normalized linear intensity
transmission rate of the PT -symmetric system, while the
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real part Re[χ (3)] corresponds to Kerr nonlinearity and the
imaginary part Im[χ (3)] corresponds to nonlinear absorption.
Note that when J = 0, the linear intensity transmission rate
|χ (1)|2 is reduced to some previous results about dipole-
induced transparency (DIT) [31,38,45]. From the definition in

[40], the Kerr-nonlinear coefficient is given by n2 = Re[χ (3)]
cε0

,
where c is the speed of light in vacuum and ε0 is the vacuum
permittivity. It is easy to find from Eq. (15) that the third-order
nonlinear optical effects exist due to the coherent QE-cavity
coupling. When ga = 0, we obtain the result χ (3) = 0.

Before proceeding, it should be pointed out that the present
coupled cavity-QED system possesses a PT -symmetric phase
transition from the PT -symmetric phase to the PT -broken
phase when the photon-tunneling strength J/κ1 (also called
photon-tunneling-to-loss ratio) or the gain κ2/κ1 (also called
gain-to-loss ratio) in the passive-active double cavity is
adjusted to pass through the EP, i.e., J = (κ1 + κe − κ2)/4
[10,11]. It is also shown that the threshold of symmetry
breaking depends solely on the relation between gain and/or
loss and optical tunneling. At the EP, the eigenstates and
the corresponding eigenvalues of the PT -symmetric system
coalesce. This standard PT -phase transition can significantly
influence the dynamics of the cavity-QED system. Diag-
onalizing the coefficient matrix of both Eqs. (3) and (4)
can approximatively obtain the threshold of the above EP
under the condition that the small EP shift induced by the
QE-cavity interaction is ignored, which is valid in the weak-
coupling regime [9,46]. For convenience, we scale the sys-
tem parameters with respect to the dissipation rate of the first
cavity κa in the following.

III. LINEAR TRANSMISSION FEATURES: DIT AND
INVERTED-DIT PROFILES

In Fig. 2, we plot the normalized linear transmission of
the weak-probe input field as a function of the detuning
�/κ1 (in units of κ1) between the cavity mode and the
weak-probe field for the three different arrangements: (i) a
passive single cavity (J/κ1 = 0), (ii) a passive-passive double
cavity (J/κ1 = 3, κ2/κ1 = 6), and (iii) a PT -symmetric (i.e.,
passive-active) double cavity (J/κ1 = 3, κ2/κ1 = −6). For the
case of a passive single cavity (J/κ1 = 0), the transmission
spectrum exhibits a conventional DIT profile, quantified by
a transparency window and two symmetric sideband dips
(see the blue dashed line in Fig. 2) [31,38,45]. Alternatively,
a transparency on-resonance peak appears at � = 0. This
transparency effect is quite analogous to that of the atomic elec-
tromagnetically induced transparency (EIT) system [47–50].
For the case of a passive-passive double cavity (J/κ1 = 3,
κ2/κ1 = 6), this system still features a DIT profile except that
two sideband dips become deeper and they are shifted towards
both sides (see the green dotted line of Fig. 2). For the case
of a PT -symmetric double cavity (J/κ1 = 3, κ2/κ1 = −6),
the transmission line shapes transit from a conventional
DIT profile to the inverted-DIT profile [6], quantified by a
single transparent resonance dip and two symmetric, strongly
amplifying sideband peaks (see the red solid line in Fig. 2).

In Fig. 3, we display the normalized linear transmission
characteristics of the weak-probe input field by changing the
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FIG. 2. (Color online) The linear transmission rate |χ (1)|2 of the
probe field as a function of the detuning �/κ1 for three different val-
ues of the set (J/κ1, κ2/κ1). Notice that when J = 0, corresponding to
a single passive cavity structure, we have 
 = 0, which is independent
of κ2. According to recent microcavity experiments [10,11,14], the
typical values of system parameters for the numerical results are
chosen as ga = 2κ1, κe = 5κ1, γs = 0.1κ1, and δ = 0, respectively.

values of the gain-to-loss ratio κ2/κ1 from the loss to the gain
in the second cavity, but with a fixed photon-tunneling strength
(J/κ1 = 3). As can be seen from Fig. 3(a), increasing the loss
in the second cavity from κ2/κ1 = 0 to κ2/κ1 = 6 results in
two deeper sidebands and a shallower on-resonance (� = 0)
transmission peak. When the gain (i.e., κ2/κ1 < 0) instead
of the loss (i.e., κ2/κ1 > 0) is introduced into the second cavity,
the transmission behaves as a transition from a conventional
DIT profile to an inverted-DIT profile. Increasing the gain in
the second cavity from κ2/κ1 = −2 to κ2/κ1 = −6 helps to
increase the heights of the two amplifying sideband peaks.
However, as the gain is increased further to a higher value
κ2/κ1 = −10, both of the sideband peaks are suppressed, as
shown in Fig. 3(b). This change is opposite to the observation
of monotonically increasing sideband peaks in the atomic EIT
system [47–50].

In what follows, we give the physical explanations of the
above linear transmission features in Figs. 2 and 3. Under
the condition of the fixed photon-tunneling strength J/κ1 = 3,
the system is in thePT -symmetric phase when −6 < κ2/κ1 <

0. However, when κ2/κ1 < −6, the system is pushed into
the PT -broken phase. So, for the case that −6 < κ2/κ1 < 0,
the provided gain compensates a portion of the losses, which
effectively reduces the loss in the system and hence increases
the value of the transmission |χ (1)|2. Increasing the gain above
the EP puts the system in the PT -broken phase, with a
localized net loss in the passive cavity, i.e., the field intensity
in the passive resonator is significantly decreased [6,10].
Correspondingly, this reduces the strength of the QE-cavity
interactions and hence diminishes the value of the transmission
|χ (1)|2. When κ2/κ1 > 0, the PT -symmetric system returns
to a passive-passive system. In the passive-passive system,
the intracavity field localization phenomenon cannot appear,
leading to a DIT profile.
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FIG. 3. (Color online) The linear transmission rate |χ (1)|2 of the
probe field as a function of the detuning �/κ1 for several different
values of the gain-to-loss ratio, around (a) the transient gain-loss point
κ2/κ1 = 0 and (b) the balanced gain-loss point κ2/κ1 = −6. Note that
for the ideal PT -symmetry optics, the necessary condition requires
that the gain in the active cavity equals the loss in the passive one (i.e.,
κ1 > 0, κe > 0, κ2 < 0, and κ1 + κe = −κ2), which is also called the
balanced gain and loss. The other system parameters are chosen as
ga = 2κ1, J = 3κ1, κe = 5κ1, γs = 0.1κ1, and δ = 0, respectively.

According to what has been analyzed in Figs. 2 and 3, we
observe that a notable feature of the PT -symmetric double-
cavity system is the emerging double-symmetric-sideband
peaks of optical amplification when the amount of gain
provided to the second cavity supersedes its loss and the
cavity becomes an active one. In order to explicitly show
the influence of the gain-to-loss ratio on both the DIT and
inverted-DIT spectra, in Fig. 4 we display the variation of
the transparency on-resonance peak from the passive-passive
double cavity and the amplifying double-sideband peaks
from the PT -symmetric (i.e., passive-active) double cavity
versus the gain-to-loss ratio κ2/κ1 in more detail. For a
passive-passive double cavity corresponding to κ2/κ1 > 0,
a single transparency on-resonance peak at � = 0 is kept
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FIG. 4. (Color online) Maximum linear transmission rate
|χ (1)|2max of the probe field vs the gain-to-loss ratio κ2/κ1. The
parameters are the same as in Fig. 3.

unchanged and is insensitive to the gain-to-loss ratio (see
blue solid circle in Fig. 4). For a PT -symmetric double
cavity corresponding to κ2/κ1 < 0, the two sideband peaks
are increased gradually when the gain in the second active
cavity is increased, but below the EP. Until the EP, the peaks
at both sidebands are maximized. Increasing the gain further
leads to the suppression of both of the sideband peaks (see
red solid circle in Fig. 4). These results are in good agreement
with the above discussions, as shown in Fig. 3.

On the other hand, in Fig. 4 we note that the reduction of
the transmission by increasing the gain provides a signature
of the PT -broken phase. Thus, it may offer a method to
distinguish the PT -symmetric phase and the PT -broken
phase via experimentally measuring the optical transmission
spectrum.

IV. GREATLY ENHANCED KERR NONLINEARITIES
INDUCED BY PT -SYMMETRY BREAKING

In this section, we focus our attention on the nonlinear
effects of the PT -symmetric system. Clearly, Eq. (15) is
actually a general solution which includes the cases for a
passive single cavity, a passive-passive double cavity, and a
PT -symmetric (i.e., passive-active) double cavity. There are
a large number of parameters that can be adjusted and the
corresponding results are given in Figs. 5–9.

Based on an analytical solution for the third-order suscepti-
bility χ (3) shown in Eq. (15), Fig. 5 presents the Kerr-nonlinear
coefficient Re[χ (3)] of the physical system as a function of
�/κ1 for the three possible configurations: (i) a passive single
cavity (J/κ1 = 0), (ii) a passive-passive double cavity (J/κ1 =
3, κ2/κ1 = 6), and (iii) a PT -symmetric (i.e., passive-active)
double cavity (J/κ1 = 3, κ2/κ1 = −6), respectively. It is
clearly seen from Fig. 5 that the value of the Kerr-nonlinear
coefficient can be dramatically modified by changing the
system parameters, e.g., the photon-tunneling strength J

and the gain κ2. Specifically, for an isolated passive cavity
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FIG. 5. (Color online) Kerr-nonlinear coefficient Re[χ (3)] of the
probe field vs the detuning �/κ1 for three different values of the set
(J/κ1, κ2/κ1). The other system parameters are the same as in Fig. 2.
Here and thereafter, the vertical axis Re[χ (3)] is in units of κ−1

1 .

(J/κ1 = 0), the Kerr-nonlinear coefficient features a single
on-resonance dip between two symmetric sideband peaks.
For a passive-passive double cavity (J/κ1 = 3, κ2/κ1 = 6), a
single on-resonance dip remains unchanged and two sideband
peaks are significantly suppressed. For a PT -symmetric
system, a single on-resonance dip still stays the same and
two sideband peaks are greatly enhanced. Consequently, the
comparison among the three cases can prove an enhanced
optical Kerr-nonlinear phenomenon in the PT -symmetric
system.

In Fig. 6, we plot the Kerr-nonlinear coefficient Re[χ (3)]
as a function of �/κ1 for a variety of the gain-to-loss
ratio κ2/κ1 when J/κ1 is fixed. Three regimes are clearly
identified in Figs. 6(a) and 6(b): (i) non-PT -symmetric
regime for κ2/κ1 > 0, (ii) unbrokenPT -symmetric regime for
−6 < κ2/κ1 < 0, and (iii) broken PT -symmetric regime for
κ2/κ1 < −6, respectively. It can be clearly seen that the Kerr-
nonlinear coefficient of the probe beam can be dramatically
modified by changing the gain-to-loss ratio κ2/κ1. The Kerr-
nonlinear coefficient is greatly enhanced when one tunes the
system parameters so that PT symmetry is broken, which
provides an alternative method to control nonlinear dynamics
with a PT -symmetric phase transition. Physically, this is
because, in the PT -symmetric phase, the photon-tunneling
effects characterized by J are stronger than the intracavity
localization effects characterized by (κ1 + κe − κ2)/4. In this
case, the weak intracavity field cannot induce enough strong
Kerr nonlinearity. On the contrary, in the PT -broken phase,
the field localization induces the dynamical accumulations
of the optical intensity in the first passive cavity [6,10],
corresponding to an increasing third-order Kerr nonlinearity
of the system.

In order to further verify the role of the PT -symmetric
phase transition, the dependence of the maximum value of
the Kerr-nonlinear coefficient Re[χ (3)]max versus the gain
κ2/κ1 (in units of κ1) in the second cavity is depicted in
Fig. 7. From the red circles in Fig. 7, it is clear that the
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FIG. 6. (Color online) Kerr-nonlinear coefficient Re[χ (3)] of the
probe field vs the detuning � for several different values of the
gain-to-loss ratio, around (a) the transient gain-loss point κ2/κ1 = 0
and (b) the balanced gain-loss point κ2/κ1 = −6. The parameters are
the same as in Fig. 3.

maximum values of the Kerr nonlinear coefficient can be
dramatically modified at certain probe frequency detunings
by changing the gain κ2/κ1 < 0 in the second cavity. The
maximum value of the Kerr-nonlinear coefficient is increased
gradually when the gain is increased until the PT symmetry
is broken. Then, the maximum value of the Kerr-nonlinear
coefficient is decreased quickly with further increasing the
gain. Note that when κ2/κ1 > 0, the PT -symmetric system
returns to a passive-passive system shown by the blue circles in
Fig. 7.

According to the above analysis, one can conclude that the
essence of greatly enhanced Kerr nonlinearities in the PT -
broken phase is a dynamical-intensity accumulation induced
by optical field localization [6,10]. Because strong intracav-
ity intensity can be accumulated during the PT transition
processes due to the effects of optical field localization, it
can induce enough large QE-cavity interactions, which is
responsible for giant Kerr nonlinearities.
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FIG. 7. (Color online) Maximum Kerr-nonlinear coefficient
Re[χ (3)]max of the probe field vs the gain-to-loss ratio κ2/κ1. The
parameters are the same as in Fig. 3.

For the purpose of comparison, in Fig. 8 we simultane-
ously plot the Kerr-nonlinear coefficient Re[χ (3)] (red solid
curve), the nonlinear absorption coefficient Im[χ (3)] (blue
dashed curve), and the linear transmission rate |χ (1)|2 (green
dash-dotted curve) of the weak-probe field as a function of
�/κ1 for the balanced gain-to-loss ratio κ2/κ1 = −6. From
Fig. 8, we find that the maximal Kerr-nonlinear coefficient
with vanishing nonlinear absorption and high transmission
rate can be obtained with the given practical system pa-
rameters. As a specific example, the points a → c → e
and b → d → f, standing, respectively, for maximum Kerr-
nonlinear coefficient → nonlinear absorption coefficient →
linear transmission rate, are clearly shown in Fig. 8. When the
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FIG. 8. (Color online) Kerr-nonlinear coefficient Re[χ (3)], non-
linear absorption coefficient Im[χ (3)], and linear transmission rate
|χ (1)|2 of the probe field as a function of the detuning �/κ1 for the
gain-to-loss ratio κ2/κ1 = −6. The other parameters are the same as
in Fig. 3.
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FIG. 9. (Color online) Maximum Kerr-nonlinear coefficient
Re[χ (3)]max of the probe field vs the detuning δ/κ1 for the gain-to-loss
ratio κ2/κ1 = −8. The other parameters are the same as in Fig. 3.

maximal Kerr nonlinearity is available in Fig. 8, correspond-
ingly, the nonlinear absorption disappears. At the same time,
six times larger than the input probe field can be transmitted
in the output waveguide, which are just what we desired. It is
well known that a large Kerr-nonlinear coefficient (i.e., index
of refraction) with small absorption is useful for dispersion
compensation in optical communication [51].

Finally, we turn to illustrate the influences of the detuning
δ (the QE’s transition frequency ωe from the cavity resonance
frequency ω0, i.e., δ = ωe − ω0) and the QE decay rate γs on
the Kerr-nonlinear coefficient. Figure 9 shows the numerically
calculated Re[χ (3)]max as a function of δ/κ1. We can see
that Re[χ (3)]max decreases rapidly with the increase of δ/κ1.
Physically, this is because the QE-cavity-induced interactions
become weakened under the change of the detuning δ. In
other words, in the existence of δ, the only consequence is
that the Kerr-nonlinear effect becomes less efficient. Similar
characteristics as in Fig. 9 can be observed with γs increasing
(not shown here due to the length limitation).

V. CONCLUSIONS

In conclusion, we have provided a detailed mean-field
analysis of the steady-state light transmission characteristics
and optical Kerr-nonlinear effects as a function of the system
parameters in a PT -symmetric structure, composed of a
passive loss microcavity and an active gain microcavity. In
contrast to the conventional DIT in two passive loss cavities
(a single transparency peak arising in the otherwise strong
absorptive spectral region), the linear transmission in this PT -
symmetric double cavity exhibits an inverted-DIT spectrum,
with a nonamplifying transparency dip between two strongly
amplifying transmission sideband peaks, providing an analog
of the all-optical inverted EIT. Moreover, we find that giant
Kerr nonlinearities with high linear transmission rate and
vanishing nonlinear absorption can be obtained efficiently
when the photon-tunneling-to-loss ratio or the gain-to-loss
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ratio is increased to reach a threshold of the symmetry-
breaking threshold, that is to say, thePT -symmetry phase tran-
sition occurs. The physical mechanism underlying this Kerr-
nonlinear enhancement is rooted in the localization-induced
dynamical-intensity accumulation [6,10]. The influences of the
detuning between the QE and cavity as well as the QE decay
rate on optical Kerr nonlinearities are also discussed. The
present work opens up avenues for the study of optical nonlin-
earities observable with low power light. Besides being of in-
terest in itself, optical nonlinearities can find extensive applica-
tions in the design of novel optoelectronicPT devices, such as
optical switching, optical memory, logic gates, etc. Conversely,
via experimentally measuring the optical transmission spec-
trum or Kerr-nonlinear coefficient, it also may offer a method
to distinguish the PT -symmetric phase and the PT -broken
phase.
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[17] H. Jing, Ş. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori,
Phys. Rev. Lett. 113, 053604 (2014).
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