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We derive the optical theorem for scattering of electromagnetic waves in nonlinear media. This result is used
to obtain the power extinguished from a field by a nonlinear scatterer. The cases of second-harmonic generation
and the Kerr effect are studied in some detail. Applications to nonlinear apertureless scanning near-field optical
microscopy are considered.
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I. INTRODUCTION

The optical theorem is a basic result in scattering theory
that is of both fundamental interest and considerable applied
importance [1]. It can be formulated in a variety of settings,
including quantum mechanics, acoustics, and electromagnetic
theory. In its simplest form, the optical theorem relates the
power extinguished from a plane-wave incident on a scattering
medium to the scattering amplitude in the forward direction
of scattering. For the case of electromagnetic scattering, the
extinguished power Pe is given by

Pe = c

2k0
Im A · E∗

0, (1)

where k0 is the wave number, E0 is the incident field, and A
is the scattering amplitude in the forward direction [2–4]. In
physical terms, the loss of power from the incident field is
due to interference between the incident field and the scattered
field within the volume of the scatterer.

The standard derivation of the optical theorem makes use
of the ansatz that the scattered field Es behaves asymptotically
as an outgoing spherical wave of the form

Es ∼ A
eik0r

r
, k0r → ∞. (2)

The above ansatz may be justified for the case of material
media in which the polarization is related to the electric field
by a linear constitutive relation. Moreover, in this situation,
the optical theorem may be derived without invoking the
asymptotic behavior of the scattered field [5,6].

The optical theorem is normally considered within the
framework of linear optics [4]. However, the ansatz (2) is very
general. That is, all properties of the scatterer are encoded in
its scattering amplitude, which can, in principle, be arbitrarily
prescribed. Thus, there is no reason to restrict the optical
theorem to the linear response regime. Making use of this
observation, in this paper we consider the optical theorem
in the context of nonlinear media. We derive an expression
for the extinguished power that holds when the polarization
is an arbitrary function of the electric field. To some extent,
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this result may be expected on physical grounds. However,
we provide a proper mathematical justification following the
approach of Refs. [5,6]. We specialize our result to the cases
of quadratic and cubic nonlinearities. We also study in detail
the processes of second-harmonic generation and the Kerr
effect for small scatterers. Our results on scattering from small
nonlinear particles are of independent interest, since exact
solutions to nonlinear scattering problems are, to the best of
our knowledge, known only in one dimension [7,8].

The remainder of this paper is organized as follows. In
Sec. II, we present some basic results in nonlinear optics and
scattering theory that will be used later in the paper. Section III
presents the derivation of the optical theorem in the form we
require, without the use of asymptotics. In Sec. IV, we consider
separately the cases of second- and third-order nonlinearities.
Numerical results for small scatterers are presented in Sec. V.
Finally, in Sec. VI we consider applications to apertureless
scanning near-field optical microscopy in which the tip exhibits
a nonlinear optical response. We investigate the cases of
second- and third-harmonic generation and characterize the
achievable resolution for a model system consisting of two
scatterers. A discussion of our results is presented in Sec. VII.

II. PRELIMINARIES

In this section we collect several results in nonlinear optics
and scattering theory that will be useful in the derivation of
the generalized optical theorem. We begin by recalling that the
Maxwell equations in a source-free nonmagnetic medium are
of the form

∇ · D = 0, (3)

∇ × E + 1

c

∂B
∂t

= 0, (4)

∇ · B = 0, (5)

∇ × B − 1

c

∂D
∂t

= 0. (6)

Here, E is the electric field, B is the magnetic field, D is
the electric displacement field, and P is the polarization. In
addition, D and P satisfy the relation

D = E + 4πP. (7)
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Throughout this paper, we will use the following Fourier
transformation convention,

f (r,ω) =
∫

f (r,t)eiωtdt, (8)

f (r,t) = 1

2π

∫
f (r,ω)e−iωtdω, (9)

where the time and frequency dependence of all quantities are
displayed explicitly. We note that if f (r,t) is real valued, then
f (r,−ω) = f ∗(r,ω). Upon Fourier transforming (3)–(6) we
obtain

∇ · D(r,ω) = 0, (10)

∇ × E(r,ω) = −ik(ω)B(r,ω), (11)

∇ · B(r,ω) = 0, (12)

∇ × B(r,ω) = −ik(ω)D(r,ω), (13)

where k(ω) = ω/c.
If the medium is linear, the polarization is given by

Pi(r,ω) = χ
(1)
ij (r; ω)Ej (r,ω), (14)

where χ
(1)
ij is the first-order susceptibility. Here, we have

adopted the summation convention, whereby repeated indices
are summed. For the case of quadratic nonlinear media,

Pi(r,ω) = χ
(1)
ij (r; ω)Ej (r,ω) +

∑
ω1+ω2=ω

χ
(2)
ijk(r; ω1,ω2)

×Ej (r,ω1)Ek(r,ω2), (15)

where χ
(2)
ijk is the second-order susceptibility. The sum implies

that the electric field at the frequencies ω1 and ω2 contributes
to the polarization at the frequency ω if ω1 + ω2 = ω. For
cubic-nonlinear media,

Pi(r,ω) = χ
(1)
ij (r; ω)Ej (r,ω) +

∑
ω1+ω2+ω3=ω

χ
(3)
ijkl(r; ω1,ω2,ω3)

×Ej (r,ω1)Ek(r,ω2)El(r,ω3), (16)

where χ
(3)
ijkl(r; ω1,ω2,ω3) are the third-order susceptibilities.

We will assume that the susceptibilities have over all
permutation symmetry. This assumption is quite standard and
holds for nonresonance frequencies in the classical anharmonic
oscillator model and in quantum optics [7,8]. However, we
note that Kleinman symmetry can be broken in a variety of
systems [9–14].

The wave equation for the electric field E(r,ω) is obtained
by taking the curl of (4) and eliminating the magnetic field
B(r,ω) using (6). We then have

∇ × ∇ × E(r,ω) − k2(ω)E(r,ω) = 4πk2(ω)P(r,ω). (17)

The solution of the wave equation (17) is given by

Ei(r,ω) = Einc,i(r,ω) + k2(ω)
∫

d3r ′Gij (r,r′; ω)Pj (r′,ω),

(18)

where Einc(r,ω) obeys (17) with P = 0. The Green’s function
Gij is of the form [15]

Gij (r,r′; ω) =
(

δij + 1

k2(ω)
∂i∂j

)
G(r,r′; ω), (19)

where

G(r,r′; ω) = eik(ω)|r−r′|

|r − r′| . (20)

Following standard procedures, the conservation of energy
follows immediately from (17) and takes the form

∇ · S(r,ω) = ck(ω)

2π2
Im[E∗(r,ω) · P(r,ω)], (21)

where the Poynting vector S is defined by

S(r,ω) = c

8π3
Re[E(r,ω) × B∗(r,ω)]. (22)

We recall that the time-dependent Poynting vector is defined
as

S(r,t) = c

4π
E(r,t) × B(r,t). (23)

For time-harmonic fields, the time average of the Poynting
vector

S̄ = lim
T →∞

1

T

∫ T

0
S(r,t)dt (24)

is well defined. It follows that

S̄ =
∫ ∞

0
S(r,ω)dω. (25)

We note that for nondispersive media, the analog of the
Manley-Rowe relations can be shown to hold. That is, if the
susceptibilities χ

(1)
ij , χ

(2)
ijk , and χ

(3)
ijkl are purely real, then ∇ ·

S̄=0. The proof is given in Appendix A.

III. OPTICAL THEOREM

In this section we derive the optical theorem for nonlinear
media following the approach of Refs. [5,6]. We begin by
recalling some basic facts from scattering theory [4]. We
consider a general nonlinear medium, whose polarization is
defined by either a quadratic or cubic nonlinearity. We suppose
that a field Einc is incident upon the medium and write the total
electric field as the sum

E = Einc + Es , (26)

where Es is the scattered field. It follows from (17) that Es

obeys

∇ × ∇ × Es(r,ω) − k2(ω)Es(r,ω) = 4πk2(ω)P(r,ω) (27)

and that

Es,i(r,ω) = k2(ω)
∫

d3r ′Gij (r,r′; ω)Pj (r′,ω). (28)

Straightforward calculation shows that the Green’s function
has the following asymptotic form,

Gij (r,r′; ω) ∼ eik(ω)r

r
(δij − r̂i r̂j )e−ik(ω)r̂·r′

, (29)
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when r � r ′. Using this result, we find that the scattered field
behaves as an outgoing spherical wave of the form

Es,i(r,ω) ∼ eik(ω)r

r
Ai(r̂,ω), (30)

where the scattering amplitude is defined by

Ai(r̂,ω) = k2(ω)(δij − r̂i r̂j )
∫

d3r ′Pj (r′,ω)eik(ω)r̂·r′
. (31)

The energy carried by the scattered field is associated with
the Poynting vector Ss , which is defined by

Ss = c

8π3
Re[Es(ω) × B∗

s (ω)]. (32)

Evidently, Ss obeys the conservation law

∇ · Ss(r,ω) = ck(ω)

2π2
Im[E∗

s (r,ω) · P(r,ω)], (33)

which is a consequence of (27).
Suppose that the scattering medium is contained in a volume

V . Then the power absorbed by the medium is given by

Pa(ω) = −
∫

∂V

S(r,ω) · n̂d2r, (34)

where n̂ is the outward unit normal to ∂V and the presence
of the overall minus sign signifies that this is the flux of
the Poynting vector of the wave traveling into the medium.
Converting the above surface integral to a volume integral by
means of the divergence theorem and making use of (21), we
have

Pa(ω) = ck(ω)

2π2

∫
V

Im[E∗(r′,ω) · P(r′,ω)]d3r ′. (35)

In a strictly similar manner, we define the scattered power as

Ps(ω) =
∫

∂V

Ss(r′,ω) · n̂d2r ′. (36)

We then obtain from (33) that

Ps(ω) = −ck(ω)

2π2

∫
V

Im[E∗
s (r′,ω) · P(r′,ω)]d3r ′. (37)

We define the extinguished power Pe to be the total power lost
from the incident field due to absorption and scattering:

Pe(ω) = Pa(ω) + Ps(ω). (38)

It follows from (35) and (37) that the extinguished power is
given by

Pe(ω) = ck(ω)

2π2

∫
V

Im[E∗
inc(r′,ω) · P(r′,ω)]d3r ′. (39)

We note that if either Eqs. (15) or (16) for the polarization
is inserted into the above expression, we see that the power
extinguished from the incident field is due to interference
between the incident field and the total field within the volume
of the scatterer.

We can now rewrite (39) in terms of the scattering
amplitude, provided that the incident field is a plane wave
of the form

Einc(r,ω) = E0(ω)eik(ω)ŝ·r, (40)

where ŝ is the direction of propagation. Upon comparing (39)
and (31), we obtain the optical theorem

Pe(ω) = c

2π2k(ω)
Im A(ŝ,ω) · E∗

0(ω). (41)

Using this result, we see that the time-averaged extinguished
power is given by

P̄e =
∫ ∞

0
Pe(ω)dω

= c

2π2

∫ ∞

0

1

k(ω)
Im A(ŝ,ω) · E∗

0(ω)dω. (42)

We note that the optical theorem (41) applies to both linear
and nonlinear media. In Sec. IV, we specialize this result
to the cases of quadratic and cubic nonlinearities. Here, we
remark that in the case of a linear medium with an incident
monochromatic field of the form

Einc(r,ω) = eik(ω)ŝ·r[E0δ(ω − �) + E∗
0δ(ω + �)], (43)

(42) becomes

P̄e = c

2π2k(�)
Im A(ŝ,�) · E∗

0. (44)

We have thus recovered the familiar form of the optical
theorem (1). Finally, we note that (41) is an exact result. That
is, it has not been derived by making use of the asymptotic
behavior of the electric field.

IV. SECOND- AND THIRD-ORDER NONLINEARITIES

Evidently, in order to apply the optical theorem (42) it
is necessary to first obtain the scattering amplitude. In this
section we calculate the scattering amplitude for second-
and third-order nonlinearities. We begin with the case of
second-order nonlinearity and, for simplicity, discuss only the
problem of second-harmonic generation (SHG). In this setting,
we analyze the scattering of an incident monochromatic wave
from a spherical particle whose size is small compared to
the wavelength. Next, we turn our attention to the case of
third-order nonlinearity, where we restrict our attention to the
Kerr effect. Once again, we calculate the extinguished power
for a small particle and study the associated resonant scattering.

We note that the method we develop for calculating the
scattering of light from a small nonlinear inhomogeneity may
be of independent interest. In particular, it is readily extended
to collections of small inhomogeneities, which is a physical
setting that arises in applications to biomedical imaging and
nonlinear microscopy [16–22]. We plan to report the results of
such calculations elsewhere.

A. Second-order nonlinearity

We consider SHG excited by a monochromatic incident
field of frequency �. We assume that the second-order
susceptibility is sufficiently weak so that the condition∑

ω1+ω2=ω

χ
(2)
ijk(r; ω1,ω2)Ej (r,ω1)Ek(r,ω2) � χ

(1)
ij (r; ω)Ej (ω)

(45)
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is obeyed. We then find that the wave equation (17), together
with (15) and the permutation symmetry of χ

(2)
ijk , gives rise to

the pair of coupled-wave equations

∇ × ∇ × E(r,�) − k2(�)E(r,�)

= 4πk2(�)
[
χ

(1)
ij (r,�)Ej (r,�)

+ 2χ
(2)
ijk(r,2�,−�)Ej (r,2�)E∗

k (r,�)
]
, (46)

∇ × ∇ × E(r,2�) − k2(2�)E(r,2�)

= 4πk2(2�)
[
χ

(1)
ij (r,2�)Ej (r,2�)

+χ
(2)
ijk(r,�,�)Ej (r,�)Ek(r,�)

]
, (47)

for the electric fields at the frequencies � and 2�. Note that
we have not accounted for the formation of higher harmonics,
consistent with the condition (45).

It follows immediately from (28) that the solutions to (46)
and (47) are given by

Ei(r,�) = Einc,i(r,�) + k2(�)
∫

d3r ′χ (1)
jk (r′,�)Gij (r,r′; �)

×Ek(r′,�) + 2k2(�)
∫

d3r ′χ (2)
jkl(r

′,2�,−�)

×Gij (r,r′; �)Ek(r′,2�)E∗
l (r′,�), (48)

Ei(r,2�) = k2(2�)
∫

d3r ′χ (1)
jk (r′,2�)Gij (r,r′; 2�)

×Ek(r′,2�) + k2(2�)
∫

d3r ′χ (2)
jkl(r

′,�,�)

×Gij (r,r′; 2�)Ek(r′,�)El(r′,�). (49)

Suppose that the scattering medium is a small ball of radius
a with k(�)a � 1 and k(2�)a � 1. The susceptibilities are
taken to be χ

(1)
ij (r; ω) = η

(1)
ij and χ

(2)
ijk(r; ω) = η

(2)
ijk for |r| � a

and to vanish for |r| > a. Equations (48) and (49) thus become

Ei(r,�) = Einc,i(r,�) + k2(�)η(1)
jk

∫
|r′|�a

d3r ′Gij (r,r′; �)

×Ek(r′,�) + 2k2(�)η(2)
jkl

∫
|r′|�a

d3r ′Gij (r,r′; �)

×Ek(r′,2�)E∗
l (r′,�), (50)

Ei(r,2�) = k2(2�)η(1)
jk

∫
|r′|�a

d3r ′Gij (r,r′; 2�)Ek(r′,2�)

+ k2(2�)η(2)
jkl

∫
|r′|�a

d3r ′Gij (r,r′; 2�)

×Ek(r′,�)El(r′,�). (51)

Using the asymptotic form of the Green’s function given in
Eq. (29), we find that the scattered fields are of the form

Es
i (r,�) = Ai(r,�)

eik(�)r

r
, (52)

Ei(r,2�) = Ai(r,2�)
eik(2�)r

r
, (53)

where the scattering amplitudes are defined by

Ai(r,�) = 4π

3
a3(δij − r̂i r̂j )k2(�)

[
η

(1)
jk Ek(0,�)

+ 2η
(2)
jklEk(0,2�)E∗

l (0,�)
]
, (54)

Ai(r,2�) = 4π

3
a3(δij − r̂i r̂j )k2(2�)

[
η

(1)
jk Ej (0,2�)

+ η
(2)
jklEk(0,�)El(0,�)

]
. (55)

Here, we have used the fact that the radius of the scatterer is
small, which leads to the identity∫

|r′|�a

d3r ′e−ik(ω)r̂·r′
g(k(ω)r′) = 4π

3
a3g(0)(1 + O(k(ω)a)),

(56)

for some function g. The local fields Ei(0,�) and Ei(0,2�)
can be calculated perturbatively, as shown in Appendix B 1.

B. Third-order nonlinearity

The treatment of the Kerr effect parallels that of SHG.
We consider the Kerr effect excited by a monochromatic
incident field of frequency �. We assume that the third-order
susceptibility is sufficiently weak so that the condition∑

ω1+ω2+ω3=ω

χ
(3)
ijkl(r; ω1,ω2)Ej (r,ω1)Ek(r,ω2)El(r,ω3)

� χ
(1)
ij (r; ω)Ej (ω) (57)

is obeyed. We then find that (17), together with (16) and the
permutation symmetry of χ

(3)
ijkl , gives rise to the wave equation

∇ × ∇ × E(r,�) − k2(�)E(r,�)

= 4πk2(�)
[
χ

(1)
ij (r,�)Ej (r,�) + 3χ

(3)
ijkl(r,�,�,−�)

×Ej (r,�)Ek(r,�)E∗
l (r,�)

]
. (58)

Note that we have not accounted for the formation of higher
harmonics, consistent with the condition (57). It follows
immediately from (28) that the solution to (58) is given by

Ei(r,�) = Einc,i(r,�) + k2(�)
∫

d3r ′χ (1)
jk (r′,�)Gij (r,r′; �)

×Ek(r′,�) + 3k2(�)
∫

d3r ′χ (3)
jklm(r′,�,�,−�)

×Gij (r,r′; �)Ek(r′,�)El(r′,�)E∗
m(r′,�). (59)

Suppose that the scattering medium is a small ball of
radius a with k(�)a � 1. The susceptibilities are taken to
be χ

(1)
ij (r; ω) = η

(1)
ij and χ

(3)
ijkl(r; ω) = η

(3)
ijkl for |r| � a and to

vanish for |r| > a. Equation (59) thus becomes

Ei(r,�) = Einc,i(r,�) + k2(�)η(1)
jk

∫
|r′|�a

d3r ′Gij (r,r′; �)

×Ek(r′,�) + 3k2(�)η(3)
jklm

∫
|r′|�a

d3r ′Gij (r,r′; �)

×Ek(r′,�)El(r′,�)E∗
m(r′,�). (60)
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Using the asymptotic form of the Green’s function given in
Eq. (29), we find that the scattered field is of the form

Es
i (r,�) = Ai(r,�)

eik(�)r

r
. (61)

where the scattering amplitude is defined by

Ai(r,�) = 4π

3
a3(δij − r̂i r̂j )k2(�)

[
η

(1)
jk Ek(0,�)

+ 3η
(3)
jklmEk(0,�)El(0,�)E∗

m(0,�)
]
. (62)

Once again, we calculate the local fields Ei(0,�) perturba-
tively, as shown in Appendix B 2.

V. NUMERICAL RESULTS

In this section we apply the optical theorem (42) to
linear, second-, and third-order nonlinear media. We present
numerical results for several cases of interest, including
second-harmonic generation and the Kerr effect. We will see
that the effect of the nonlinearities is to modify the linear
scattering resonance of small scatterers.

A. Linear response

We consider an isotropic medium with η
(1)
ij = η(1)δij and

assume that all the higher-order susceptibilities vanish. The
incident field is taken to be a unit-amplitude plane wave of the
form Einc = E0 exp(ik0ŝ · r) with E0 = E0x̂ and ŝ = ẑ. Using
(98) and (91), the extinguished power becomes

Pe = 8�

3
E2

0a
3 Im

(
η(1)

1 − 4π
3 k2a3η(1)GR

)
. (63)

We can write the above formula in a more familiar form in
terms of the renormalized polarizability α, which is defined as

α = α0

1 − k2α0
[
1/a + i 2

3k
] , (64)

where α0 is the zero-frequency polarizability, which is defined
in terms of the linear dielectric permittivity ε(1). Here,

α0 = ε(1) − 1

ε(1) + 2
a3, (65)

0.5 1.0 1.5 2.0
ka

0.5

1.0

1.5

Pe P0

FIG. 1. (Color online) Frequency dependence of extinguished
power for a single linear scatterer. Here, P0 = a2cE2

0 .

0

0.1

0.2

0.3

0.5 1.0 1.5 2.0
ka

1

2

3

4

Pe P0

FIG. 2. (Color online) Frequency dependence of extinguished
power for a single nonlinear scatterer with SHG. Here, P0 = a2cE2

0 .

where ε(1) = 1 + 4πη(1). We find that (63) becomes

Pe = 2�

π
E2

0 Im α. (66)

In Fig. 1 we illustrate the frequency dependence of the
extinguished power for a dielectric scatterer of size a = 100
nm with ε(1) = −5.28. We see that there is a scattering
resonance at ka ≈ 0.7.

B. Second-harmonic generation

We consider the case of a medium with isotropic η(1) and
η(2) obeying permutation symmetry. That is, η(1)

ij = η(1)δij and

η
(2)
111 = η(2), with the other η

(2)
ijk vanishing. We also assume

that the incident field Einc points in the x direction and the
direction of observation ŝ is taken to be in the z direction. It
follows from (B20) that the extinguished power Pe is given by

Pe = 8�

3
a3 Im

{[
η(1)E

(0)
1 (0,�) + η(1)E

(2)
1 (0,�)

+ 2η
(2)
111

[
E

(0)
1 (0,�)

]∗
E

(1)
1 (0,2�)

]
E∗

inc,1(0,�)
}
. (67)

In Fig. 2 we illustrate the frequency dependence of the
extinguished power for SHG. The scatterer size is a = 100 nm
and E0 is taken to have unit amplitude. Plots are shown for ε =
η(2)E0/η

(1) = 0, 0.1, 0.2, 0.3. We see that the resonance shifts

0

0.01

0.02

0.5 1.0 1.5 2.0
ka

0.5

1.0

1.5

Pe P0

FIG. 3. (Color online) Frequency dependence of extinguished
power for a single scatterer with Kerr nonlinearity. Here, P0 = a2cE2

0 .
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FIG. 4. Illustrating the apertureless NSOM experiment.

to lower frequencies and its amplitude increases by more than
a factor of 2 relative to the linear case. The physical situation
considered corresponds to the material β-BaB2O4 [8]. We note
that there does not appear to be a simple physical argument to
predict the extent or direction of the reported frequency shifts.

C. Kerr effect

We consider the case of a medium with isotropic η(1) and
η(3) obeying the permutation symmetry. That is, η

(1)
ij = η(1)δij

and η
(3)
1111 = η(3), with all other η

(3)
ijkl vanishing. We also assume

that the incident field Einc points in the x direction and the
direction of observation ŝ is taken to be in the z direction. It
follows from (B32) that the extinguished power Pe is given by

Pe = 8�

3
a3Im

{[
η(1)E

(0)
1 (0,�) + η(1)E

(1)
1 (0,�)

+ 3η
(3)
1111

[
E

(0)
1 (0,�)]∗E(0)

1 (0,�)E(0)
1 (0,�)

]
×E∗

inc,1(0,�)
}
, (68)

In Fig. 3 we illustrate the frequency dependence of the
extinguished power for the Kerr effect. The scatterer size is
a = 100 nm and E0 is taken to have unit amplitude. Plots are
shown for ε = η(3)E2

0/η
(1) = 0, 0.01, 0.02. We see that the

resonance shifts to higher frequencies relative to the linear
case. As may be expected, the effect is less pronounced than
in the case of SHG. As above, we do not know of a simple
physical argument to predict the extent or direction of the
reported frequency shifts.

VI. APPLICATION TO NEAR-FIELD MICROSCOPY

Near-field scanning optical microscopy (NSOM) is a
widely used experimental tool to overcome the diffraction

(a) x0 = λ/(5π) (b) x0 = λ/(4π) (c) x0 = 3λ/(10π)

FIG. 5. (Color online) Apertureless NSOM images of the ex-
tinguished power Pe for SHG. The susceptibility of the tip is
η

(2)
111E0/η̂

(1) = 0.2. Images are shown in the planes x = x0 as
indicated. The field of view of each image is 3λ/(5π ) × 3λ/(5π ).

(a) x0 = λ/(5π) (b) x0 = λ/(4π) (c) x0 = 3λ/(10π)

FIG. 6. (Color online) Apertureless NSOM images of the far-
field intensity at frequency 2� in SHG. The susceptibility of the
tip is η

(2)
111E0/η̂

(1) = 0.2. Images are shown in the planes x = x0 as
indicated. The field of view of each image is 3λ/(5π ) × 3λ/(5π ).

limit of optical microscopy [23]. In a typical experiment,
an apertured probe (often a metallic-coated optical fiber) is
brought into the near field of a sample and employed as an
optical source. The image is formed by scanning the probe and
recording the intensity of light scattered into the far field. In
a reciprocal arrangement, the probe may be used as a detector
with the illumination incident from the far field. In either case,
the resolution of the resulting image is controlled by the size
of the probe rather than the wavelength of light.

Apertureless NSOM is an alternative to the above approach
in which the illumination and detection both take place in
the far field [23,24]. The experimental setup is illustrated in
Fig. 4, in which an incident field illuminates a metallic tip that
is placed in the near field of the sample. The image is obtained
by scanning the tip and measuring the scattered field with a
detector that is placed in the far field of the sample and the tip.

A refinement of apertureless NSOM is to introduce a
fluorescent tip, which allows for the spectral isolation of the
detected light and improvement in signal-to-noise ratio (SNR)
by background suppression [25]. Spectral isolation may also
be achieved by utilizing a tip that has a nonlinear optical
response [16–22]. This approach has the advantage that it is
not affected by fluorescent photobleaching. Experiments in
which SHG, third-harmonic generation (THG), and four-wave
mixing have been utilized for aptertureless NSOM in a dark-
field configuration have recently been reported [20].

In this section we develop a model for SHG and THG
apertureless NSOM. We consider a system in which a
nonlinear metallic tip is placed in the near field of a pair
of small dielectric particles, which are taken to have only
a linear optical response. The setup is shown in Fig. 4 and

(a) x0 = λ/(5π) (b) x0 = λ/(4π) (c) x0 = 3λ/(10π)

FIG. 7. (Color online) Apertureless NSOM images of the ex-
tinguished power Pe for THG. The susceptibility of the tip is
η

(3)
1111E0/η̂

(1) = 0.2. Images are shown in the planes x = x0 as
indicated. The field of view of each image is 3λ/(5π ) × 3λ/(5π ).
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(a) x0 = λ/(5π) (b) x0 = λ/(4π) (c) x0 = 3λ/(10π)

FIG. 8. (Color online) Apertureless NSOM images of the far-
field intensity at frequency 3� in THG. The susceptibility of the
tip is η

(3)
1111E0/η̂

(1) = 0.2. Images are shown in the planes x = x0 as
indicated. The field of view of each image is 3λ/(5π ) × 3λ/(5π ).

the mathematical details are presented in Appendix C. We
begin with the case of SHG. The sample consists of a pair
of dielectric spheres of radius λ/(10π ) and susceptibility
η̂

(1)
ij = 0.4δij , located at the positions r1 = (0, 3λ

20π
,0) and r2 =

(0,− 3λ
20π

,0), which corresponds to a separation of ≈λ/10. The
tip has radius a = λ/(10π ), linear susceptibility η(1) = −0.4,
second-order susceptibility η

(2)
111, with η

(2)
111E0/η̂

(1) = 0.2 and
all other η

(2)
ijkl vanishing, and is scanned in the planes x = x0.

In all numerical experiments, the incident electric field is
a plane-wave polarized in the x direction with wave vector
k(�)ẑ. In Fig. 5 images of the extinguished power are shown
in three different scan planes corresponding to x0 = 2a, 2.5a,
and 3a. We see that the scatterers are well resolved with
subwavelength separation in the closest scan plane and that
the resolution degrades rapidly with distance from the plane
x = 0. Qualitatively similar results are found for the intensity
of scattered second-harmonic light, as illustrated in Fig. 6.

Next, we consider the case of THG. The setup is the same
as in the case of SHG, except that the third-order susceptibility
of the tip is η

(3)
1111, with η

(3)
1111E

2
0/η̂

(1) = 0.2 and all other η
(3)
ijkl

vanishing. Once again, we find that the scatterers are better
resolved in the closest scan plane. We also note that the relative
extinguished power is smaller than in the case of SHG and that
the intensity of the scattered third harmonic is correspondingly
greater. See Figs. 7 and 8. In Fig. 9 the extinguished power
along a line in the closest scan plan is compared for SHG and
THG. It is found that the the extinguished power for the case

SHG

10xTHG

0.6 0.4 0.2 0.2 0.4 0.6
ky

0.2

0.3

0.4

0.5

0.6

Pe P0

FIG. 9. (Color online) Extinguished power Pe/P0 along the line
defined by x = λ/(5π ) and z = 0, which corresponds to the closest
scanning plane. Graphs are shown for SHG and THG. Here, P0 =
a2cE2

0 .

THG

10xSHG

0.6 0.4 0.2 0.2 0.4 0.6
ky

100

200

300

400

A 2 A0 2

FIG. 10. (Color online) Far-field intensity along the line defined
by x = λ/(5π ) and z = 0, which corresponds to the closest scanning
plane. Graphs are shown for SHG and THG. Here, A0 = aE0.

of a SHG tip is an order of magnitude larger than for a tip
exhibiting THG. The corresponding result for the scattering
amplitude is shown in Fig. 10.

VII. DISCUSSION

In this paper we have presented a generalization of the
optical theorem for the scattering of nonlinear electromagnetic
waves. We consider in some detail the most important
examples of quadratic and cubic nonlinearities. The theory
is illustrated for the case of small inhomogeneities in the
settings of second-harmonic generation and the Kerr effect.
In particular, we describe the manner in which scattering
resonances are modified by the presence of nonlinearity. As
a second application, we consider the problem of computing
the signal in a nonlinear near-field microscopy experiment.
We note that the use of a tip with a nonlinear optical
response affords the possibility of background suppression
and spectral isolation of the detected signal. In future work,
we plan to study the inverse problem for nonlinear near-field
microscopy, whose goal is to reconstruct the linear optical
properties of a sample illuminated by a nonlinear tip. This
will necessitate the development of a scattering theory that
incorporates contributions from the tip and the sample and
their respective interactions, as was done for the corresponding
linear problem [26].
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APPENDIX A: CONSERVATION OF ENERGY

Here, we show that for nondispersive media, the analog of
the Manley-Rowe relations, hold [8]. That is, if the suscepti-
bilities χ

(1)
ij , χ

(2)
ijk , and χ

(3)
ijkl are purely real, then ∇ · S̄ = 0. We

treat the cases of quadratic and cubic nonlinearity separately.
Note that for an incident field consisting of a sum of a finite
number of frequencies, the integral in Eq. (25) becomes a sum.
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1. Quadratic nonlinearity

We begin by inserting the quadratic polarization (15) into the statement of energy conservation (21). We then have

∇ · S(r,ω) = ω

8π3
Im

[
E∗

i (r,ω)χ (1)
ij (r; ω)Ej (ω)

] + ω

8π3
Im

( ∑
ω1+ω2=ω

χ
(2)
ijk(r; ω1,ω2)E∗

i (r,ω)Ej (r,ω1)Ek(r,ω2)

)
. (A1)

Making use of (25), the time-averaged divergence of energy current is

∇ · S̄(r) =
∑

ω

ω

8π3
Im

[
χ

(1)
ij (r; ω)E∗

i (r,ω)Ej (r,ω)
] +

∑
ω1+ω2=ω

ω

8π3
Im

[
χ

(2)
ijk(r; ω1,ω2)E∗

i (r,ω)Ej (r,ω1)Ek(r,ω2)
]
. (A2)

The first sum is zero since χ
(1)
ij (r; ω)E∗

i (r,ω)Ej (r,ω) is real for each ω, due to the permutation symmetry of χ
(1)
ij . The second

sum vanishes as a consequence of the overall permutation symmetry of χ
(2)
ijk and the constraint ω1 + ω2 = ω.

2. Cubic nonlinearity

For cubic nonlinearity we have

∇ · S̄(r) =
∑

ω

ω

8π3
Im

[
χ

(1)
ij (r; ω)E∗

i (r,ω)Ej (r,ω)
] +

∑
ω1+ω2+ω3=ω

ω

8π3
Im

[
χ

(3)
ijkl(r; ω1,ω2,ω3)E∗

i (r,ω)Ej (r,ω1)Ek(r,ω2)El(r,ω3)
]
.

(A3)

The first sum is zero by the same argument as above. The second sum can be shown to be zero using the overall permutation
symmetry of χ

(3)
ijkl and the constraint ω1 + ω2 + ω3 = ω.

APPENDIX B: CALCULATION OF LOCAL FIELDS

Here, we calculate the local fields of small scatterers for both second-harmonic generation and the Kerr effect.

1. Second-harmonic generation

We now calculate the local fields Ei(0,�) and Ei(0,2�). To proceed, we set r = 0 in Eqs. (50) and (51) and thus obtain

Ei(0,�) = Einc,i(0,�) + k2(�)η(1)
jk

∫
|r′|�a

d3r ′Gij (0,r′; �)Ek(r′,�) + 2k2(�)η(2)
jkl

∫
|r′|�a

d3r ′Gij (0,r′; �)Ek(r′,�)E∗
l (r′,2�),

(B1)

Ei(0,2�) = k2(2�)η(1)
jk

∫
|r′|�a

d3r ′Gij (0,r′; 2�)Ek(r′,2�) + k2(�)η(2)
jkl

∫
|r′|�a

d3r ′Gij (0,r′; 2�)Ek(r′,�)El(r′,�). (B2)

Next, we use the fact that for a function gj ,

∫
|r′|�a

d3r ′Gij (0,r′; ω)gj (r′,ω) = 4πa3

3

(
1

a
+ i

2

3
k(ω) − 1

a3k2(ω)
+ O(k2(ω)a)

)
gi(0,ω)[1 + O(k(ω)a)], (B3)

which is derived in AppendixB 3. We then find that (B1) and (B2) lead to a system of equations for the local fields which are of
the form

Ei(0,�) = Einc,i(0,�) + 4π

3
k2(�)a3GR(�)

[
η

(1)
ij Ej (0,�) + 2η

(2)
ijkEj (0,2�)E∗

k (0,�)
]
, (B4)

Ei(0,2�) = 4π

3
k2(2�)a3GR(2�)

[
η

(1)
ij Ej (0,2�) + η

(2)
ijkEj (0,�)Ek(0,�)

]
, (B5)

where

GR(ω) = 1

a
+ i

2

3
k(ω) − 1

a3k2(ω)
. (B6)
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The above is a set of nonlinear algebraic equations which we solve perturbatively. To proceed, we introduce a parameter ε to
scale the nonlinear terms in Eqs. (B4) and (B5):

Ei(0,�) = Einc,i(0,�) + 4π

3
k2(�)a3GR(�)

[
η

(1)
ij Ej (0,�) + 2εη

(2)
ijkEj (0,2�)E∗

k (0,�)
]
, (B7)

Ei(0,2�) = 4π

3
k2(2�)a3GR(2�)

[
η

(1)
ij Ej (0,2�) + εη

(2)
ijkEj (0,�)Ek(0,�)

]
. (B8)

We then introduce asymptotic expansions for the fields of the form

Ei(0,�) = E
(0)
i (0,�) + εE

(1)
i (0,�) + ε2E

(2)
i (0,�) + · · · , (B9)

Ei(0,2�) = E
(0)
i (0,2�) + εE

(1)
i (0,2�) + ε2E

(2)
i (0,2�) + · · · . (B10)

For simplicity, we consider the case of isotropic η(1) and
η(2) obeying permutation symmetry. That is, η(1)

ij = η(1)δij and

η
(2)
111 = η(2), with the other η

(2)
ijk vanishing. We also assume

that the incident field Einc points in the x direction and the
direction of observation ŝ is taken to be in the z direction.
To simplify the notation, we set �1 = �, �2 = 2�, and
write (Ei)j = Ej (0,�i), ki = �i/c, (Einc)i = Einc,i(0,�), and
GRi = GR(�i). Then, (B7) and (B8) become

(E1)i = (Einc)i + 4π

3
k2

1a
3GR1

[
η(1)(E1)i + 2εη

(2)
ijk(E∗

1 )j (E2)k
]
,

(E2)i = 4π

3
k2

2a
3GR2

[
η(1)(E2)i + εη

(2)
ijk(E1)j (E1)k

]
. (B11)

Next, we expand the fields (Ei)j according to (B4) and (B5)
and collect like powers of ε. At O(1) we have that

(E1)(0)
i = (Einc)i + 4π

3
k2

1a
3GR1η

(1)(E1)(0)
i ,

(B12)
(E2)(0)

i = 0.

Thus,

(E1)(0)
1 = (Einc)i

1 − 4π
3 k2

1a
3GR1η(1)

. (B13)

At O(ε) we have

(E1)(1)
i = 4π

3
k2

1a
3GR1η

(1)(E1)(1)
i ,

(B14)
(E2)(1)

i = 4π

3
k2

2a
3GR2

[
η(1)(E2)(1)

i + η
(2)
ijk(E1)(0)

j (E1)(0)
k

]
,

which gives

(E2)(1)
1 = 4π

3
k2

2a
3GR2

[
η(1)(E2)(1)

3 + η
(2)
111(E1)(0)

1 (E1)(0)
1

]
.

(B15)

Thus,

(E2)(1)
1 =

4π
3 k2

2a
3GR2η

(2)
111(E1)(0)

1 (E1)(0)
1

1 − 4π
3 k2

2a
3GR2η(1)

. (B16)

At O(ε2) we obtain

(E1)(2)
i = 4π

3
k2

1a
3GR1

[
η(1)(E1)(2)

i + 2η
(2)
ijk(E∗

1 )(0)
j (E2)(1)

k

]
,

(B17)

which gives

(E1)(2)
1 = 4π

3
k2

1a
3GR1

[
η(1)(E1)(2)

1 + 2η
(2)
111(E2)(1)

1 (E∗
1 )(0)

1

]
.

(B18)

Thus,

(E1)(2)
1 =

4π
3 k2

1a
3GR12η

(2)
111(E∗

1 )(0)
1 (E2)(1)

1

1 − 4π
3 k2

1a
3GR1η(1)

. (B19)

We can now calculate the extinguished power Pe from (41).
We find that up to the order O(ε2)

Pe = 8�1

3
a3 Im

{[
η(1)(E1)(0)

1 + η(1)(E1)(2)
1

+ 2η
(2)
111(E∗

1 )(0)
1 (E2)(1)

1

]
(Einc)∗1

}
. (B20)

2. Kerr effect

Here, we calculate the local field Ei(0,�). To proceed, we
set r = 0 in Eq. (60) and thus obtain

Ei(0,�) = Einc,i(0,�) + k2(�)η(1)
jk

∫
|r′|�a

d3r ′Gij (0,r′; �)

×Ek(r′,�) + 3k2(�)η(3)
jklm

∫
|r′|�a

d3r ′Gij (0,r′; �)

×Ek(r′,�)El(r′,�)E∗
m(r′,�). (B21)

We then find that (B21) leads to an equation for the local field
which is of the form

Ei(0,�) = Einc,i(0,�) + 4π

3
k2a3(�)GR(�)

[
η(1)Ei(0,�)

+ 3η
(3)
ijklE

∗
j (0,�)Ek(0,�)El(0,�)

]
. (B22)

The above is a nonlinear algebraic equation which we solve
perturbatively. To proceed, we introduce a parameter ε to scale
the nonlinear terms in Eq. (B22):

Ei(0,�) = Einc,i(0,�) + 4π

3
k2a3(�)GR(�)

[
η(1)Ei(0,�)

+ 3εη
(3)
ijklE

∗
j (0,�)Ek(0,�)El(0,�)

]
. (B23)

We then introduce asymptotic expansions for the field of the
form

Ei(0,�) = E
(0)
i (0,�) + εE

(1)
i (0,�) + ε2E

(2)
i (0,�) + · · · .

(B24)
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For simplicity, we consider the case of isotropic η(1) and η(3)

obeying the permutation symmetry. That is, η
(1)
ij = η(1)δij and

η
(3)
1111 = η(3), with all other η

(3)
ijkl vanishing. We also assume

that the incident field Einc points in the x direction and the
direction of observation ŝ is taken to be in the z direction.
To simplify the notation, we write (E)j = Ej (0,�), k = �/c,
and GR = GR(�). Then, (B23) becomes

(E)i = (Einc)i + 4π

3
k2a3GR

[
η(1)(E)i +3εη

(3)
ijkl(E

∗)j (E)k(E)l
]
.

(B25)

Next, we expand the fields (E)i according to (B24) and collect
like powers of ε. At O(1) we have that

(E)(0)
i = (Einc)i + 4π

3
k2a3GRη(1)(E)(0)

i . (B26)

Thus,

(E)(0)
1 = Einc,i

1 − 4π
3 k2a3GRη(1)

. (B27)

At O(ε) we have

(E)(1)
i = 4π

3
k2a3GR

[
η(1)(E)(1)

i + 3η
(3)
ijkl(E

∗)(0)
j (E)(0)

k (E)(0)
l

]
,

(B28)

which gives

(E)(1)
i = 4π

3
k2a3GR

[
η(1)(E)(1)

i + 3η
(3)
i111(E∗)(0)

1 (E)(0)
1 (E)(0)

1

]
.

(B29)

Thus,

(E)(1)
i (0) =

4π
3 k2a3GR3η

(3)
i111(E∗)(0)

1 (0)(E)(0)
1 (0)(E)(0)

1 (0)

1 − 4π
3 k2a3GRη(1)

(B30)

and

(E)(1)
1 (0) =

4π
3 k2a3GR3η

(3)
1111(E∗)(0)

1 (0)(E)(0)
1 (0)(E)(0)

1 (0)

1 − 4π
3 k2a3GRη(1)

.

(B31)

We can now calculate the extinguished power Pe from (41).
We find that up to the order O(ε),

Pe = 8�1

3
a3 Im

{[
η(1)(E)(0)

1 + η(1)(E)(1)
1

+ 3η
(3)
1111(E∗)(0)

1 (E)(0)
1 (E)(0)

1

]
(Einc)∗1

}
. (B32)

3. Evaluation of the integral (B3)

Here, we show∫
|r′|�a

d3r ′Gij (0,r′; ω)

= 4πa3

3

(
1

a
+ i

2

3
k(ω) − 1

a3k2(ω)
+ O(k2(ω)a)

)
. (B33)

For notational convenience, we put k = k(�). Then,∫
|r′|�a

d3r ′Gij (0,r′; ω) =
∫

|r|�a

d3r

(
δij + 1

k2
∂i∂j

)
eikr

r
.

(B34)

The second term vanishes when i 
= j . Using the fact that

(∇2 + k2)
eikr

r
= −4πδ(r), (B35)

we have ∫
|r|�a

d3r
1

k2
∂i∂j

eikr

r

=
∫

|r|�a

d3rδij

1

k2

1

3

(
− k2 eikr

r
− 4πδ(r)

)

= −δij

( ∫
|r|�a

d3r
eikr

3r
+ 4π

3k2

)
. (B36)

So∫
|r′|�a

d3r ′Gij (0,r′; ω) = δij

(∫
|r|�a

d3r
2

3

eikr

r
− 4π

3k2

)
.

(B37)

Since∫
|r|�a

d3r
eikr

r
= 4πa3

3

(
3

2a
+ ik + O(k2a)

)
, (B38)

we obtain the required result.

APPENDIX C: NSOM

Here, we derive the basic equations governing the NSOM experiments described in Sec. VI.

1. Second-harmonic generation

The sample and the tip are taken to be small balls of radius a centered at r0, r1, and r2. The corresponding susceptibilities are
χ

(1)
ij (r; ω) = η̂

(1)
ij for |r − r0| � a, χ

(1)
ij (r; ω) = η

(1)
ij for |r − r1| � a and |r − r2| � a, and χ

(2)
ijk(r; ω) = η

(2)
ijk for |r| � a. In this

setting, the solutions to the wave equations of SHG (46) and (47) are

Ei(r,�) = Einc,i(r,�) + k2(�)η̂(1)
jk

∫
|r′−r0|�a

d3r ′Gij (r,r′; �)Ek(r′,�) + k2(�)η(1)
jk

∫
|r′−r1|�a

d3r ′Gij (r,r′; �)Ek(r′,�)

+ k2(�)η(1)
jk

∫
|r′−r2|�a

d3r ′Gij (r,r′; �)Ek(r′,�) + 2k2(�)η(2)
jkl

∫
|r′−r0|�a

d3r ′Gij (r,r′; �)Ek(r′,2�)E∗
l (r′,�), (C1)
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Ei(r,2�) = k2(2�)η̂(1)
jk

∫
|r′−r0|�a

d3r ′Gij (r,r′; �)Ek(r′,2�) + k2(2�)η(1)
jk

∫
|r′−r1|�a

d3r ′Gij (r,r′; �)Ek(r′,2�)

+ k2(2�)η(1)
jk

∫
|r′−r2|�a

d3r ′Gij (r,r′; �)Ek(r′,2�) + k2(2�)η(2)
jkl

∫
|r′−r0|�a

d3r ′Gij (r,r′; �)Ek(r′,�)El(r′,�). (C2)

Using the asymptotic form of the Green’s function given in Eq. (29), we find that the scattered fields are of the form

Es
i (r,�) = Ai(r,�)

eik(�)r

r
, (C3)

Es
i (r,2�) = Ai(r,2�)

eik(2�)r

r
, (C4)

where the scattering amplitudes are defined by

Ai(r,�) = 4π

3
a3(δij − r̂i r̂j )k2(�)

[
η̂

(1)
jk Ek(r0,�) + 2η

(2)
jklEk(r0,2�)E∗

l (r0,�)
]
eik(�)r̂·r0

+ 4π

3
a3(δij − r̂i r̂j )k2(�)η(1)

jk Ek(r1,�)eik(�)r̂·r1 + 4π

3
a3(δij − r̂i r̂j )k2(�)η(1)

jk Ek(r2,�)eik(�)r̂·r2 , (C5)

Ai(r,2�) = 4π

3
a3(δij − r̂i r̂j )k2(2�)

[
η̂

(1)
jk Ej (r0,2�) + η

(2)
jklEk(r0,�)El(r0,�)

]
eik(�)r̂·r0

+ 4π

3
a3(δij − r̂i r̂j )k2(2�)η(1)

jk Ek(r1,2�)eik(2�)r̂·r1 + 4π

3
a3(δij − r̂i r̂j )k2(2�)η(1)

jk Ek(r2,2�)eik(2�)r̂·r2 . (C6)

Setting r = r0, r = r1, and r = r2 in Eqs. (C1) and (C2), and carrying out the indicated integrations, we obtain

Ei(r0,�) = Einc,i(r0,�) + 4π

3
k2(�)a3GR(�)

[
η̂

(1)
ij Ej (r0,�) + 2η

(2)
ijkEj (r0,2�)E∗

k (r0,�)
]

+4π

3
k2(�)a3Gij (r1,r0; �)η(1)

jk Ek(r1,�) + 4π

3
k2(�)a3Gij (r2,r0; �)η(1)

jk Ek(r2,�), (C7)

Ei(r0,2�) = 4π

3
k2(2�)a3GR(2�)

[
η̂

(1)
ij Ej (r0,2�) + η

(2)
ijkEj (r0,�)Ek(r0,�)

] + 4π

3
k2(2�)a3Gij (r1,r0; 2�)η(1)

jk Ek(r1,2�)

+ 4π

3
k2(2�)a3Gij (r2,r0; 2�)η(1)

jk Ek(r2,2�), (C8)

Ei(r1,�) = Einc,i(r1,�) + 4π

3
k2(�)a3GR(�)η(1)

ij Ej (r1,�) + 4π

3
k2(�)a3Gij (r1,r0; �)

[
η̂

(1)
jk Ek(r0,�)

+ 2η
(2)
jklEk(r0,2�)E∗

l (r0,�)
] + 4π

3
k2(�)a3Gij (r1,r2; �)η(1)

jk Ek(r2,�), (C9)

Ei(r1,2�) = 4π

3
k2(2�)a3GR(2�)η(1)

ij Ej (r1,2�) + 4π

3
k2(2�)a3Gij (r1,r0; 2�)

[
η̂

(1)
jk Ek(r0,2�) + η

(2)
jklEk(r0,�)El(r0,�)

]
+ 4π

3
k2(2�)a3Gij (r1,r2; 2�)η(1)

jk Ek(r2,2�), (C10)

Ei(r2,�) = Einc,i(r2,�) + 4π

3
k2(�)a3GR(�)η(1)

ij Ej (r2,�) + 4π

3
k2(�)a3Gij (r2,r0; �)

[
η̂

(1)
jk Ek(r0,�)

+ 2η
(2)
jklEk(r0,2�)E∗

l (r0,�)
] + 4π

3
k2(�)a3Gij (r2,r1; �)η(1)

jk Ek(r1,�), (C11)

Ei(r2,2�) = 4π

3
k2(2�)a3GR(2�)η(1)

ij Ej (r2,2�) + 4π

3
k2(2�)a3Gij (r2,r0; 2�)

[
η̂

(1)
jk Ek(r0,2�) + η

(2)
jklEk(r0,�)El(r0,�)

]
+ 4π

3
k2(2�)a3Gij (r2,r1; 2�)η(1)

jk Ek(r1,2�). (C12)

Following the procedure indicated in Appendix B, the above equations can be solved perturbatively for the local fields.

2. Third-harmonic generation

As above, the sample and the tip are small balls of radius a centered at r0, r1, and r2. The susceptibilities are χ
(1)
ij (r; ω) = η̂

(1)
ij

for |r − r0| � a, χ (1)
ij (r; ω) = η

(1)
ij for |r − r1| � a and |r − r2| � a, and χ

(3)
ijkl(r; ω) = η

(3)
ijkl for |r| � a. We begin with the general
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cubic-nonlinear wave equations which are correct to order ε:

∇ × ∇ × E(r,�) − k2(�)E(r,�) = 4πk2(�)
[
χ

(1)
ij (r,�)Ej (r,�) + 3χ

(3)
ijkl(r,�,�, − �)Ej (r,�)Ek(r,�)E∗

l (r,�)
]
, (C13)

∇ × ∇ × E(r,3�) − k2(3�)E(r,3�) = 4πk2(3�)
[
χ

(1)
ij (r,3�)Ej (r,3�) + χ

(3)
ijkl(r,�,�,�)Ej (r,�)Ek(r,�)El(r,�)

]
. (C14)

It follows immediately from (28) that the solution to (C13) and (C14) is given by

Ei(r,�) = Einc,i(r,�) + k2(�)
∫

d3r ′χ (1)
jk (r′,�)Gij (r,r′; �)Ek(r′,�)

+3k2(�)
∫

d3r ′χ (3)
jklm(r′,�,�, − �)Gij (r,r′; �)Ek(r′,�)El(r′,�)E∗

m(r′,�), (C15)

Ei(r,3�) = k2(3�)
∫

d3r ′χ (1)
jk (r′,3�)Gij (r,r′; 3�)Ek(r′,3�)

+3k23(�)
∫

d3r ′χ (3)
jklm(r′,�,�,�)Gij (r,r′; 3�)Ek(r′,�)El(r′,�)Em(r′,�). (C16)

For the specific setup described at the beginning of this section, (C15) and (C16) become

Ei(r,�) = Einc,i(r,�) + k2(�)η̂(1)
jk

∫
|r′|�a

d3r ′Gij (r,r′; �)Ek(r′,�) + k2(�)η(1)
jk

∫
|r′−r1|�a

d3r ′Gij (r,r′; �)Ek(r′,�)

+ k2(�)η(1)
jk

∫
|r′−r2|�a

d3r ′Gij (r,r′; �)Ek(r′,�) + 3k2(�)η(3)
jklm

∫
|r′|�a

d3r ′Gij (r,r′; �)Ek(r′,�)El(r′,�)E∗
m(r′,�),

(C17)

Ei(r,3�) = k2(3�)η̂(1)
jk

∫
|r′|�a

d3r ′Gij (r,r′; 3�)Ek(r′,3�) + k2(3�)η(1)
jk

∫
|r′−r1|�a

d3r ′Gij (r,r′; 3�)Ek(r′,3�)

+k2(3�)η(1)
jk

∫
|r′−r2|�a

d3r ′Gij (r,r′; 3�)Ek(r′,3�)

+ k2(3�)η(3)
jklm

∫
|r′|�a

d3r ′Gij (r,r′; 3�)Ek(r′,�)El(r′,�)Em(r′,�). (C18)

Using the asymptotic form of the Green’s function given in Eq. (29), we find that the scattered field is of the form

Es
i (r,�) = Ai(r,�)

eik(�)r

r
, (C19)

Es
i (r,3�) = Ai(r,3�)

eik(3�)r

r
, (C20)

where the scattering amplitude is defined by

Ai(r,�) = 4π

3
a3(δij − r̂i r̂j )k2(�)

[
η̂

(1)
jk Ek(r0,�) + 3η

(3)
jklmEk(r0,�)El(r0,�)E∗

m(r0,�)
]

+ 4π

3
a3(δij − r̂i r̂j )k2(�)η(1)

jk Ek(r1,�)eik(�)r̂·r1 + 4π

3
a3(δij − r̂i r̂j )k2(�)η(1)

jk Ek(r2,�)eik(�)r̂·r2 , (C21)

Ai(r,3�) = 4π

3
a3(δij − r̂i r̂j )k2(3�)

[
η̂

(1)
jk Ek(r0,3�) + η

(3)
jklmEk(r0,�)El(r0,�)Em(r0,�)

]
+ 4π

3
a3(δij − r̂i r̂j )k2(3�)η(1)

jk Ek(r1,3�)eik(3�)r̂·r1 + 4π

3
a3(δij − r̂i r̂j )k2(3�)η(1)

jk Ek(r2,3�)eik(3�)r̂·r2 . (C22)

Setting r = r0, r = r1, and r = r2 in Eqs. (C18) and (C18), and carrying out the indicated integrations we find that

Ei(r0,�) = Einc,i(r0,�) + 4π

3
a3k2(�)η̂(1)

ij GR(�)Ej (r0,�) + 4π

3
a3k2(�)η(1)

jk Gij (r0,r1; �)Ek(r1,�)

+ 4π

3
a3k2(�)η(1)

jk Gij (r,r2; �)Ek(r2,�) + 4π

3
a3k2(�)3η

(3)
ijklGR(�)Ej (r0,�)Ek(r0,�)E∗

l (r0,�), (C23)

Ei(r1,�) = Einc,i(r1,�) + 4π

3
a3k2(�)η̂(1)

jk Gij (r1,r0; �)Ek(r0,�) + 4π

3
a3k2(�)η(1)

ij GR(r,r1; �)Ej (r′,�)

+ 4π

3
a3k2(�)η(1)

jk Gij (r1,r2; �)Ek(r2,�) + 4π

3
a3k2(�)3η

(3)
jklmGij (r1,r0; �)Ek(r0,�)El(r0,�)E∗

m(r0,�), (C24)
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Ei(r2,�) = Einc,i(r2,�) + 4π

3
a3k2(�)η̂(1)

jk Gij (r2,r0; �)Ek(r0,�) + 4π

3
a3k2(�)η(1)

jk Gij (r2,r1; �)Ek(r1,�)

+ 4π

3
a3k2(�)η(1)

ij GR(�)Ej (r2,�) + 4π

3
a3k2(�)3η

(3)
jklmGij (r2,r0; �)Ek(r0,�)El(r0,�)E∗

m(r0,�), (C25)

Ei(r0,3�) = 4π

3
a3k2(3�)η̂(1)

ij GR(3�)Ej (r0,3�) + 4π

3
a3k2(3�)η(1)

jk Gij (r0,r1; 3�)Ek(r1,3�)

+ 4π

3
a3k2(3�)η(1)

jk Gij (r0,r2; 3�)Ek(r2,3�) + 4π

3
a3k2(3�)η(3)

jklmGR(3�)Ek(r0,�)El(r0,�)Em(r0,�), (C26)

Ei(r1,3�) = 4π

3
a3k2(3�)η̂(1)

jk Gij (r1,r0; 3�)Ek(r0,3�) + 4π

3
a3k2(3�)η(1)

ij GR(3�)Ej (r1,3�)

+4π

3
a3k2(3�)η(1)

jk Gij (r1,r2; 3�)Ek(r2,3�) + 4π

3
a3k2(3�)η(3)

jklmGij (r1,r0; 3�)Ek(r0,�)El(r0,�)Em(r0,�),

(C27)

Ei(r2,3�) = 4π

3
a3k2(3�)η̂(1)

jk Gij (r2,r0; 3�)Ek(r0,3�) + 4π

3
a3k2(3�)η(1)

jk Gij (r2,r1; 3�)Ek(r1,3�)

+4π

3
a3k2(3�)η(1)

ij GR(3�)Ek(r2,3�) + 4π

3
a3k2(3�)η(3)

jklmGij (r2,r0; 3�)Ek(r0,�)El(r0,�)Em(r0,�). (C28)

Following the procedure indicated in Appendix B, the above equations can be solved perturbatively for the local fields.
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