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Application of the weak-measurement technique to study atom-vacuum interactions
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Quantum weak measurement has attracted much interest recently [J. Dressel et al., Rev. Mod. Phys. 86, 307
(2014).] because it could amplify some weak signals and provide a technique to observe nonclassical phenomena.
Here, we apply this technique to study the interaction between the free atoms and the vacuum in a cavity. Due to
the gradient field in the vacuum cavity, the external orbital motions and the internal electronic states of atoms can
be weakly coupled via the atom-field electric-dipole interaction. We show that, within the properly postselected
internal states, the weak atom-vacuum interaction could generate a large change to the external motions of atoms
due to the postselection-induced weak values.
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I. INTRODUCTION

The conception of quantum weak measurement was intro-
duced by Aharonov, Albert, and Vaidman (AAV) in 1988 [1].
Their theory is based on the von Neumann measurement with
very weak coupling between two quantum systems [2], for
example, the weak spin-orbit coupling of electrons in the Stern-
Gerlach (SG) device. A key feature of the weak measurement is
that the observable quantity (acting as the pointer) is measured
in a certain subensemble, for example, measuring the expecta-
tion value of the electrons’ position with the postselected spin
state |f 〉. This measurement leads to an interesting result that
the pointer has a shift proportional to the value

Aw = 〈f |Â|i〉
〈f |i〉 , (1)

where |i〉 and Â are, respectively, the initial state and the
observable operator of the spin system. Aw is the so-called
weak value. Compared to the strong measurement 〈i|Â|i〉, the
weak value provides an improved approach to detect Â, and
some interesting phenomena result.

Recently, the weak value has attracted much interest
because it could be arranged to amplify some weak signals
[3–8]. It is also used to study the foundational questions of
quantum mechanics [9–13], such as Hardy’s paradox [14],
the Leggett-Garg inequality [15], Heisenberg’s uncertainty
relation [16], and the wave-particle correlation [17]. Regarding
the physical implementations, most of the previous studies
used the light both as the pointer and the measured system
[18]. There are several interesting works implementing weak
measurement using the condensed-matter system, e.g., the
quantum dot [19], the superconducting phase qubit [20], and
the semiconducting Aharonov-Bohm interferometer [21].
Recently, Ref. [22] studied the weak measurement of a cold-
atom system based on the dynamics of spontaneous emission.

In this article, the weak measurement is applied to the
system of atom-cavity interaction. In such a system, the
cavity electrodynamics (cavity QED) have predicted many
nonclassical phenomena such as the famous vacuum Rabi
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oscillation [23–25] and the vacuum Rabi splitting [26–28].
These effects concern the cavity-induced changes in the inter-
nal electron’s states of atoms. Remarkably, it has been shown
that the light in a cavity can significantly affect the atom’s
center-of-mass (c.m.) motions, for example, Kapitza-Dirac
scattering [29–33]. This effect is due to the atom stimulated
emitting and absorbing photon in the cavity (resulting in
a momentum change in the atom). It can be found that a
vacuum cavity can also generate a similar transverse effect
of a neutral atom via the virtual excitation of a photon.
Here, we propose a weak value amplification (WVA) setup
to observe such an interesting nonclassical effect of vacuum.
After the atom-cavity interaction, we perform a single-qubit
operation on the two internal states of atoms and postselected
on an internal state. Then, we obtain a weak value; its real
and imaginary parts determine, respectively, the shifts of the
average momentum and the position of the atoms’ external
motions. Consequently, the controllable weak value could be
used to amplify the vacuum-induced transverse shifts of atoms.
It is shown that the present WVA could offer some certain
advantages for experimentally detecting the weak transverse
effects of atoms.

Our paper is organized as follows. In Sec. II, we present
the vacuum-induced weak coupling between the internal and
external motions of free atoms. This coupling acts as a force
to push the neutral atoms moving transversely. In Sec. III, we
get the desirable weak value using the single-qubit operation
and postselection and use it to amplify the transverse shifts of
atoms. In Sec. IV, we discuss the physical meaning of WVA.
Our conclusions are summarized in Sec. V.

II. THE VACUUM-INDUCED COUPLING BETWEEN
THE INTERNAL AND EXTERNAL MOTIONS

OF FREE ATOMS

Following the original work of AAV, we consider the weak-
measurement experiment as shown in Fig. 1. The spatially
coherent atoms, e.g., a released BEC [33], are injected into the
equipment through a pinhole located around the point (0,0,0).
This pinhole selects part of the matter wave, and thus, the
positional uncertainty of the selected atoms is on the order of
the size of the pinhole. Hence, one can use the typical Gaussian
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FIG. 1. (Color online) Sketch of the weak measurement process. The two-level atoms are prepared in a certain internal state |Si〉 and
pass through a pinhole with momentum along the z direction. The vacuum field (with the x-directional gradient) in cavity 1 generates weak
coupling between the atoms’ internal states and the external x-directional motions. Cavity 2, with classical light, resonantly excites atoms and
generates the desirable single-qubit operation Û . The applied voltage ±V ionizes the atoms in the excited state (similar to the procedure in
the experiments of the Haroche group [23–25]) and leaves the ground-state atoms to be detected. In the selected ensemble of ground states,
the atoms have a shift (along the x direction) in the average position on the deposition plate. This shift can be described by the so-called weak
value, which depends on the preselection |Si〉 and the single-qubit operation Û .

wave packet to describe the spatially coherent atoms (after the
pinhole). In the x direction, the Gaussian state reads

|G〉 =
∫ ∞

−∞
dxφ(x)|x〉, (2)

where φ(x) = 〈x|G〉 = (2π�2)−1/4 exp[−x2/(4�2)] is the
probability amplitude of the position eigenstate |x〉 and �

describes the rms width of the wave packet. Of course, the
state (2) can also be written as |G〉 = ∫ ∞

−∞ dp φ(p)|p〉, with the
momentum eigenstate |p〉 and the Gaussian function φ(p) =
〈p|G〉 = [2�2/(π�

2)]1/4 exp(−�2p2/�
2). For this Gaussian

state, the expectation value of the position is 〈x〉 = 0, and its
uncertainty reads � =

√
〈x2〉 − 〈x〉2. The average momentum

along the x direction is 〈p〉 = 0, and its uncertainty reads
�p =

√
〈p2〉 − 〈p〉2 = �/(2�). Physically, the uncertainty �

(or �p) determines the main distribution range of particles’
positions (or momentums). Out of this range, the probability
to find the particles is negligible. Below, we study the vacuum
field (in cavity 1) induced change in the initial wave packet
φ(x) within a very short duration (i.e., the free diffraction of
the atom is negligible).

In cavity 1, the quantized field of a mode takes the form
[34]

�E = �τE0 sin(kx + kx0)(â† + â), (3)

which excites the incoming atoms. Here, �τ , E0, and k are,
respectively, the polarization vector, amplitude, and wave
number of the standing wave (such as the first excited mode). â†

and â are, respectively, the creation and annihilation operators
of the corresponding cavity mode (with frequency ωc). We
consider the microwave excitation of the two-level Rydberg
atoms. Although the orbit radius of Rydberg states is very large
(about 103 a.u. [23–25]), it is far smaller than the wavelength
of the microwave cavity (on the order of a centimeter).
Therefore, in the atomic internal region the driving field (3)
can be regarded as uniform. Performing the dipole approx-
imation, the interaction between the atom and cavity field

reads

Ĥint = ��0 sin(kx + kx0)(â† + â)σ̂x, (4)

with the so-called Rabi frequency �0 = E0μ/� [34]. Here, �

is the Planck constant divided by 2π , σ̂x = |e〉〈g| + |g〉〈e| is
the transition operator of the two-level atom with the ground
state |g〉 and the exciting state |e〉, and μ is the transition matrix
element of the two-level atom.

We consider k� � 1 and 0 � kx0 � π/2; the Hamilto-
nian (4) can be approximately written as

Ĥint = ��(x + xc)(â† + â)σ̂x, (5)

with the constants � = k cos(kx0)�0 and xc = tan(kx0)/k.
Here, we have used the well-known trigonometric function
sin(kx + kx0) = cos(kx0) sin(kx) + cos(kx) sin(kx0) and ne-
glected the high order of kx. Note that k� � 1 means that the
range of atomic motion in the x direction is much smaller than
the wavelength of the cavity mode. The range of x depends on
the initial uncertainty � and the wave-packet spread (i.e., the
diffraction). As mentioned earlier, the diffraction of the atom
is negligible as the duration of the cavity-atom interaction is
very short, i.e., t � m�2/� (m is the mass of the atom). Thus,
the value of x is on the order of its initial uncertainty � (e.g.,
10 μm), which can be much smaller than the wavelength of
the cavity mode (about 1 cm [25]).

With interaction (5), the total Hamiltonian of the system
can be written as

Ĥp = p2

2m
+ �ωa

2
σ̂z + �ωc

(
â†â + 1

2

)

+ ��(x̂ + xc)(â† + â)σ̂x (6)

in the Hilbert space of momentum eigenstates. In this space, the
position operator is given by x̂ = i�∂/∂p. Physically, the first
term on the right-hand side of Eq. (6) describes the c.m. motion
of the free atom. The second term describes the two atomic
internal levels (by the Pauli operator σ̂z = |e〉〈e| − |g〉〈g|
and the transition frequency ωa). The third term is the free
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Hamiltonian of the cavity ground mode. The last term
describes the coupling between the considered three degrees of
freedom, i.e., a position-dependent Jaynes-Cummings interac-
tion. In the rotating frame defined by Û1 = exp[−ip2t/(2m�)],
the Hamiltonian (6) can be written as

Ĥp = �ωa

2
σ̂z + �ωc

(
â†â + 1

2

)

+ ��

(
x̂ + xc + pt

m

)
(â† + â)σ̂x . (7)

With such a transform, the free term p2/(2m) is elimi-
nated. Considering the atom rapidly crosses the cavity (i.e.,
the effective interaction duration t is sufficiently short), there
is an impulse atom-cavity interaction corresponding to the
von Neumann measurement [1,2]. Thus, pt/m → 0, and the
Hamiltonian (7) reduces to

Ĥp = �ωa

2
σ̂z + �ωc

(
â†â + 1

2

)
+ ��(x̂ + xc)(â† + â)σ̂x .

(8)

Performing a unitary transformation of Û2 =
exp[−iωct(â†â + 1/2) − itωaσ̂z/2], the Hamiltonian (8)
further reduces to

Ĥp = ��(x̂ + xc)(â†σ̂−e−iδt + âσ̂+eiδt ), (9)

with the detuning δ = ωa − ωc and the operators σ̂− = |g〉〈e|
and σ̂+ = |e〉〈g|. Here, the usual rotating-wave approximation
is performed; that is, the terms relating to the sum frequency
ωa + ωc have been neglected.

The time-evolution operator for the Hamiltonian (9) can be
given by the Dyson series:

Ûevol = 1 +
(−i

�

) ∫ t

0
Ĥp(t1)dt1 +

(−i

�

)2 ∫ t

0
Ĥp(t1)

×
∫ t1

0
Ĥp(t2)dt2dt1 + · · · . (10)

Under the conditions of large detuning, � � δ, the above
time-evolution operator can be approximately written as

Ûevol ≈ e− i
�

Ĥeff t , (11)

with the effective Hamiltonian Ĥeff = (��2/δ)(x̂ +
xc)2(â†âσ̂z + |e〉〈e|). Considering the cavity is in the
vacuum state |0〉, i.e., â†â|0〉 = 0, the effective Hamiltonian
reduces to

Ĥeff = �g0

(
1

xc

x̂ + 1

)2

|e〉〈e|, (12)

with g0 = (�xc)2/δ. This Hamiltonian just describes a
position-dependent vacuum Rabi splitting [35], and the
parameter g0 describes the coupling strength between the
internal and external motions of the atom. Numerically,
considering the wavelength λ = 1 cm of the cavity mode
and the Rabi frequency �0/2π = 10 KHz [23], we have
�xc = �0 sin(kx0) ≈ 2π × 7 KHz with kx0 = π/4, and con-

sequently, g0 ≈ 2π × 0.7 KHz with �xc/δ = 0.1. Of course,
as detuning δ increased, the coupling strength g0 decreased
significantly.

III. THE WEAK-VALUE AMPLIFICATION

In the following, we will show that the vacuum-induced
interaction (12) can generate a small shift to the initial
wave packet φ(p), and this displacement can be amplified
by using the weak-value technique. In momentum space,
the evolved state of an atom can be written as |ψ〉 =
Ûevol|G〉|Si〉 = ∫ ∞

−∞ dpψ |p〉, with |Si〉 being the initial state
of the atomic qubit. We rewrite the initial Gaussian wave
function as φ(p) = φ(p̃) = (2π )−1/4�

−1/2
p exp(−p̃2) with the

dimensionless number p̃ = p�/�. Then, we have

ψ = e
gc |e〉〈e| ∂

∂p̃ e
ig′

c |e〉〈e| ∂2

∂p̃2 φ(p̃)|i〉 (13)

by using the relation x̂ = i�∂/∂p = i�∂/∂p̃. Here, gc =
2g0t(�/xc) and g′

c = g0t(�/xc)2 are the dimensionless cou-
pling parameters, and |i〉 = exp (−ig0t |e〉〈e|)|Si〉. Consider-
ing � � xc, i.e., g′

c � gc, the state (13) can be approximately
written as

ψ = e
gc |e〉〈e| ∂

∂p̃ φ(p̃)|i〉. (14)

For simplicity, we redefine |i〉 = α|g〉 + β exp(iθ )|e〉 as
the initial internal state of the atoms (which can be prepared
by the well-known single-qubit operations). Here, θ is the
phase of the superposition state, and α and β are the super-
position coefficients (real numbers) satisfying the normalized
condition α2 + β2 = 1. Immediately, we have the state evolu-
tion φ(p)|i〉 −→ αφ(p)|g〉 + βeiθφ(p + �gc/�)|e〉, and con-
sequently, the expectation value of the atom’s momentum reads

〈p〉 = −β2 �gc

�
= −2β2gc�p. (15)

This equation means that the vacuum in cavity 1 generates a
transverse shift 〈p〉 − 0 = 〈p〉 to the average momentum of
atoms. Because β2 � 1, the shift 〈p〉 → 0 for a very weak
coupling of gc → 0. Furthermore, one can easily calculate the
expectation value 〈x〉 = 0 of the atomic position. These results
indicate that the weak coupling gc can generate significant
changes neither on the observable 〈p〉 nor on 〈x〉.

We now use the weak-value technique to amplify the shifts
〈p〉 and 〈x〉. First, we perform a single-qubit operation Û =
exp (−iησ̂x) to the state (14) with the controllable parameter
η. Alternatively, this single-qubit operation can be realized by
the classical resonant light, as shown in Fig. 1. Consequently,
we have the final state

ψ ′ = Ûψ = Ûe
gc |e〉〈e| ∂

∂p̃ φ(p̃)|i〉

= Û

[
1 + gc(|e〉〈e|) ∂

∂p̃
+ g2

c

2
(|e〉〈e|)2 ∂2

∂p̃2
+ · · ·

]
φ(p̃)|i〉.

(16)

Second, we postselect an eigenstate of the atomic qubit, e.g.,
|g〉, and immediately, the external motion of atoms collapses
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on the wave function:

ψ ′
w = 〈g|ψ ′〉

= 〈g|Û |i〉
(

1 + gcAw

∂

∂p̃
+ g2

cAw

2

∂2

∂p̃2
+ · · ·

)
φ(p̃),

(17)

with

Aw = 〈g|(Û |e〉〈e|)|i〉
〈g|Û |i〉 . (18)

Here, we have used the relation (|e〉〈e|)n = |e〉〈e|, with n =
1,2,3, . . . . Aw is our weak value, although it does not satisfy
the standard definition of Eq. (1). This will be explained in
Sec. IV. Physically, the postselection of |g〉 could be realized
by the field ionization [23–25]. Since |e〉 and |g〉 have different
ionization energies, the ionization is state selective. Suppose
the atoms in only exciting state |e〉 are effectively ionized
by the applied moderate electric field; then the exciting state
atoms will be accelerated in the y direction and discarded.
However, the ground-state atoms will arrive at the plate to be
finally detected, as shown in Fig. 1.

Considering the weak interaction, i.e., gc � 1 and
g2

c |Aw| � 1, the wave function (17) can be approximately
written as

ψw = ψ ′
w

〈g|Û |i〉 =
(

1 + gcAw

∂

∂p̃

)
φ(p̃)

= φ(p) − 2gc�

�
Re(Aw)pφ(p) − i

2gc�

�
Im(Aw)pφ(p).

(19)

Here, the high orders of gc have been neglected, and Re(Aw)
and Im(Aw) are, respectively, the real and imaginary parts of
Aw. With this approximation, the probability for successfully
postselecting |g〉 reads P ≈ |〈g|Û |i〉|2. According to Eq. (19),
we have the expectation value of momentum:

〈p̂〉w =
∫ ∞

−∞
ψ∗

wpψwdp ≈ −�
gc

�
Re(Aw) = −2gc�pRe(Aw).

(20)

This means that, within the postselected subensemble, the shift
of average momentum 〈p〉w − 0 = 〈p〉w is proportional to the
real part of the weak value. On the other hand, in the position
presentation, the wave function (19) reads

φw =
∫ ∞

−∞
ψw〈x|p〉dp

= 1√
2π�

∫ ∞

−∞
φ(p)eipx/�dp

+ 1√
2π�

�gcAw

�

∫ ∞

−∞
eipx/�

∂φ(p)

∂p
dp

=
(

1 − i
gcAw

�
x

)
φ(x), (21)

and consequently, the expectation value of positions reads

〈x〉w =
∫ ∞

−∞
φ∗

wxφwdx ≈ 2gc

�
Im(Aw)

∫ ∞

−∞
φ(x)x2φ(x)dx

= 2gc�Im(Aw). (22)

This indicates that, within the postselected subensemble, the
shift of the average position 〈x〉w − 0 = 〈x〉w is proportional
to the imaginary part of the weak value.

Due to the single-qubit operations Û |g〉 = cos(η)|g〉 −
i sin(η)|e〉 and Û |e〉 = cos(η)|e〉 − i sin(η)|g〉, our weak value
reads

Aw = 〈g|(Û |e〉〈e|)|i〉
〈g|Û |i〉 = 1

Aeiϑ + 1
, (23)

with A = α cos(η)/[β sin(η)] and ϑ = (π/2) − θ . Conse-
quently, we have

Re(Aw) = 1 + A cos(ϑ)

A2 + 2A cos(ϑ) + 1
, (24)

Im(Aw) = −A sin(ϑ)

A2 + 2A cos(ϑ) + 1
. (25)

These values could be as large as we want if we properly
adjust parameters A and ϑ . For example, if cos(ϑ) = 1 and
A → −1, then Re(Aw) = 1/(1 + A) → ∞. If A = − cos(ϑ)
and ϑ → 0, then Im(Aw) = cot(ϑ) → ∞. With these enlarged
weak values, the weak interaction of gc could significantly
change the transverse c.m. motions of atoms via the basic
equations

〈p〉w
2�p

≈ −gcRe(Aw), (26)

〈x〉w
2�

≈ gcIm(Aw). (27)

We would like to emphasize that the shifts 〈p〉w and 〈x〉w
cannot be infinitely amplified, as the weak values were
obtained under the weak-interaction condition of g2

c |Aw| � 1.
That is, the amplified displacements of average position and
momentum are limited in the regimes of gc〈p〉w/(2�p) � 1
and gc〈x〉w/(2�) � 1, respectively. Hence, the present ampli-
fication effects are significant just for the weak interaction of
gc → 0.

There is a cost to WVA. The probability P ≈ |〈g|Û |i〉|2 for
successfully postselecting |g〉 decreases rapidly with increas-
ing Re(Aw) or Im(Aw), so that more significant amplification
needs more atoms. In terms of metrology, the WVA may
be suboptimal for parameter estimation since many atoms
(information) were discarded [36–38]. However, in practical
experimental systems the discarded atoms may also bring
noises into the final detection. As pointed out in Refs. [39–44],
the WVA can offer some certain technical advantages, for
example, suppressing systematic errors [43] and avoiding
detector saturation [44].

In the present system, it would be very difficult to precisely
scan the position or momentum distribution of final atoms.
Possibly, one can place two atom detectors (such as the
hot-wire ionizers [33]) at the symmetrical positions x and
−x to estimate the transverse effects of atoms. In the unit
time, the expected atom counting in the detectors is given by
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n̄1 = NP
∫ x+l/2
x−l/2 |φw(x)|2dx and n̄2 = NP

∫ −x+l/2
−x−l/2 |φw(x)|2

dx, respectively. N is the total number of input atoms in the
unit time, and l < x is the atom-collecting region of detectors.
According to n̄1 and n̄2, we have

s̄ = n̄1

n̄2
− 1 = 1 + 2gcIm(Aw) x̄l

�

1 − 2gcIm(Aw) x̄l

�

− 1 ≈ 4gcIm(Aw)
x̄l

�
,

(28)

with x̄l = ∫ x+l/2
x−l/2 xφ2(x)dx/

∫ x+l/2
x−l/2 φ2(x)dx. Above, the high

orders of gc have been neglected, and s̄ can be regarded as
the signal of atom transverse shift. We note that n̄1, n̄2, and,
consequently, s̄ are the expectation values. In practice, the
experimental results may take ni = χn̄i + δs

i + δr
i (with the

index i = 1,2), and consequently, Eq. (28) is replaced by
s = (n1/n2) − 1. χ is the detection efficiency of the atom
detectors. There are two kinds of errors in measurements,
namely, systematic error δs

i and random error δr
i . Certainly, the

WVA does not offer advantages for suppressing the random
error since the input atoms were reduced by the postselection
[43]. However, it can be found that the WVA is very useful
for suppressing the systematic error which is proportional to
the number of atoms, i.e., δs

i = δ0n̄i , with δ0 being a small
uncertainty coefficient. This systematic error arises perhaps
because of the unsteady detection efficiency of the atom
detector, the uncertain location of the detector, etc.

IV. DISCUSSION

Here, we give a brief discussion of the physical meaning
of the WVA. In the original work of AAV [1], there are two
SG devices. The first one is used to generate weak coupling
between the spin and orbit of the electron, and the second one
is arranged to perform the postselection of the electron’s spin
states. The present weak-measurement process is similar to
that of AAV. Cavity 1 plays an atomic SG device to implement
the coupling between the internal qubit and the external c.m.
orbital motion of the atom. Cavity 2 acts as the second SG
device of AAV for coherently manipulating the atoms. After
cavity 1 the atom is in the state (14), which can be written as the
standard form ψ ≈ φ(p)|i〉 − igcÂP̂ φ(p)|i〉, with Â = |e〉〈e|
and P̂ = i�∂/∂p. Using the orthonormal eigenstates |g〉 and
|e〉 of the two-level atom, ψ can be further written as

ψ = (|g〉〈g| + |e〉〈e|)ψ
= 〈g|i〉φ(p,Ag)|g〉 + 〈e|i〉φ(p,Ae)|e〉. (29)

Here, Ag = 〈g|Â|i〉/〈g|i〉, Ae = 〈e|Â|i〉/〈e|i〉, φ(p,Ag) =
(1 − igcAgP̂ )φ(p), and φ(p,Ae) = (1 − igcAeP̂ )φ(p).

Obviously, Eq. (29) represses an entangled state. If the
internal state |g〉 is measured, then the external motion of
the atom collapses on the wave function φ(p,Ag); however,
if the state |e〉 is measured, the atom collapses on φ(p,Ae).
These measurements performed on the qubit are just the well-
known projective measurements P̂g = |g〉〈g| and P̂e = |e〉〈e|.
The outcomes of Ag and Ae can be regarded as the weak values
since they take the same form as Eq. (1). However, it can be
found that Ag = 0 and Ae = 1 because Â = |e〉〈e|, so that they
cannot realize the desirable amplification functions, whatever
the initial state |i〉 is. We note that Ag and Ae are both real.

Hence, applying the projective measurements directly to the
state (29) cannot yield the effect of positional shifts of atoms,
as mentioned early.

Compared to the projective measurement, the weak mea-
surement due to the postselection P̂f = |f 〉〈f | is a more
general conception because the state |f 〉 is beyond the
eigenstates of the system. For example, how can a coher-
ent superposition of the eigenstates be realized? In AAV’s
proposal, the desired postselection is implemented by the
second SG device. It couples the spin to the y-directional
orbital motion of the electron (the third degree of freedom of
the electron). Consequently, one can select the y-directional
motions (via the strong measurement) to realize a postselection
of the superposition state of the spin (see, e.g., Ref. [45], which
discussed in detail AAV’s idea). In recent optics experiments
[18], the postselection is realized by a polarizer which is
oriented at a certain angle and then selects the desirable
superposition state of polarization of light.

Here, cavity 2 together with the ionization electrodes just
realizes an operation P̂ ′

f = |g〉〈g|Û = |g〉〈f | to the state (29).
The weak value (18) can be written as the standard form

Aw = 〈g|Û Â|i〉
〈g|Û |i〉 = 〈f |Â|i〉

〈f |i〉 , (30)

with 〈f | = 〈g|Û . This weak value can be as large as we want,
such as Im(Aw) �= 0. Physically, the present weak value can be
regarded as an outcome of the coherent operation Û . It can be
found that the standard postselection also implies coherent
operations by writing P̂f = |f 〉〈f | = R̂|g〉〈g|R̂† with the
unitary evolution operator R̂ and the eigenstate |g〉 of any
systems.

V. CONCLUSION

In this theoretical work, we have shown that a vacuum
microwave cavity can shift the neutral atoms to move trans-
versely. This nonclassical effect is due to the vacuum-induced
coupling between the internal and external motions of free
atoms, i.e., a position-dependent vacuum Rabi splitting. We
have further shown that the present effect could be amplified
by the weak-value technique. After the atom-cavity coupling,
we performed a single-qubit rotation on the atomic internal
states and consequently postselected an internal eigenstate
(strong measurement). Then, we obtained a weak value which
was used to amplify the vacuum-induced shift of the average
position or momentum of atoms. Technically, the present
WVA could offer advantages in practical experiment systems
for observing the weak transverse effect of atoms, such as
suppressing the systematic error of detectors. Physically, our
WVA is a quantum-mechanical effect due to the necessary
single-qubit operation. Finally, we hope the present studies will
encourage further studies on weak measurements and cavity
QED.
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