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Stabilization of flat-mirror vertical-external-cavity surface-emitting lasers by spatiotemporal
modulation of the pump profile
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We propose and demonstrate theoretically that vertical-external-cavity surface-emitting lasers (VECSELs) with
external flat mirrors can be stabilized by applying a periodic spatiotemporal modulation of the pump current.
Such pump modulation is shown to suppress the pattern-forming instabilities (modulation instabilities), which
eventually results in stable beam emission. A modified Floquet linear stability analysis is used to characterize
the dynamics of the modulated system and to evaluate its stabilization performance. Stability maps identify the
regions in parameter space for complete and partial stabilization of VECSELs operating in different regimes
depending on the external-cavity length. In particular, the stabilization method is shown to operate most efficiently
in Class-A laser limit (for relatively long VECSEL resonators), while it becomes ineffective in Class-B laser
limit (for relatively short resonators). The stabilization effect is further confirmed through direct integration of
the dynamical equations.
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I. INTRODUCTION

Vertical-cavity semiconductor lasers are key sources of
coherent light, especially advantageous for their compact
size, high light conversion efficiency, and low lasing thresh-
old [1]. A common classification distinguishes between
few-micrometer-long vertical-cavity surface-emitting lasers
(VCSELs) and vertical-external-cavity surface-emitting lasers
(VECSELs), where an external cavity is used, with resonator
lengths typically ranging from millimeters to centimeters
[see Fig. 1(a)]. VCSELs usually suffer from dynamical
spatiotemporal instabilities, which imply chaotic oscillations
and result in poor spatial beam quality, even in the absence
of any external perturbation. This is primarily due to the
modulation instability (MI) arising from strong nonlinear
effects within the cavity [2,3] and due to the absence of any
intrinsic transverse mode selection mechanism. Moreover, the
nonlinear destabilizing effects such as self-focusing, filamen-
tation, and spatial hole burning are dramatically enhanced
with increasing pump power [4–6]. As a result, the output
power of these lasers is severely restricted, limiting their
applications. Current approaches for the stabilization of the
output beam’s spatial structure commonly rely on external
forcing techniques such as optical injection [7] and opti-
cal feedback in various configurations—spatially structured
feedback [8,9], and feedback from external cavities [10,11].
All these techniques reduce the main advantage of VCSEL
lasers—their compactness, and thus limit their applicability.

On the other hand, VECSELs solve the issues of transverse
mode control using an output spherical mirror that ensures
operation at the fundamental transverse mode [12]. However,
this technique strongly limits the size of the active region,
which is confined to the mode area in the center of the
device, limiting the possible output power. It also introduces
several disjoined elements and reduces the robustness and
compactness of the device. Moreover, long external resonators
and external feedback designs in these lasers lead to additional

unfavorable temporal effects such as linewidth broadening,
coherence collapse, and intensity noise enhancement [13,14].
The possibility to use a flat output mirror in VECSELs would
allow for the realization of relatively compact and robust
devices with higher output powers. However, the modulation
instability problem remains to be solved in this case. Therefore,
at present there is a need for finding alternative physical
mechanisms to eliminate MI in VCSELs and VECSELs.

Recently, a new idea was proposed to suppress MI in a
broad class of spatially extended nonlinear dynamical systems
[15], relying on the introduction of a simultaneous periodic
modulation in space and time. The applicability of this
method, and to stabilize and improve the beam quality of
light propagating in a broad area semiconductor amplifier, has
already been studied in Ref. [16].

Following Ref. [15], we propose to use a periodic spa-
tiotemporal modulation of the pump current in VECSELs to
achieve a suppression of the MI of the system, leading to
the stabilization of the output beam. We consider VECSELs
operating in three distinct regimes: Class-A laser regime,
where a centimeter-long cavity results in a photon lifetime,τp,
longer than the nonradiative carrier recombination time,τN ,
τN � τp; Class-B laser regime, with micrometer-long cavities
and shorter photon lifetimes,τN � τp; and an intermediate
laser regime with τN ≈ τp. The spatial field structures of all
three cases can be described by the same physical model [17],
due to the common nature of the active media. Relaxation
oscillations do not appear for the relatively long Class-A and
intermediate lasers, characterized by the values of relative
carrier relaxation rate γ = τp/τN ≈ 1–10. On the other hand,
few-micrometer-long VCSELs, with τp and τN of the order
of ps and ns, respectively, can be regarded as Class-B lasers
[18]. As a consequence, contrary to the case of VECSELs,
relaxation oscillations are inherent in VCSELs due to the
small aspect ratio γ ≈ 0.01. Semiconductor lasers in all the
above discussed limits exhibit chaotic oscillations due to
MI. Figures 1(b) and 1(c), respectively, depict the typical
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FIG. 1. (Color online) (a) Schematic diagram of a VECSEL with
a flat output coupler. (b) and (c) Snapshots of the numerically
calculated far and near field respectively. (d) Linear stability analysis
of the steady state. The curves indicate the main Lyapunov exponents
of the linearized system in dependence on the lateral perturbation
wave number for α = 1.5, θ = −1.5, C = 0.6, I0 = 1.9, d = 0.052,
and γ = 1.

simulated far- and near-field output intensity distributions,
showing chaotic optical patterns arising in dynamics.

The article is structured as follows. Section II introduces
the mathematical model used to describe VECSELs, i.e.,
the coupled field equations for the optical field and carrier
dynamics. Section III describes the modified Floquet linear
stability analysis used in the study. In Sec. IV, we present a
detailed analysis of VECSELs in intermediate regime (γ ≈ 1)
with a spatiotemporally modulated pump current. The results
of the stability analysis are presented along with the results
of the full numerical integration of the model equations.
We explore the parameter space and identify the regions
of different types of modulation instability. Sections V and
VI, present the analysis for Class-A and Class-B VECSELs,
respectively. Section VII explores the stability of the states
according to the two-dimensional spatial model, by direct
numerical integration of the model equations. Finally, Sec. VIII
summarizes our findings with concluding remarks on the
stabilization of considered three regimes of VECSELs.

II. MATHEMATICAL MODEL

For the description of both VECSELs and VCSELs, we
consider the well-established model proposed in Ref. [17].
The mean-field dynamics of the complex field amplitude, E,
and the carrier density,N , in the active region are determined
by the system of coupled paraxial equations:

∂tE = −[1 + iθ + 2C(iα − 1)(N − 1)]E + i∇2
⊥E, (1a)

∂tN = −γ [N − Ip + |E|2(N − 1)] + γ d∇2
⊥N, (1b)

where θ is the cavity detuning parameter, α is the linewidth
enhancement factor of the semiconductor, and γ = τp/τN is
the carrier decay rate, normalized to the photon relaxation

rate. The time, t , is normalized to the photon lifetime,
τp = 2Lc/vTc, which depends on the transmissivity factor, Tc,
velocity of light,v, and cavity length,Lc. The transverse spatial
coordinates (x,y) are normalized to

√
λ0Lc/2πTc, where λ0

is the central wavelength of the emission. The parameter
C represents the interaction between carriers and field, and
depends on the laser differential gain and the photon relaxation
rate. The transverse Laplacian operator,∇2

⊥, describes the
paraxial diffraction and carrier diffusion in the transverse
direction. The pump current, Ip, generates the carriers within
the active region, which diffuse in the transverse direction
according to the diffusion factor d. The interaction between
carriers and the electromagnetic field corresponds to either
absorption or stimulated emission depending on the sign of the
(N − 1) term in Eqs. (1a) and (1b). The linewidth enhancement
factor is a crucial parameter for semiconductor lasers. Note that
for usual semiconductors in amplifying regimes (N − 1) > 0,
the factor α > 0, which leads to self-focusing effects.

III. MODIFIED FLOQUET STABILITY ANALYSIS

In order to explore the instability for the usual unmodulated
VECSELs, we perform a standard linear stability analysis. For
simplicity, we assume here that the model equations (1) are
in one-dimensional (1D) space. We first calculate the space-
homogeneous stationary solution (E0, N0) of the system:
N0 = 1 + 1/2C and E0 = [(Ip − N0)/(N0 − 1)]1/2. Note that
the field generally contains the frequency and phase factors eiωt

and eiϕ , which can be eliminated by a suitable choice of the ref-
erence frequency or detuning, θ = −α, and an additional phase
shift of all optical field perturbations considered below. Next,
we add a small perturbation to the stationary state, E(x,t) =
E0 + e(t) cos(kxx) and N (x,t) = N0 + n(t) cos(kxx), where
|e/E0|,|n/N0| � 1, substitute these expressions into Eqs. (1),
omit the higher order terms with respect to e and n, and calcu-
late the eigenvalues of the resulting evolution equations. These
eigenvalues depend on the system parameters θ,C,α,γ,Ip,d

and on the transverse wave vector, kx . The dimension of the
evolution matrix is (3 × 3), and expressions for the eigenvalues
are explored numerically. The Lyapunov exponents which are
the real parts of the eigenvalue spectrum, λRe, are plotted in
Fig. 1(d). Such a spectrum is typical for a system showing
unstable chaotic behavior due to the growth of modulation
modes for the range of transverse wave numbers with λRe > 0.
The bandwidth of unstable growing modes ranges from zero
to the critical wave number: kc = √

2α(μ − 1)/μ, where
μ = 2C(Ip − 1) is the scaled pump parameter such that it turns
to 1 at the laser threshold [19]. For the parameters in Fig. 1, kc

is 0.47, which perfectly matches the calculated unstable region
of eigenvalue curves in Fig. 1(d). It is important to note that
the instability spectrum is essentially related to the dispersion
of the system [15], and the region of the unstable transverse
wave numbers determines the type of instability.

A periodic spatiotemporal modulation of the system can be
imposed in several ways. Here, we assume a modulation of the
pump current in the form

Ip = I0 + 4m cos(qxx) cos(�t), (2)

where m,qx , and � are the amplitude and the spatial and
temporal frequencies of the modulation, respectively. The
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modulations are on small space and fast time scales, satisfying
the conditions: |qx | � |kx | and |�| � |λ|, with kx and λ being
the typical transversal wave number and complex frequency
of the growing instabilities. The modulation amplitude, m,
is restricted to 4m < I0, in order to keep Ip positive at
every instant of time, t , and at each spatial position, x.
This restriction, however, can be in principle overcome by
considering special and unusual configurations of VECSELs,
e.g., containing an additional absorbing (unpumped) semicon-
ductor layer, a reverse biased p-n structure, or transversally
structured designs.

The 2π/� time- and 2π/qx space-periodic solution of
Eqs. (1) and (2) for pump-modulated VECSELs can be
expressed in terms of the spatiotemporal harmonics of the
modulation with the constant amplitudes—the so-called spa-
tiotemporal Bloch modes. For convenience, we regard such a
temporally and spatially periodic state as the stationary Bloch
mode solution. The resonance between the fundamental mode
and the harmonics of the modulation of the pump influences
the dispersion profile of the system. This resonance effect may
suppress or enhance particular lateral wave numbers resulting
in more or less stable perturbation modes of the system. The
resonance phenomenon is most pronounced when the ratio
between the temporal and square of the spatial modulation,
Q = �/q2

x , equals, or is close to, 1; so we define Q as
the resonance parameter. A detailed analysis is provided in
Refs. [15,20].

Next, we numerically investigate the stability of the
stationary Bloch mode solution of the 1D model with the
modulated pump, using a modified Floquet method, [15]. A
set of perturbations are introduced to the considered stationary
Bloch mode solution, and the model equations (1) and (2) are
integrated numerically over one temporal period, T = 2π/�.
This procedure allows us to construct the linear evolution
matrix of perturbations. The eigenvalues of the resulting
evolution matrix are the characteristic multipliers μk related
to the Floquet exponents λk by μk = exp(λkT ), and to the
Lyapunov exponents λk,Re which are the real parts of λk .
The sign of the Lyapunov exponents determines the stability
of the state, i.e., the exponential growth or decay of the
perturbation, for positive and negative values, respectively. The
state is modulationally stable only if all Lyapunov exponents
are nonpositive. In the following sections, we perform this
modified Floquet stability analysis for VECSELs in three
characteristic regimes.

IV. INTERMEDIATE VECSELs REGIME

In the case of millimeter-long optical cavities, the nor-
malized carrier decay rate is γ ≈ 1 and VECSELs operate
in a relaxation free laser regime. In the following analysis,
we show that in this regime, a periodic spatiotemporal
modulation of the pump current can completely stabilize
the VECSELs, for appropriate modulation amplitudes and
resonance parameters. We find that different sets of parameters
may lead to enhancement, partial suppression, or complete
suppression of the MI. The most representative cases showing
the complete suppression as well as different kinds of partial
suppression of instabilities are shown in Fig. 2. The red dashed

FIG. 2. (Color online) Spectra of the Lyapunov exponents for
1D modulated VECSELs in the intermediate regime as calculated
numerically using the modified Floquet procedure. The parameters
used are as in Fig. 1(d) with qx = 1.4. Solid lines display the different
branches of the Lyapunov exponents for a given parameter set (Q,m),
while the dashed line represents the largest Lyapunov exponent of
the nonmodulated case for comparison. Complete stabilization (a),
partial stabilization with remaining weak LW (b), and SW [(c),(d)]
instabilities.

curve in the figures represents the largest Lyapunov exponent
of the nonmodulated (unstabilized) case for comparison. The
case of complete stabilization is shown in Fig. 2(a), where
all Lyapunov exponents are nonpositive. In the case of partial
stabilization, the largest Lyapunov exponent for kx from a
limited interval is still positive, and weak MI is still present.
The spatial instabilities are generally classified [21] as long-
wavelength (LW) and short-wavelength (SW) modulation
instabilities depending on whether unstable patterns arise at
small kx wave numbers [see Fig. 2(b)] or at large wave numbers
[Figs. 2(c) and 2(d)].

In order to identify the regions of complete and partial
stabilization, we build a stability map in the parameter space
(Q,m) by color encoding the maximal Lyapunov exponent of
the linear evolution matrix, λRe, max = maxkx

λRe(kx), as shown
in Fig. 3(a). In fact, we identify two islands of stabilization in
(Q,m) space. One is located close to resonance Q ≈ 1, and
within the realistic limit of the modulation depth, 4m < I0 (see
white area in the middle of Fig. 3). The other island is far from
resonance, i.e., at Q ≈ 0.3, and for 4m > I0. The white areas
represent the regions of complete stabilization where all the
Lyapunov exponents are nonpositive, λRe(kx) � 0. The light
blue areas in the same stability map represent regions of partial
stabilization, where weak LW and SW instabilities remain. The
parameter sets for complete and partial stabilization discussed
in Fig. 2 are indicated in the map by solid dots (a)–(d). The
yellow areas in the map represent regions where we were not
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FIG. 3. (Color online) (a) Stability map for the largest Lyapunov
exponent λRe, max in the parameter space (Q,m). (b) Map of corre-
sponding dominant wave numbers kRe, max. The parameters used are
as in Fig. 1(d) with qx = 1.4. The limit for the modulation amplitude
of common VECSEL configurations (i.e., 4m < I0) is represented by
a horizontal red dashed line.

able to locate stationary Bloch mode solution. This region is
obviously excluded from the stability analysis.

In order to classify the bifurcations by crossing the
boundaries of the stability balloon we explored the remaining
weak instabilities: we built another map in the parameter space
(Q,m), for the dominant wave number kx, max, defined by
the relation λRe, max = λRe(kx, max) [see Fig. 3(b)]. The stable
region is thus surrounded by the areas of partial stability with
remaining LW and SW instabilities.

For the verification of the predictions of the modified Flo-
quet linear stability analysis, we explored the spatiotemporal
dynamics of the model by direct numerical integration of the
1D dynamical equations (1) and (2). The results are presented
in Fig. 4.

For the unmodulated case, a typical chaotic spatiotemporal
behavior is observed, as shown in Fig. 4(a). Note that the
range of unstable wave numbers on the spatial spectrum
[right column of Fig. 4(a)] approximately matches the region
of growing perturbations in the spectra of the Lyapunov
exponents from the stability analysis (red dashed curve in

FIG. 4. (Color online) Calculated dynamics of spatiotemporally
modulated VECSELs in intermediate regime according to the 1D
model (1) and (2). Temporal evolution of the field intensity (left) and
spatial spectrum (right). The parameters used are as in Fig. 1(d) with
qx = 1.4. The plots are for unmodulated (a) and modulated [(b)–(d)]
cases. Full stabilization is realized in (d). The small scale modulations
are filtered out for clearer representation. The insets in the left column
display zoomed-in views of the field intensity.

Fig. 2). On the other hand, we observe that for appropriate
pump modulation parameters, the chaotic dynamics is reduced
or eliminated, resulting in partial or complete stabilization
as shown in Figs. 4(b)–4(d). As expected, no modulation
modes appear in the spatial spectrum at complete stabilization
[see Fig. 4(d)]. Partial stabilization is shown in Figs. 4(b)
and 4(c), where the instabilities are only partially suppressed,
resulting in a narrower spatial spectrum upon propagation. The
remaining weak SW and LW instabilities eventually render
the dynamics chaotic after a long transient time, depending
on the magnitude and spectral width of the remaining instabil-
ities. For a clearer visualization of the spatiotemporal patterns,
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FIG. 5. (Color online) Stability map of modulated VECSELs in
intermediate regime as obtained from numerical integration. The
parameters used are as in Fig. 1(d) with qx = 1.4. The area outside
the yellow contour, but within the central blue region (indicated by
triangles) represents a bistable region. Symbols: direct numerical
simulations of the nonlinear system. Shaded area: stability region
derived from the modified Floquet analysis.

a magnified view of field dynamics is provided in the insets
of Fig. 4. We observe that the results obtained from direct
integration of the model perfectly agree with the modified
Floquet linear stability analysis.

For an extensive comparison of these results with the results
of the modified Floquet stability analysis, we analyze the
stability of the system at different points in the parameter
space (Q,m) by direct integration. The results are summarized
in Fig. 5. The system’s stability is determined by observing the
spatiotemporal dynamics and corresponding spatial spectrum.
We consider different parameter sets (Q,m) within the speci-
fied range, following the long-time dynamics of the modulated
system (typically an integration time of ∼25 000 units) from
the initial homogenous state, perturbed by weak random
δ-correlated-in-space perturbation. The stable and unstable
regimes obtained by numerical integration are indicated on
the map by a solid dot (•), and a cross (×), respectively.
The completely stable regions, the blue patches in Fig. 5,
as obtained from the modified Floquet stability analysis, are
shown in the map for comparison. Again, the stable points
(•) from the numerical integration confirm the stable regime
determined by stability analysis.

We have also found that within the blue shaded stabilization
region in Fig. 5 at least two different regimes are possible,
depending on the initial conditions: (i) the stable regime as pre-
dicted by modified Floquet analysis and (ii) turbulent regime.
To identify the bistable regimes we perform simulations of
Eqs. (1) and (2) for a fixed modulation amplitude m and
stepwise changing (increasing and decreasing) the parameter
Q. A comparison of the field dynamics for different directions
of sweep of parameter Q allows us to distinguish a uniquely
stable region delimited by the yellow curve and the bistable
region located within the blue shaded area but outside the

FIG. 6. (Color online) (a) Stability map for the largest Lyapunov
exponent λRe, max in the parameter space (Q,m) for Class-A VECSELs
with γ = 10 and qx = 1.8. Other parameters as in Fig. 1(d). Main
Lyapunov exponents (solid lines) for each particular parameter set, as
compared to the largest exponent (red dashed line) of the unmodulated
case. Complete and partial stabilization with remaining weak LW and
SW instabilities are shown in panels (b)–(d), respectively.

yellow curve. Here, depending on the initial conditions, the
calculated solution was attracted either by the stable stationary
Bloch mode solution, or by some chaotic attractor. Note
that bistability between different spatiotemporal dynamical
regimes is generally typical for an intermediate regime of
VECSELs, for instance as reported in rocked VCSELs in
Ref. [22].

V. CLASS-A VECSELs

Next, we investigate the stability of VECSELs in Class-A
limit. In this case, the normalized carrier decay rate reaches
γ ≈ 10, which is only possible in centimeter-long optical
cavities. This is compatible with the general conclusion that
unstable spatiotemporal dynamics are more pronounced for
Class-B lasers than for Class-A lasers [23]. We find that it is
easier to suppress MI in this case. We perform the numerical
stability analysis following the procedure as in Sec. IV and
explore the parameter space (Q,m) to determine the complete
and partial stabilization regions. The results are summarized in
Fig. 6(a). The stability region is slightly enhanced as compared
to the intermediate case of VECSELs. The spectra of the
Lyapunov exponents for the most representative points (b)–(d)
of the parameter space (Q,m) in Fig. 6, show either complete
or partial suppression of MI.
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Equations for Class-A lasers (γ ≈ 10) can be simplified
by adiabatically eliminating the population inversion. Partic-
ularly, for small field intensities, the model equations (1) can
be reduced to a single nonlinear field equation:

∂tE = −[1 + iθ + 2C(iα − 1)(Ip − 1)

× (1 − |E|2)]E + i2
⊥E, (3)

which is known as the complex Ginzburg-Landau equation
(CGLE). The complex potential of such CGLE is periodically
modulated due to the modulation of the pump current. In this
way, stabilization of modulated VECSELs in Class-A limit is
compatible to the stabilization of the modulated CGLE [15].
Different versions of the CGLE have been derived for Class-A
and Class-C laser models [24–26], in contrast to Class-B lasers
where the models are not reducible to a single equation of the
CGLE type [23,27].

VI. CLASS-B VECSELs

The analysis for short cavity Class-B VECSELs shows
that the stabilization of VECSELs in this regime is more
challenging. However, the results of the stability analysis
demonstrate that full stabilization is still possible in Class-B
lasers with cavity lengths down to ∼100 μm. We consider
a normalized carrier decay rate on the order of γ ≈ 0.1,
corresponding to the limiting case of a ∼100-μm-long cavity.
The complete suppression of MI can still be achieved for
this value of γ , by an appropriate choice of the modulation
parameters. In this case, higher modulation amplitudes are
required as compared to Class-A and intermediate VECSELs,
due to intrinsic relaxational dynamics. As shown in Fig. 7, the
stabilization region in parameter space is small as compared
to Class-A and intermediate VECSELs. We also note that
bistability is obtained in all stabilized regimes for Class-B
VECSELs (compare with Fig. 5).

VII. ANALYSIS IN 2D

Finally, we extend our analysis of VECSELs to the 2D case.
Here, the modulation of the pump current in two dimensions
is of the form

Ip = I0 + 4[mx cos(qxx) + my cos(qyy)] cos(�t), (4)

where mx,my are the modulation amplitudes along the x axis
and y axis and qx,qy are the corresponding spatial frequencies
of the modulation. Similar to the 1D case, the modulation
is also considered on small space and fast time scale, hence
satisfying the conditions |qx | � |kx |, |qy | � |ky |, and |�| �
|λ| where kx,ky , and λ are, respectively, the typical transverse
wave vectors along the x and y axis and the complex frequency
of the growing instability.

For the 2D case, we limit our analysis only to the direct
integration method, as the modified Floquet stability analysis
entails a higher complexity in two dimensions, which is beyond
the scope of this study. The typical results of numerical
integration are shown in Fig. 8.

The numerically calculated patterns represent the state of
the system after a long transient time (t ∼ 400). A snapshot

FIG. 7. (Color online) (a) Stability map for the largest Lyapunov
exponent λRe, max in the parameter space (Q,m) for Class-B VECSELs
with γ = 0.1 and qx = 1.0. Other parameters as in Fig. 1(d). The
other plots show the main Lyapunov exponents (solid lines) for
each particular parameter set, as compared to the largest exponent
(red dashed line) of the unmodulated case. Complete stabilization is
obtained in (b), partial stabilization with remaining weak LW and SW
instabilities in (c), and SW instability alone in (d).

of the chaotic patterns of the system for the unmodulated
case is shown in Fig. 8(a). The circular disk in the corre-
sponding spatial spectrum indicates the growth of instabilities
in the system. When modulation is introduced only in one
direction [see Fig. 8(b)] (i.e., mx 	= 0, my = 0), we observe,
as intuitively expected, the suppression of instabilities in that
particular direction only [see Fig. 8(b)]. It is evident from
the spatial spectrum that the circular disk is fragmented due
to the suppression of instabilities along the modulated axis
while the remaining instabilities along the vertical direction
generate the resultant partially chaotic pattern. Next, we
consider modulation with a square symmetry mx = my for
different modulation parameters. A partial stabilization of the
system is achieved for the amplitudes mx = my = 0.21 as
shown in Fig. 8(c). Here, a weak, slowly growing MI disrupts
the square symmetric pattern after a long time of propagation.
This weak instability is seen more clearly in the spectrum
of Fig. 8(c). For the modulation amplitude, mx = my = 0.15,
we observe complete stabilization of the system, as shown in
Fig. 8(d), where the square pattern remains stable even after a
long transient time. The general conclusion from 2D simula-
tions is that the stabilization studied in the 1D case works also
for 2D cases. The 2D modulation offers richer possibilities
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FIG. 8. (Color online) Numerically calculated snapshots of the
intensity distribution patterns after a long transient time (t ∼ 400)
for the 2D model, showing field intensity (left) and spatial spectrum
(right). The parameters are as in Fig. 1(d) and the size of integra-
tion window is 100 × 100. (a) Chaotic intensity distributions and
corresponding spectra for the unmodulated system. (b) Suppression
of MI only in the horizontal direction. (c) Partial stabilization in
both spatial directions for a weak square symmetric modulation
and (d) complete stabilization for a square symmetric modulation
of appropriate amplitude.

than the 1D case: different wave numbers of qx and qy can be
considered in the case of a rectangular modulation pattern; also
different geometries of modulations (hexagonal, octagonal,
etc.) can be considered. The detailed analysis of different 2D
modulation specifics is out of the scope of this article and
requires a separate study.

VIII. CONCLUSIONS

Summarizing, we theoretically analyze the stabilization of
flat-mirror VECSELs by a spatiotemporal modulation of the
pump current. Indeed, we show that the intercoupling of the
spatial and temporal modes of the modulation can suppress MI
in VECSELs. This effect can contribute to enhance the stability
of such lasers at higher powers and improve the spatial quality
of the output beam. By using a modified Floquet analysis
and direct integration methods, we calculate the MI free
operating regions, in parameter space, for VECSELs operating
in different regimes. We pay special attention to the case of
intermediate VECSELs, as the stabilization in this regime
is expected to have an important technological impact. We
show that Class-A VECSELs can also be efficiently stabilized,
thus making the proposed stabilization technique well suitable
for quantum dot VECSELs (which are characterized by
significantly large values of the carrier decay rate [28]).
Short cavity, Class-B laser VECSELs (and VCSELs) limit
the stabilization, since only lasers with length cavities down to
around 100 μm can be completely stabilized by the proposed
method.

Long cavity VECSELs are not compact light sources and
can therefore be stabilized by other means, such as by using
curved mirrors, as discussed in the Introduction. On the
contrary, we show that VECSELs of ∼1 mm cavity length,
referred to as the intermediate case throughout the article, can
be efficiently stabilized by the proposed method. Note that, in
this last case, no other regularization mechanisms (e.g., curved
mirrors) are applicable. The estimated frequency and period of
the modulation required for the stabilization of VECSELs in
such intermediate regimes are experimentally still achievable,
being on the order of 10 GHz and 100 μm, respectively.
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