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Circularly polarized high harmonics generated by a bicircular field from inert atomic gases in the p
state: A tool for exploring chirality-sensitive processes
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S-matrix theory of high-order harmonic generation (HHG) is generalized to multielectron atoms. In the
multielectron case the harmonic power is expressed via a coherent sum of the time-dependent dipoles, while
for the one-electron models a corresponding incoherent sum appears. This difference is important for the inert
atomic gases having a p ground state as used in a recent HHG experiment with a bicircular field [Nat. Photonics
9, 99 (2015)]. We investigate HHG by such a bicircular field, which consists of two coplanar counter-rotating
circularly polarized fields of frequency rω and sω. Selection rules for HHG by a bicircular field are analyzed
from the aspects of dynamical symmetry of the system, conservation of the projection of the angular momentum
on a fixed quantization axis, and the quantum number of the initial and final atomic ground states. A distinction
is made between the selection rules for atoms with closed [J. Phys. B 48, 171001 (2015)] and nonclosed
shells. An asymmetry in emission of the left- and right-circularly polarized harmonics is found and explained
by using a semiclassical model and the electron probability currents which are related to a nonzero magnetic
quantum number. This asymmetry can be important for the application of such harmonics to the exploration
of chirality-sensitive processes and for generation of elliptic or even circular attosecond pulse trains. Such
attosecond pulse trains are analyzed for longer wavelengths than in Opt. Lett. 40, 2381 (2015), and for various
field-component intensities.
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I. INTRODUCTION

High-order harmonics generated by a so-called bicircular
field have been shown to be a very interesting and useful tool.
This field consists of two coplanar counter-rotating circularly
polarized fields having different angular frequencies. It was
first considered in Refs. [1,2] and was analyzed in detail in
Refs. [3,4]. The harmonic-generation efficiency is surprisingly
high, only circularly polarized harmonics are generated, and
the temporal characteristics of the emitted harmonics are
unusual [5]. Very recently, high-order harmonic generation
(HHG) by a bicircular field has again attracted attention [6–10]
as a source of strong circularly polarized harmonics which
can be used for various applications. Angle-resolved electron-
energy spectra in strong-field ionization by a bicircular field
were analyzed in Ref. [11]. The three-lobed distribution in
these spectra has recently been confirmed experimentally [12].

In the previous theoretical investigations of HHG by a bicir-
cular field, a zero-range-potential model [2] and a hydrogen-
like-atom model [3–5] were used. For both models the atomic
ground state was the s state. However, in experiment [1,6,8],
multielectron noble-gas atoms with the p ground state were
used. For this case the above-mentioned theories should be
extended. Furthermore, a straightforward generalization of the
results obtained by using one-electron models, according to
which the nth harmonic power Pn is equal to an incoherent
sum over m of the harmonic powers Pn,m, which correspond
to the atomic state with a fixed magnetic quantum number m

(for the p state the orbital quantum number is l = 1 so that
m = 0, ± 1), is incorrect. The aim of the present paper is to
formulate a theory for an arbitrary (multielectron) ground state
and to explore consequences for HHG. We will fill the gap in
the present theories and show that, instead of the incoherent

sum, a coherent sum of the time-dependent dipoles should be
used. Our quantum-mechanical multielectron theory, based on
the S-matrix formalism, single-active-electron approximation,
and the strong-field approximation, is presented in Sec. II and
applied to the case of inert atomic gases in p states. The
selection rules for HHG by a bicircular field are derived in
Sec. III. An alternative derivation of the selection rules, based
on the dynamical symmetries, is presented in the appendix.
Section IV contains our numerical results, while a physical
explanation of the observed effects in terms of a semiclassical
model, which incorporates the electron probability currents, is
given in Sec. V. In Sec. VI we analyze the elliptically polarized
attosecond pulse trains for the longer wavelength and different
intensities than those used in Ref. [9]. Finally, our conclusions
and discussion are given in Sec. VII.

II. S-MATRIX THEORY OF HIGH-HARMONIC
GENERATION FOR MULTIELECTRON ATOMS

There are various theoretical approaches to HHG [13,14].
Physically, HHG is well described by the three-step
model [15]: in the first step the electron is ionized, then
it is driven back to the origin by the laser field, and,
finally, in the third step, the electron recombines to the
ground state and one high-energy photon is emitted. We
follow the S-matrix approach to HHG [13]. This theory was
formulated for one-electron systems, but can be generalized
to the N -electron atoms considered here, in the sense of
the time-dependent Hartree–Fock approximation [16]. The
initial and final atomic ground states are presented in the
form |�(t)〉 = ∏N

j=1 |ψj (t)〉 where |ψj (t)〉 are single-particle
orbitals. The S-matrix element for the HHG process with
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emission of a high harmonic having wave vector K, frequency
ωK, and complex unit polarization vector êK, for an N -electron
atom has the form

Sf i = i lim
t ′→∞

lim
t→−∞〈�f (t ′)|

∫
dt ′′G(+)(t ′,t ′′)

× cK

N∑
j=1

rj · ê∗
KG(+)(t ′′,t)|�i(t)〉. (1)

This is a straightforward generalization of Eq. (196) from
Ref. [13] to multielectron systems. Here G(+)(t ′,t ′′) is the
Green’s operator which corresponds to the total Hamilto-
nian H (t) = ∑N

j=1 Hj (t), with the j th-electron Hamiltonian
Hj (t) = −∇2

j /2 + V (rj ) + rj · E(t). The interaction with the
laser field, characterized by the electric-field vector E(t),
is taken in the length gauge and dipole approximation and
the atomic system of units is used. The operator of the j th
electron coordinate rj acts as a unit operator in the subspaces
of other electrons, i.e., rj ≡ ∏j−1

i=1 1i

⊗
rj

⊗ ∏N
k=j+1 1k . We

also introduce the states |�(±)
j (t)〉 which satisfy the time-

dependent Schrödinger equation[
i

∂

∂t
− H (t)

]
|�(±)

j (t)〉 = 0, j = i,f, (2)

and the field-free boundary conditions

i lim
t ′→∞

〈�f (t ′)|G(+)(t ′,t ′′) = 〈�(−)
f (t ′′)|,

(3)
i lim

t→−∞ G(+)(t ′′,t)|�i(t)〉 = |�(+)
i (t ′′)〉,

so that the S-matrix element (1) can be rewritten as

Sf i = −icK

∫ ∞

−∞
dteiωKt ê∗

K · df i(t), (4)

where df i(t) is the time-dependent dipole matrix element
between the initial and final laser-dressed states

df i(t) = 〈�(−)
f (t)|

∑
j

rj |�(+)
i (t)〉. (5)

Analogously as in Ref. [13], power (intensity) of the nth
harmonic irradiated in the direction of the z-axis unit vector
êz, for a laser electric-field vector E(t) with the period T and
frequency ω = 2π/T , is defined by

Pn = (nω)4

2πc3
|Tn|2, (6)

where Tn = ê∗
n · Tn is the T -matrix element for transition

from the initial to the final state, with ên = êK being the nth
harmonic photon unit complex polarization vector, and

Tn =
∫ T

0

dt

T
df i(t)e

inωt = Tnên = T x
n êx + T y

n êy (7)

is the Fourier component of the time-dependent dipole matrix
element df i(t) [Eq. (5)]. Within the strong-field approxima-
tion, the time-dependent dipole can be approximated by

df i(t) ≈ 〈�f (t)|
∑

j

rj

∫
dt ′G(+)(t,t ′)

∑
k

rk · E(t ′)|�i(t
′)〉,

(8)

where the Green’s operator G(+) is a direct prod-
uct of the single-electron Green’s operators G

(+)
j ≡∏j−1

i=1 1i

⊗
G

(+)
j

⊗∏N
k=j+1 1k . Within the single-active-

electron approximation only one electron is propagated so
that G(+) ≈ ∑

j G
(+)
j . We suppose that, in Eq. (8), only the

terms with k = j contribute to the HHG process, i.e., the
same j th electron is ionized via the interaction rj · E(t ′),
propagates in the laser field by the propagator G

(+)
j , and, during

recombination, emits a high harmonics via the interaction ê∗
K ·

rj . Denoting this active electron with the index a, we obtain

d(a)
f i (t) = 〈ψaf (t)|ra

∫
dt ′G(+)

a (t,t ′)ra · E(t ′)|ψai(t
′)〉,

(9)
df i(t) ≈

∑
a

d(a)
f i (t).

Here, i and f denote the initial and final states of the ath
electron. The wave vectors |ψaj (t)〉 = |ψaj 〉 exp(−iEj t),
j = i,f , are determined by the states |ψaj 〉 and the energies
Ej , which are the solutions of the laser-free stationary
Schrödinger equation. In the strong-field approximation,
dominant is the contribution of the dipole [13]

d(a)
f i (t) ≈ −i

(
2π

i

)3/2 ∫ ∞

0

dτ

τ 3/2
〈ψaf |ra|ks + A(t)〉

× 〈ks + A(t − τ )|ra · E(t − τ )|ψai〉eiSs , (10)

where A(t) = − ∫ t
dt ′E(t ′), ks ≡ ∫ t−τ

t
dt ′A(t ′)/τ is the

stationary momentum, and Ss ≡ Ef t − ∫ t

t−τ
dt ′[ks+A(t ′)]2/2

− Ei(t − τ ) is the action.
We model the ground-state atomic wave function by a

linear combination of the Slater-type orbitals ψnalm(r) ∝
rna−1e−ζarYlm(r̂), obtained by using the Hartree–Fock–
Roothaan method [17]. Let us now apply the above result
to the atoms having the p ground state (generalization to an
arbitrary ground state is straightforward but, having in mind an
application to the generation of circularly polarized harmonics,
we consider only this case in the present paper). For the p

ground state the magnetic quantum number is m = 0, ± 1. The
initial (final) state is characterized only by the quantum number
mi (mf ). For atoms with closed electron shells (Ne, Ar, Kr, Xe)
the m-changing transitions are forbidden by the Pauli exclusion
principle. Namely, for an outer electron configuration np6 the
electron emitted initially from an mi state cannot end up in
mf �= mi state since these states are occupied by other np

electrons. Since we neglect the influence of the spin (i.e., we
consider that the pairs of electrons with the spin ms = ±1/2
from the np6 configuration interact with the laser field in the
same way), only three electrons are active, and we have

df i(t) ≈
∑

a=1,2,3

d(a)
f i (t)|mi=mf =m

=
∑
m

dm(t), (11)

where dm(t) (m = 0, ± 1) is given by Eq. (10) with ψaj (ra) ∝
Ylmj

(r̂a), j = i,f , and Ef = Ei = −Ip with Ip being the
ionization potential. The matrix elements in Eq. (10) can be
calculated analytically taking into account that 〈q|r|ψnalm〉 =
i∂ψ̃nalm(q)/∂q, where |q〉 is a plane wave, ψ̃nalm(q) are
the Slater-type orbitals in the momentum space, and,
in spherical coordinates, ∂/∂q = êq∂/∂q + êθq

q−1∂/∂θq +
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êφq
(q sin θq)−1∂/∂φq . Our bicircular field is defined in the

xy plane so that the vector q lies in the same plane.
Then, for the z axis as the quantization axis, we have
θq = 90◦ and the Descartes (qx,qy,qz) components of the
unit vectors are êq = (cos φq, sin φq,0), êθq

= (0,0, − 1),
êφq

= (− sin φq, cos φq,0). Since θq = 90◦ and êx · êθq
= êy ·

êθq
= 0, it can be shown that 〈q|r · E(t)|ψna10〉 = 0, i.e.,

only the wave functions with m = ±1 contribute to the
harmonic emission. For Ne atoms having the 2p ground
state, the corresponding matrix elements are given by 〈q|r ·
êx |ψ21±1〉 = ca(q)[±6qxq± ∓ (q2 + ζ 2

a )], 〈q|r · êy |ψ21±1〉 =
ca(q)[±6qyq± − i(q2 + ζ 2

a )], with ca(q) = 8ζ
7/2
a /[π (q2 +

ζ 2
a )4], q± = qx ± iqy . We obtained similar simple analytical

results for other inert gases. This enables fast numerical
calculations. For an arbitrarily oriented axis of quantization
defined by the Euler angles α,β,γ and the rotation matrix
Dl(αβγ ), we have [18] Ylm(r̂′) = ∑

m′ D
l
m′m(αβγ )Ylm′(r̂). In

the T matrix we have a product of matrix elements summed
over all m so that, by using the orthonormality relation∑

m Dl∗
m′m(αβγ )Dl

m′′m(αβγ ) = δm′m′′ , we get that Tn does not
depend on the choice of quantization axis.

Let us summarize our results obtained applying the multi-
electron S-matrix approach within the single-active-electron
approximation and the strong-field approximation to inert
atomic gases with a p ground state. Since the initial and final
multielectron states are the same, the sum over the final states
and averaging over the initial states gives only one term Pn

which is given by Eqs. (6), (7), and (11) with (10). However,
in the one-electron theory, formulated in our previous publi-
cations, the nth harmonic power, summed over all final states
and averaged over all initial states, is given by

P (1e)
n = (nω)4

2πc3

1

2l + 1

∑
mi,mf

∣∣∣∣
∫ T

0

dt

T
d(1e)

f i (t)einωt

∣∣∣∣
2

, (12)

where d(1e)
f i (t) is the (one-term) time-dependent dipole matrix

element for the transition from the initial state mi to the
final state mf , which is given by Eq. (10). The result (12) is
obviously different from the result (11), which is obtained by
using the theory formulated in the present paper. In the case
of the s ground state we have mi = mf = 0 and the old and
new theories give the same result.

III. SELECTION RULES FOR THE BICIRCULAR FIELD

A bicircular laser field is a bichromatic circularly polarized
field with counter-rotating components having the angular
frequencies rω and sω, which are integer multiples of the same
fundamental frequency ω. The corresponding electric-field
vector is defined by [3–5]

E(t) = i

2
(E1ê+e−irωt + E2ê−e−isωt ) + c.c., (13)

where ê± = (êx ± iêy)/
√

2 and Ej and Ij = E2
j are the

electric-field vector amplitude and intensity of the j th field
component of helicity hj (h1 = 1, h2 = −1). It was shown
in Ref. [4] that the harmonics generated by the field (13) are
circularly polarized and that only those harmonics of order
n and ellipticity εn are emitted which satisfy the following

selection rule:

εn = ±1 for n = q(r + s) ± r, (14)

where q is an integer.
A general derivation of this selection rule based on

dynamical symmetries is given in the appendix. We now derive
this selection rule in a simpler way: by supposing that the
quantization axis of the ground state is the z axis, so that
the projections of the angular momentum on the z axis are
mi,mf = 0, ± 1. In the HHG process, the changes of the
angular momentum projection are

�Jz,atom = mi − mf ,

�Jz,laser = �nr (+1) + �ns(−1), (15)

�Jz,harmonic = −εn,

where �nr (�ns) is the difference between the number of
absorbed and emitted laser photons of frequency rω (sω) and
the “−” sign on the right-hand side of last equation is because
one harmonic photon of helicity εn = ±1 is emitted. The
conserving condition for the angular momentum projection
leads to∑

�Jz = 0 ⇒ mi − mf + �nr − �ns − εn = 0, (16)

while the energy-conserving condition for the nth-harmonic
energy gives

nω = �nrrω + �nssω. (17)

With the notation q = �ns , from the last two equations we
obtain nω = (q + εn + mf − mi)rω + qsω. For εn = ±1 we
have

nω = q(r + s)ω + (mf − mi ± 1)rω, (18)

which is a general result. For the s ground states it is
mi = mf = 0 and we obtain nω = q(r + s)ω ± rω. For a p

ground state, with the quantization axis chosen to be along the
z axis and with the closed shell, it is mi = mf (the m-changing
transitions are forbidden by the Pauli exclusion principle) and
we obtain the same selection rule, which is in agreement with
the experiment and the result (14). An analogous selection rule
for HHG by a bichromatic elliptically polarized field is derived
in Ref. [10].

If the shell is not closed, then it is possible that mi �=
mf [19]. If the dipole matrix element for m = 0 is equal
to zero, then only the cases mi = ±1, mf = ±1 are pos-
sible. The case mf = mi = ±1 is already included in the
selection rule (14), while the case mf = −mi = ±1, due to
mf − mi ± 1 = 2mf ± 1 (for mf = 1 it is 2mf + 1 = 3 and
2mf − 1 = 1, while for mf = −1 we have 2mf + 1 = −1
and 2mf − 1 = −3), leads to a generalized selection rule
(valid for the nonclosed shells):

nω = q(r + s)ω ± vrω, v = 1,3. (19)

For r = 1 and s = 2 the harmonics n = 3q ± 1 and n = 3q ±
3 are emitted, which means that all harmonics n = 1,2,3, . . .

can be emitted and, in general, they are elliptically polarized.
For example, for v = 3 there are two contributions to the
harmonic n = 9, with the helicities ε9 = 1 (for q = 2 and the
“+” sign) and ε9 = −1 (for q = 4 and the “−” sign), which
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add coherently, so that the harmonic n = 9 is elliptically po-
larized and its ellipticity depends on the relative contributions
of the two corresponding harmonic strengths. By using the
selection rule (19), it can be shown that, for r = 1 and s = 3,
all harmonics are odd. For r = 1 and s = 4 all harmonics
except the harmonics 5q, with q an integer, are emitted, etc.

IV. NUMERICAL RESULTS FOR THE
HIGH-HARMONIC-GENERATION SPECTRA

In order to illustrate our theory and to elucidate the physics
behind it, we choose the example of Ne atoms with the 2p

ground state and the bicircular field (13) with r = 1 and s = 2.
In Fig. 1 we present the harmonic intensity as a function of the
harmonic order for Ne atoms modeled by using the hydrogen-
like-atom model with the s ground state [black solid curve in
Fig. 1(a)] and by the realistic 2p state with four orbitals [17]
(all other curves). The inset in Fig. 1(a) shows our bicircular
field obtained by combining the ω and 2ω fields having the
same intensities and the helicity +1 and −1, respectively.
The position of the harmonic cutoff at n = 212 is obtained
using the semiclassical three-step model described in Ref. [3].
For the model with the s ground state the intensities of the har-
monics n = 3q + 1 and n = 3q − 1, having the opposite he-
licities, are comparable, so that the curve of the corresponding
spectrum is continuous. However, for the 2p ground state the
intensities of the harmonics n = 3q − 1, having the ellipticity
εn = −1, are different from that of the harmonics n = 3q + 1,
for which εn = 1. For low harmonics (30 < n < 64) the
harmonics with εn = 1 are stronger, but for the plateau and
cutoff harmonics, which are of our interest here, the εn = −1
harmonics are stronger by up to five times. Similar results, for
a shorter fundamental wavelength of 800 nm were presented
in Ref. [9]. For the presently used fundamental wavelength of
1300 nm, the harmonic-photon-energy region with a signifi-
cant asymmetry between the εn = 1 and εn = −1 harmonics is
much wider (45 < n < 63 for 800 nm from Ref. [9] vs 100 <

n < 212 for 1300 nm), so that the shorter elliptically polarized
attosecond pulse trains can be generated (see Sec. VI).

The partial spectra for particular values m = mi = mf =
−1 and mi = mf = +1 are shown in Figs. 1(b) and 1(c),
respectively. The asymmetry between the εn = −1 and εn = 1
harmonics is now stronger. The strongest are the harmonics for
m = −1 and εn = −1. In the plateau and cutoff region they
are up to two orders of magnitude stronger than the weakest
harmonics having m = 1 and εn = −1. One can also notice
that, for m = −1 stronger are the εn = −1 harmonics, while
for m = 1 the situation is opposite: the εn = 1 harmonics
are more intense. We also calculated the harmonic spectra
for a counter-rotating bicircular field having the opposite
helicity of the components (h1 = −1, h2 = 1). In this case,
the spectrum for the s state remains unchanged, while the
εn = 1 and εn = −1 spectra for the p state from Fig. 1(a)
interchange. Analogously, for Figs. 1(b) and 1(c) we have
the symmetry (m = −1,εn = ±1) ↔ (m = 1,εn = ∓1) for
(h1,h2) ↔ (−h1, − h2).

Finally, in Figs. 1(b) and 1(c) we also explore the influence
of the intensity of the bicircular-field components on the HHG
spectra. One can notice that the mentioned asymmetry in
emission of harmonics having opposite helicities does not
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FIG. 1. (Color online) Harmonic power as a function of the
harmonic order for HHG by bicircular field for Ne atoms and
the field-component wavelengths λ1 = 1300 nm and λ2 = 650 nm
and intensities expressed in multiples of 1014 W/cm2 and denoted
by j1−j2, where j1,j2 = 3,4,5. The nth harmonic ellipticity is
εn = ±1 for n = 3q ± 1, q integer. (a) Comparison of the results
obtained by using the realistic 2p ground state and by using
the hydrogen-like-atom model with the s ground state. The laser
intensities of the components equal 4 × 1014 W/cm2 (j1 = j2 = 4).
The cutoff at n = 212 is also denoted. (b), (c) The results obtained for
j1,j2 = 3,4,5 are presented for the values of the initial- and final-state
magnetic quantum numbers mi and mf as denoted.
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change much with the change of the components’ relative
intensities. However, the plateau and the cutoff harmonics are
much stronger (up to five orders of magnitude) for the higher
2ω-field component intensity.

V. SEMICLASSICAL THREE-STEP
MODEL AND ELECTRON PROBABILITY CURRENTS

HHG due to bicircular fields was described very well by
using the semiclassical three-step model in Ref. [3]. In order to
understand the above-described behavior of the HHG spectra
for the p ground states, we use this model and the fact
that the electron probability current for the p ground state
is proportional to the magnetic quantum number m. For the
explanation we use Fig. 2 in which we present the electric-field
vector, vector potential, and the dominant electron trajectory
and velocity, obtained by using the quantum-orbit theory [20].

In the left panels of Fig. 2 we show the electric-field vector
and the vector potential of the bicircular field used in Fig. 1(a).
The field at the ionization and recombination times, which cor-
respond to the dominant quantum orbit for the emission of the
cutoff harmonic n = 212, is denoted by I and R, respectively.
Between the ionization and recombination the field is almost
linearly polarized [21], having a small negative value of Ey .
The drift electron momentum, measured at the detector, in the
above-threshold ionization [11,20] is in the direction close to
the negative x axis which is opposite to the vector potential
direction at the ionization time. At the recombination time both
components of the vector potential are maximal, which leads
to a maximum harmonic photon energy.

In the right-hand panels of Fig. 2 we present the dominant
electron trajectory and velocity, which are obtained by using
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FIG. 2. (Color online) The ω−2ω bicircular electric field vector
(upper-left panel), vector potential (lower left), and electron trajectory
(upper right) and velocity (lower right) between the ionization (I) and
recombination (R) times which correspond to the cutoff harmonic
n = 212. The relevant electron probability current j− is shown in the
right-hand panels.

the semiclassical three-step model [3] and correspond to the
emission of the cutoff harmonic n = 212. The electron is born
at the time tion at the end of tunnel about 8 a.u. from the
origin and starts to move in the negative y direction. The
corresponding velocity starts from a small negative value of
the vy component [22]. This small vy(tion) is necessary to
compensate the small value of the Ey component in order
that the electron can return to the origin and recombine in the
HHG process. For t > tion, under the action of the force F(t) =
−E(t), both velocity components increase. The x component
of the electric field changes its sign at the point E(0) = 0 so that
the electron’s velocity component vx starts to decrease, while
the component vy keeps increasing, up to the recombination
time when both vy and |vx | have maxima leading to a maximum
harmonic photon energy.

In order to be able to return to the parent ion and recombine
with it in the HHG process, the electron has to have an initial
velocity vy(tion) < 0. According to the semiclassical model of
Ref. [3], the probability that the electron has large |vy(tion)| is
low and, consequently, the corresponding harmonic intensity
is low. We have seen that [see Fig. 1(b) in Ref. [9] and
Figs. 1(b) and 1(c) here] that, for the atomic ground state
with the magnetic quantum number m = −1, the intensity of
the plateau and cutoff harmonics is higher. This means that it is
more probable that |vy(tion)| has a large value for the ionization
from the m = −1 ground state than for the ionization from
the m = +1 state. It is known [23] that, for atomic orbitals
having m �= 0, the electric ring current exist, whose direction is
determined by the sign of m. In the spherical coordinates (with
θ = 90◦ in our case) the corresponding electric probability
current density in the state ψnalm is

jm = m|ψnalm|2 êϕ

r
. (20)

For m = −1 this current is shown in the right-hand panels
of Fig. 2. Since x(tion) is positive, the y component of jm is
negative for m = −1 and it is more probable that the electron
appears with large |vy(tion)| [vy(tion) < 0] than in the m = +1
case. This explains why the harmonic intensity for m = −1 in
Fig. 1 is higher.

In addition to this, for m = ±1 the recombination is such
that the harmonics having εn = ±1 are stronger, i.e., the
recombination is more probable if the bound m state is
corotating with the circular field of the emitted harmonics.
This is also in accordance with the results of Fig. 1. That the
recombination for corotating case is more probable follows
from the fact that the recombination matrix element is the
complex conjugate of the photoionization matrix element and
the known result that one-photon ionization by a circularly
polarized field which co-rotate with the bound state is more
probable [24].

VI. GENERATION OF ELLIPTICALLY POLARIZED
ATTOSECOND PULSE TRAINS

In Ref. [9] we showed that, by using a group of high
harmonics generated by exposing atoms with the p ground
state to a bicircular field, it is possible to generate ellipti-
cally polarized attosecond pulse trains. In the present paper
we have shown that, by using a longer wavelength, it is
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FIG. 3. (Color online) Ratio of the coherent to incoherent har-
monic intensities as a function of the time expressed in optical
cycles T . The results for the groups of harmonics having the
ellipticity εn = +1 (n = 151,154, . . . ,196,199) and εn = −1 (n =
152,155, . . . ,197,200) are presented. For the curves denoted by s

(black curve; s ground state) and p (red curve; 2p ground state) all
harmonics are taken into account, while for the green (blue) curve
denoted by p+ (p−) only the harmonics having the ellipticity εn =
+1 (εn = −1) are included. The laser and atomic parameters are as
in Fig. 1. The laser component intensities are Ii = ji × 1014 W/cm2

(i = 1,2), where j1 = j2 = 4 for all curves except for the magenta
dot-dashed curve for which j1 = 5 and j2 = 3 and the cyan dashed
curve for which j1 = 3 and j2 = 5 (for these two curves the ground
state is 2p and all harmonics are taken into account).

possible to obtain a longer plateau, which consists of more
harmonics that show an asymmetry with respect to their
helicity. In order to explore the consequences of this effect
on the mentioned generation of the attosecond pulse trains,
as in Refs. [5,9], we introduce the complex time-dependent
nth harmonic electric-field vector En(t) = n2Tn exp(−inωt),
where t is the harmonic emission time, and consider the field
formed by a group N of subsequent harmonics. We calculate
the ratio of the coherent to incoherent sum of harmonic
intensities R(N ; t) = |∑N En(t)|2/∑

N |En(t)|2. In Fig. 3 we
present this ratio for a group of plateau and cutoff harmonics
N = {151,152, . . . ,199,200} = N+

⋃
N−, where the groups

of harmonics N± have the helicity εn = ±1 and N+ =
{151,154, . . . ,196,199} and N− = {152,155, . . . ,197,200}.
We separately show the results obtained by using the s and
p ground states. For the p ground state we also present by
different curves (denoted by p±) the results for the groups
of harmonics N± and the results for different intensities of
the bicircular-field components as denoted in the figure. In all
cases we have an attosecond pulse which repeats three time
within one cycle of the driving field. Only one pulse is shown
in Fig. 3 for better visibility. The full width at half maximum
(FWHM) for all pulses is �100 as. The presented results are
similar to those from Ref. [9]. The difference is that the ratio R

is more than two times larger for the 1300 nm driving laser field
used in the present paper. The FWHM of each pulse is now
shorter (98 as) compared to 150 as from Ref. [9] for 800 nm.

In Fig. 4 we present the electric-field vector for one-third
of the driving field optical cycle of the groups of harmonics N
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FIG. 4. (Color online) Electric-field vector of a group of harmon-
ics (n = 151,152, . . . ,199,200) during one-third of the cycle of the
driving field. In each panel three traces are shown: all harmonics
(black bold lines), all harmonics having the ellipticity εn = +1 (red
curves), and all harmonics having the ellipticity εn = −1 (green
curves). In the upper-left panel, the results obtained by using the
s ground state are shown, while for the remaining three panels, the
p ground state is used for the following intensities of the bicircular-
field components: I1 = I2 = 4 × 1014 W/cm2 (upper panels), I1 =
5 × 1014 W/cm2 and I2 = 3 × 1014 W/cm2 (lower-left panel), and
I1 = 3 × 1014 W/cm2 and I2 = 5 × 1014 W/cm2 (lower-right panel).
The other laser and atomic parameters are as in Fig. 1.

(black curves), N+ (red curves), and N− (green curves). The
presented field for the s ground state is approximately linearly
polarized. If we present the parametric plot of this field for the
full optical cycle T , then we obtain a star-like structure that has
a threefold symmetry which reflects the threefold symmetry
of the driving field. The strengths of the corresponding fields
for the harmonics having ellipticity εn = +1 (red line) and
εn = −1 (green line) are approximately equal so that the cor-
responding red and green smooth circular traces cover the same
area of the polar plot. On the other hand, for the p ground state,
the above linear structure becomes elliptical, as can be seen in
the remaining panels of Fig. 4. The ellipticity of the presented
field is higher for the higher intensity of the ω component of
the driving field. For the higher intensity of the 2ω component
(lower-right panel) the ellipticity is smaller but the correspond-
ing field strength is much higher (three orders of magnitude).

VII. CONCLUSIONS AND DISCUSSION

In conclusion, we presented a general theory of HHG by
multielectron atoms, which is based on the S-matrix formal-
ism, single-active-electron approximation, and the strong-field
approximation. We applied this theory to HHG by a bicircular
field having frequencies rω and sω (r,s are integers). By
choosing the quantization axis for atomic system to be
perpendicular to the polarization plane of the bicircular field,
we derived general selection rules. For inert atomic gases
having the p ground state we found a strong asymmetry

043827-6



CIRCULARLY POLARIZED HIGH HARMONICS GENERATED . . . PHYSICAL REVIEW A 92, 043827 (2015)

in emission of left- and right-circularly polarized high har-
monics. We explained this asymmetry by incorporating the
electron probability current corresponding to the magnetic
quantum number m into the semiclassical three-step model of
Ref. [3].

From the practical point of view, the asymmetry in emis-
sion of the circularly polarized high-order harmonics having
opposite helicities (εn = ±1) is important in many aspects.
In particular, it is important for investigating the chirality-
sensitive properties of light-matter interactions. Examples are
photoelectron circular dichroism in chiral molecules [25] and
x-ray magnetic circular dichroism spectroscopy [26]. Up to
now, such radiation has only been available at large-scale x-ray
facilities such as synchrotrons. The advantages of the circular
high harmonics is that they offer a table-top soft-x-ray source
of coherent light.

By phase locking a group of high harmonics it is possible
to generate a train of attosecond pulses [27]. For the s ground
state of an atom, the polarization of the generated pulse trains
is close to linear [5]. However, for the p ground state, due to
the above-mentioned asymmetry, this polarization is elliptic
and even close to circular [9], which can have applications
in attoscience [27]. It should be mentioned that Ref. [28]
suggested preparing a molecule in a ring-current state with
angular momentum m �= 0 by circularly polarized π pulses.
HHG from such states can also produce nearly circularly
polarized attosecond pulses. In our case such a preparation
of the initial state is not necessary, since, in the relevant
experiments [6,8], the ground atomic state is the p state and
m �= 0 states contribute to the HHG process. In a recently
published paper [9] we showed, in an example of a bicircular
field having wavelengths of 800 nm and 400 nm, that it is really
possible to generate elliptically polarized attosecond pulse
trains by using a group of circularly polarized high harmonics.
The results obtained in Ref. [9] are based on the general theory
which is presented here. In the present paper we show that,
for longer bicircular-field wavelengths, the length of the HHG
plateau increases so that more harmonics possessing εn = ±1
asymmetry are available. By combining a group of such
harmonics we show that the ratio of the coherent to incoherent
sum of the harmonic intensities increases more than twofold
for the presently used wavelength of 1300 nm in comparison
with the 800-nm-wavelength case from Ref. [9]. In addition to
this, the obtained attosecond pulse trains can be shorter than
100 as. We also explored the influence of the relative strength
of the bicircular-field components on the HHG spectra and
found that, for a stronger 2ω-field component, the plateau and
cutoff harmonics are much stronger, while the ellipticity of the
corresponding attosecond pulse train is smaller.

The theory introduced in this paper has already been
successfully applied to special cases such as are mentioned
Ref. [9]. Another application of this theory is given in Ref. [10],
where the problem of conservation of spin angular momentum,
mentioned in the seminal paper [6], is addressed, and good
agreement with the results of [6] is achieved. We hope that
our results will be useful for the exploration of chirality
sensitive effects in HHG, as well as in other laser-induced
processes such as high-order above-threshold ionization [12]
and laser-assisted processes such as radiative electron-ion
recombination and electron-atom scattering [13,29].
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APPENDIX A: DYNAMICAL SYMMETRIES AND THE
SELECTION RULES

It can be shown analytically that the bicircular field (13)
translated in time by pT/(r + s), with p being an integer,
is the same as the field rotated by the angle −prφrs , φrs =
2π/(r + s), about the z axis, i.e., that

Rz(α)E(t) = E
(

t + p
φrs

ω

)
, α = −prφrs, (A1)

where the matrix element of the rotation matrix about
the z axis are [Rz(α)]11 = [Rz(α)]22 = cos α, [Rz(α)]12 =
−[Rz(α)]21 = sin α. Let us act with the unitary rotation
operator D(α) = exp(−iJzα), where Jz is the z component of
the total angular momentum operator, from the left on the time-
dependent Schrödinger equation (2), supposing that V (r) is
such that the laser-free Hamiltonian is invariant under rotation
by α (for simplicity we consider the one-electron case).
In addition, we translate the time-dependent Schrödinger
equation in time by pφrs/ω. Taking into account that the vector
operators transform according to r′ = D(α)rD†(α) = Rz(α)r,
using Eq. (A1) and the invariance of the scalar product with
respect to rotations, we obtain

|�(±)
j (t)〉 = D(α)|�(±)

j (t + pφrs/ω)〉, j = i,f. (A2)

Similar results in the context of above-threshold detachment
by a bicircular field is obtained in Ref. [11], while for HHG
this kind of dynamical symmetry is considered in Ref. [30].

Taking into account relation (A2), for the time-dependent
dipole (5) we get (for p = 0,1, . . . ,r + s − 1)

df i(t) = 〈�(−)
f (t)|r|�(+)

i (t)〉
= 〈�(−)

f (t + pφrs/ω)|D†(α)rD(α)|�(+)
i (t + pφrs/ω)〉

= Rz(−α)df i(t + pφrs/ω). (A3)

Equation (7) can be written as

Tn =
r+s−1∑
p=0

∫ (p+1)T/(r+s)

pT/(r+s)

dt

T
df i(t)e

inωt , (A4)

so that, after the substitution t ′ = t − pφrs/ω, we obtain

Tn =
r+s−1∑
p=0

∫ T/(r+s)

0

dt ′

T
df i(t

′ + pφrs/ω)ein(ωt ′+pφrs ). (A5)

Applying (A4) for p = 0,1, . . . ,r + s − 1 and using

T0n =
∫ T/(r+s)

0

dt

T /(r + s)
df i(t)e

inωt , (A6)

from (A5), we get

Tn =
r+s−1∑
p=0

einpφrs

r + s
Rz(−prφrs)T0n. (A7)
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This can be rewritten as

T x
n = T

(+)
0n S+ + T

(−)
0n S−, iT y

n = T
(+)

0n S+ − T
(−)

0n S−, (A8)

with q integer, 2T
(±)

0n = T x
0n ± iT

y

0n, and where the sum

S± = 1

r + s

r+s−1∑
p=0

exp

(
ip2π

n ± r

r + s

)
= δn,q(r+s)∓r (A9)

was calculated by using the formula for a geometric series.
The ellipticity of the nth harmonic can be expressed through
the degree of circular polarization ξn [3],

εn = sgn(ξn)

(
1 − √

1 − ξ 2
n

1 + √
1 − ξ 2

n

)1/2

,

ξn = Im (2T x
n

∗T y
n )/|Tn|2. By using this, for the nth harmonic

ellipticity we obtain the selection rule

εn = ±1 for n = q(r + s) ± r. (A10)

APPENDIX B: VIOLATION OF SELECTION RULES FOR A
SPECIFIC CHOICE OF QUANTIZATION AXIS

The result (A10) has to be used with a caution since it
is possible that the Hamiltonian H (t) possesses the required
symmetry properties, while the laser-free ground-state wave
functions |ψj 〉 in the boundary conditions (3) violate them.
For example, the potential V (r) is spherically symmetric for
the inert gases considered here, but the p-ground-state wave
function is not. If we choose the quantization axis to be
the z axis then the ground-state wave function is symmetric
with respect to rotation around the z axis. In this case the
result (A10) can be applied. For other choices of quantization
axis it is violated. If there is a preferred axis [for example,
the axis determined by an additional (external) static field or
internuclear axis of an aligned diatomic molecule], then the
results depend on the choice of the quantization axis. The
influence of the orientation of quantization axis was analyzed
in Ref. [31], where geometrical aspects of ionization from
aligned quantum states were investigated. In a similar vein,
we can fix the quantization axis and the initial and final states
in order to see how this choice affects the HHG spectrum and
the selection rules.

Let us suppose that we have a closed shell and the p ground
state, but that the quantization axis is along the x axis. Let
us also suppose that mi = mf = 0. In this case, the method,
introduced in Sec. III, with the calculation of �Jz cannot be
directly applied. Namely, the wave vectors of the harmonic
and laser fields are along the z axis, while the p ground
state is characterized with the quantization axis along the x

axis and the corresponding momentum-space wave function is
proportional to Y10(θq,φq = 0). We have to rotate this spherical
harmonic by using the Wigner rotation matrices and express
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FIG. 5. (Color online) Harmonic power (upper panel) and ellip-
ticity (lower panel) as functions of the harmonic order for HHG by
the same field as in Fig. 1 and for Ne atoms with the 2p ground state
but for the x axis as axis of quantization and for mi = mf = 0.

it via Y1m, m = 0 ± 1, in the system with the z quantization
axis. Then, for new Y1m (which are now with respect to the
z axis) we can apply the selection rule (14). Only the matrix
elements with m = ±1 survive and we obtain the selection
rule (19) (which was previously developed for open shells,
while it is now for closed shells and the x quantization axis).
This selection rule is proved by numerical calculations [we
calculated the double integral over the times t and τ , Eqs. (7)
and (10), with the matrix element given in analytical form
for Ne atoms and the quantization in the direction of the x

axis]. Let us show, by using an example, that, in this case,
the emitted harmonics do not have to be circularly polarized.
From the upper panel of Fig. 5, we see that all harmonics
n = 1,2,3, . . . are emitted, while from the lower panel we see
that these harmonics are elliptically polarized.
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