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Suppression of Rabi oscillations in hybrid optomechanical systems
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In a hybrid optomechanical setup consisting of a two-level atom in a cavity with a pendular end mirror, the
interplay between the light field’s radiation pressure on the mirror and the dipole interaction with the atom can
lead to an effect, which manifests itself in the suppression of Rabi oscillations of the atomic population. This
effect is present when the system is in the single-photon strong-coupling regime and has an analogy in the photon
blockade of optomechanics.
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I. INTRODUCTION

In the Jaynes-Cummings model, a single atomic dipole
interacting with a single photon of an electromagnetic field
mode in a cavity periodically exchanges the excitation between
the electronic and photonic degree of freedom. In this article
we ask ourselves: How does this behavior change, when the
cavity’s mirrors are not fixed, but can move in time as an
additional quantum dynamical degree of freedom? How does
the quantumness of the mirror motion manifest itself in the
dynamics? And, what happens if several photons are present
in the cavity field?

The recent experimental success in cavity optomechanics
[1–4], notably the demonstration of laser cooling of the cavity’s
mirror motion towards the ground state of the confining
harmonic potential, pioneers near-future experiments with
extended, hybrid systems. An obvious extension of the
paradigmatic optomechanical system, i.e., an optical cavity
coupled to a mechanical element by radiation forces whose
motion changes the cavity’s boundaries, can be achieved
by adding a single two-level system which couples to the
cavity light field by dipole interaction, thereby combining
cavity optomechanics with cavity quantum electrodynamics.
Besides conventional quantum electrodynamics experiments
with macroscopic cavities investigations of such systems
are of particular importance for solid-state systems, such as
two-level systems in optomechanical crystals [5–7]. In circuit
electromechanical setups the coupling to two-level systems
has already been demonstrated [8–11].

Especially solid-state systems (leaving aside the two-level
system in contemporary realizations) are candidates for reach-
ing the so-called single-photon strong-coupling regime [12],
where the radiation force of a single photon is strong enough to
displace the harmonically oscillating mechanical element by
more than the extension of its ground-state wave packet. This
regime is entered, when the mechanical frequency becomes
much smaller than the optomechanical coupling. Then, the
nonlinearity of the radiation force becomes clearly apparent
and manifests itself in phenomena like the photon blockade
effect [13], which is caused by an effective photon-photon
interaction mediated by the mechanical degree of freedom.
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When adding a single atom to the optomechanical cavity,
the resulting hybrid system does not only reflect the radiation
forces of the cavity-mirror interaction, but also includes the
dipole interaction between a near-resonant atomic transition
and the cavity field, drastically altering the dynamics as
a whole. The richness in the dynamics of such a highly
nonlinear system has begun to be explored in several general
investigations of its coherent motion [14–16] and can be
exploited to prepare nonclassical states, similar as in nonlinear
optical setups [17,18]. In this article we focus on the possibility
to dynamically suppress the Rabi oscillation of the atomic
population due to the mirror motion. The idea behind this can
best be illustrated having a classical picture in mind, i.e., when
the mirror is moving parametrically along a given trajectory.
Then, an initially tuned atom-cavity interaction becomes
disturbed by the mirror motion due to the change of the cavity’s
resonance frequency being a function of the cavity length. If
the mirror elongation is large enough, the modified atom-cavity
detuning can lead to reduced Rabi oscillations of the quantum
electrodynamic subsystem. We will develop this simple classi-
cal picture beyond the trivial parametric motion towards a fully
dynamical one in the quantum regime. The Wigner function
will be used to represent the dynamics of the mechanical
degree of freedom, which can exhibit strong nonclassical
characteristics deep in the nonlinear parameter regime. Even
when dissipation and variation of the initial state is included,
characteristic features of the suppression can be distinguished.

II. THE HYBRID OPTOMECHANICAL SETUP

We consider an optomechanical resonator with a two-level
atom placed at a fixed position within the resonator. The
transition frequency between the ground state |g〉 and the
excited state |e〉 is assumed to be resonant with the frequency
ω of the cavity when its end mirror is in equilibrium position.
The atomic dipole couples via Jaynes-Cummings interaction
[19] to the electromagnetic field of the cavity while the cavity
interacts with the mechanical oscillator of frequency ν and
mass M by radiation pressure. We denote the dipole-cavity
interaction strength and the optomechanical coupling strength
by g and χ , respectively. A schematic picture of this hybrid
quantum system is shown in Fig. 1. The total Hamiltonian of
the hybrid systems reads

H = Hom + Htls + HJC, (1)
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FIG. 1. Hybrid optomechanical setup consisting of a single-mode
cavity with a moving end mirror confined in a harmonic potential of
frequency ν and a resonant two-level atom at a fixed position. The
cavity couples to the mechanical oscillator by radiation pressure with
a coupling strength χ and to the two-level atom via dipole interaction
of strength g.

where the operator Hom labels the standard Hamiltonian of
optomechanics [20]

Hom = �ωa†a + �νb†b − �χa†a(b + b†). (2)

Here, a and a† represent annihilation and creation operators
of the cavity mode, and b and b† for the mechanical
oscillator. Its position operator relative to the equilibrium
is x = ξ (b + b†) where the harmonic oscillator length scale
ξ = √

�/2Mν denotes the extension of the ground-state wave
packet. The Hamiltonians of the two-level system and the
Jaynes-Cummings interaction are given by

Htls = �ω|e〉〈e|, (3)

HJC = �g[a†|g〉〈e| + a|e〉〈g|], (4)

respectively.

III. DYNAMICS OF THE OPTOMECHANICAL
SUBSYSTEM

Before we delve into the motion of the full hybrid system we
set the stage by recalling the dynamics of the optomechanical
system in absence of the atom. The eigenstates of Hom are
given by [21]

|n〉D(nβ)|m〉mec (5)

with the definition β = χ/ν and displacement operators
D(α) = exp[αb† − α∗b]. The states |n〉 and |m〉mec stand
for the cavity and mechanical Fock states, respectively. The
propagation of the mechanical oscillator, initially prepared in
its ground state, is given by the coherent state [21]

|η(t)〉mec = |nβ(1 − e−iνt )〉mec. (6)

Figure 2(a) shows the trajectories in Wigner phase space for
the values n = 1 and n = 2 of the cavity photon number. The
radiation pressure pushes the mirror out of its equilibrium
position, resulting in a modified cavity length and thereby
a modified frequency. The maximum displacement from the

(a)

(b)

FIG. 2. (a) Circular trajectories of the mechanical oscillator’s
Wigner function for cavity photon numbers n = 1 (solid) and n = 2
(dashed) if the mirror was initially prepared in its ground state. The
radii are proportional to β, while for n = 0 the Wigner function
rests centered around the origin. (b) Trajectory of the oscillator wave
packet in the harmonic potential modified by the radiation pressure.
The 〈x〉(n)

max mark the maximal elongations.

equilibrium position

〈x〉(n)
max = 2ξ Re[nβ(1 − e−iνt )] = 4nβξ (7)

is reached at time t = π/ν. In the single-photon strong-
coupling regime this displacement amounts to a significant
change in the cavity frequency during the dynamics.

IV. COHERENT DYNAMICS OF THE HYBRID SYSTEM

For the coherent dynamics of the hybrid system including
cavity, atom, and mechanical oscillator, we focus on the initial
state |ψ(t = 0)〉 = |e〉|0〉|0〉mec. Experimentally such a state
can be prepared with the help of ground-state cooling of
the mechanical oscillator and standard optical pumping for
the atomic state. Ground-state cooling for an optomechanical
crystal was already demonstrated [2] and is expected to be
realizable in similar hybrid systems in near-future experiments.

The position of the mirror determines the frequency of
the cavity, which comes out most clearly when rewriting the
Hamiltonian (1) in the form

H = �

[
ω − χ

ξ
x

]
a†a + �νb†b + Htls + HJC. (8)

The mechanical oscillator in its maximally elongated mean
position, Eq. (7), results in an effective detuning δ̄n = 4nβχ
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between the cavity and the atom. From this consideration
follows that for a distinct effect of the mirror’s motion on the
Rabi oscillation one has to be in the strong-coupling regime
with β � 1. In this regime we cannot resort to the approximate
solution of single polariton optomechanics [22].

A. Limiting cases

Nevertheless, to provide first insight into the dynamics
we start our investigation with two limiting cases, namely,
g � χ,ν and β � 1, that allow for an approximate analytical
treatment.

1. Slow Rabi oscillations

In the case of small Jaynes-Cummings coupling, i.e.,
g � ν,χ , we focus on the parameter region β ≈ 1 for strong
optomechanical coupling and restrict the following discussion
to the subspace of only one excitation in the quantum elec-
trodynamical subsystem, remarking that the generalization is
straightforward. In the interaction picture and after displacing
the Hamiltonian (1) with D(−β|g,1〉〈g,1|) it takes on the form

H̃ = �g
[
eiβ2νtD(βeiνt )|e,0〉〈g,1| + H.c.

]
, (9)

apart from a constant energy, in the relevant subspace spanned
by the two states |g,1〉 = |g〉|1〉 and |e,0〉 = |e〉|0〉. A rotating-
wave approximation can be performed after expanding the
displacement operator in a power series and taking only
those terms that rotate with the smallest occurring frequency,
which is given by (β2 − 1)ν for β ≈ 1. In the expansion of
D(β exp[iνt]) these surviving terms contain a single operator
b more than b†. Applying this procedure to (9) leads to the
approximate Hamiltonian

H̃RWA = �g
[
ei(β2−1)νtf (b†b)b|e,0〉〈g,1| + H.c.

]
, (10)

where the function f (m) can be obtained by evaluating the
matrix elements mec〈m|D(β)|m + 1〉mec [23] which explicitly
results in the expression

f (m) = −β

m + 1
e−β2/2L(1)

m (β2) (11)

with the generalized Laguerre polynomials L(α)
m (x). Within

this approximation the Hamiltonian is a Jaynes-Cummings-
type interaction between the atom-cavity subsystem and the
mechanical oscillator with an additional phonon number
dependent factor that does not alter the eigenstates, i.e., the
dressed states. In the original picture the Hamiltonian then
reads

HRWA =�νb†b − �χ |g,1〉〈g,1|(b + b†)

+ �g[f (b†b)bD†(β)|e,0〉〈g,1| + H.c.] (12)

and its eigenstates are dressed states in which the
state |g,1〉|m〉mec is displaced by D(β) while the state
|e,0〉|m + 1〉mec remains undisplaced. For the initial
state where the atom is prepared in its excited state and the
mechanical oscillator in its ground state, i.e., |ψ(t = 0)〉 =
|e,0〉|0〉mec, the time evolution results in the reduced density

operators

μRWA(t) =[cos2(�t) + cos2 ϑ sin2(�t)]|0〉mec〈0|
+ sin2 ϑ sin2(�t)D(β)|1〉mec〈1|D†(β) (13)

and

ρRWA(t) =[cos2(�t) + cos2 ϑ sin2(�t)]|e,0〉〈e,0|
+ sin2 ϑ sin2(�t)|g,1〉〈g,1| (14)

for the mechanical oscillator and the atom-cavity subsys-
tem, respectively. Here we defined tan ϑ = �/(β2 − 1)ν and
� = 2gf (0). We compared these approximate results with
numerical propagation and found especially good agreement
for the case β = 1. From these outcomes we conclude: (i) The
motion of the mechanical oscillator leads to nonclassical states
being composed of two contributions, namely, an incoherent
superposition of the vacuum and a displaced Fock state. They
correspond to the radiation pressure of zero and one photon
which are associated with the two trajectories n = 0 and n = 1
of Fig. 2(a) in the uncoupled case and become mixed due
to the coherent Rabi oscillations between |g,1〉 and |e,0〉.
(ii) For β �= 1 one finds detuned Rabi oscillations of the atom-
cavity subsystem, while they are strictly sinusoidal for β = 1.
(iii) The regime considered here is not sufficient for observing
a suppression of Rabi oscillations of the atomic population.
Nevertheless, it provides a first insight into the coupled
dynamics of the system and the origin of the emergence of
nonclassicalities in the state of the mechanical oscillator.

2. Small optomechanical coupling

Another limit which allows for an analytical treatment is
the regime of small values of β where Ref. [22] provides
an approximation of the Hamiltonian (1). According to that
treatment, in a frame displaced by D(−β/2) with β � 1 and
apart from a constant term, the dynamics is governed by the
Hamiltonian

H̃β =�νb†b + �g[|+〉〈+| − |−〉〈−|]

− β

2
�ν[b|+〉〈−| + H.c.], (15)

in the subspace spanned by the usual Jaynes-Cummings
dressed states |±〉 = [|g,1〉 ± |e,0〉]/√2 of the resonant atom-
cavity subsystem. Equation (15) is again of Jaynes-Cummings
form, with the ladder operators |±〉〈∓| playing the role of
the atomic rising and lowering operators and the mechanical
oscillator taking over the cavity part. The approximate form
(15) is based on a rotating wave approximation which
additionally requires |2g − ν| � 2g + ν. In the case of a
resonant interaction, 2g = ν, the double dressed states

|0,0〉 =|−〉|0〉mec (for m = 0), (16)

|±,m〉 = 1√
2

[|+〉|m − 1〉mec ± |−〉|m〉mec] (17)

are the eigenstates of the Hamiltonian (15) with the corre-
sponding eigenfrequencies ε0 = −ν/2 and

ε(±)
m =

[
m − 1

2
∓ β

2

√
m

]
ν (18)
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for m � 1. The initial state |ψ(t = 0)〉 = |e,0〉|0〉mec can be propagated with help of Hamiltonian (15) and leads to

|ψ̃(t)〉 = e−β2/8
∞∑

m=0

(− β

2 e−iνt
)m

√
2m!

{
− i sin

(√
m

β

2
νt

)
ei(ν/2)t |+〉|m − 1〉mec +

[
cos

(√
m + 1

β

2
νt

)
e−i(ν/2)t |+〉

− cos

(√
m

β

2
νt

)
ei(ν/2)t |−〉

]
|m〉mec + i sin

(√
m + 1

β

2
νt

)
e−i(ν/2)t |−〉|m + 1〉mec

}
(19)

in the displaced frame. More insight reveals the m = 0 term,

|ψ(t)〉 ≈ e−β2/8

√
2

{[
cos

(
β

2
νt

)
e−i(ν/2)t |+〉 − ei(ν/2)t |−〉

]
|β/2〉mec + i sin

(
β

2
νt

)
e−i(ν/2)t |−〉D

(
β

2

)
|1〉mec

}
, (20)

written here in the original frame, showing the dominant
behavior of |ψ(t)〉 for β � 1: The first term describes the
usual Rabi oscillations of the atom-cavity system when β → 0,
whereas the second term represents an oscillating displaced
number state of the mechanical oscillator, associated with the
dressed state |−〉. Nevertheless, the condition β � 1 for the
validity of the Hamiltonian (15) prevents clear signatures of
nonclassicality of the evolved state in this limit.

The time evolution of the excited state population Pe(t) =
Tr[|e〉〈e|ψ(t)〉〈ψ(t)|], using the state (20), can be further
approximated by

Pe(t) ≈ 1

2

[
1 + cos

(
β

2
νt

)
cos(νt)

]
, (21)

which constitutes a sinusoidally modulated Rabi oscillation
with a beat frequency of βν/2 which describes the onset of the
suppression of Rabi oscillations for small values of β.

B. Suppression of Rabi oscillations

We now focus on the strong-coupling regime β � 1 where
the approximate Hamiltonians are not valid and one has to deal
with the hybrid Hamiltonian, Eq. (1), that can be mapped onto
a driven Rabi model [24]. Since such a model does not provide
easy-to-handle analytic solutions [25,26] we restrict ourselves
in the following on the discussion of numerical results.

1. The case g = ν

We first focus on the case g = ν and β = 1. We start
again from the same initial state |ψ(t = 0)〉 = |e,0〉|0〉mec

and propagate it numerically using the Hamiltonian (1). In
Fig. 3 we show the time evolution of the excited state
population Pe(t) = Tr[|e〉〈e|ψ(t)〉〈ψ(t)|]. The strictly periodic
Rabi oscillation of the uncoupled case (dashed) undergoes a
drastic change. Instead of the sinusoidal time evolution the
excited state population exhibits a strong suppression before
it rises up again at a time appreciably longer than the Rabi
period π/g. This behavior continues quasiperiodically for the
considered parameters and can be qualitatively understood
with the following intuitive explanation: As time evolves the
atom initially prepared in the excited state populates the cavity
with a single photon leading to a rising radiation pressure
inside the cavity pushing the mirror significantly out of its
equilibrium position and driving it along the trajectory n = 1
in Fig. 2(a). Its displacement is accompanied by an effective
dynamical detuning between atom and cavity suppressing the
Rabi oscillations. After approximately one mechanical oscil-

lator period τ = 2π/ν the atom-cavity resonance condition is
fulfilled again and the Rabi oscillation continues. This simple
picture, however, does not explain all the details in Fig. 3: The
behavior is not strictly periodic in the mechanical period τ and
Pe(t) does not show a full revival.

To systematically analyze the suppression of the Rabi
oscillations for different values of β using the same initial
state |ψ(t = 0)〉 = |e,0〉|0〉mec as before we show in Fig. 4(a)
the time evolution of the population of the excited state in
dependence on β color coded in a density plot for g = ν

where dark shading indicates high values of the population
in |e〉. For the dotted white lines in the lower part of Fig. 4(a)
we used the perturbative results of Sec. IV A 2 to show the
times Tn of the nth maximum of the perturbed Rabi oscillation
for the borderline parameters chosen here. These times can
be approximated by the expression Tn ≈ nπ [1 − m̃nβ

2/2]/g,
where the m̃n play the role of average phonon numbers. As β

increases this quadratic behavior ceases and distinct maxima
of the population emerge separated by gaps approximately
given by the mechanical period τ being significantly longer

(a)

(b)

FIG. 3. (a) Time evolution of the excited state population for
the initial state |e,0〉|0〉mec. The population experiences a strong
suppression before a first revival at a time larger than a Rabi period.
The parameters are β = 1 and g = ν. For comparison the unperturbed
Rabi oscillations (β = 0) are shown by the dashed line. (b) Inset on a
time scale until the first revival occurs. The circles indicate instances
of time which will be referred to later.
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FIG. 4. (a) Dependence of the Rabi oscillations on the optome-
chanical coupling ratio β for g = ν. The dotted lines show the
dependence of the times at which the population exhibits maxima
in dependence on β following from a perturbative treatment of the
optomechanical coupling. (b) Wigner function of the mechanical
oscillator for the eight instances denoted by the circles in (a) along
the line β = 1. (c) Wigner function of the mechanical oscillator for
the eight instances denoted by the circles in (a) along the line β = 2.
Encircled areas denote regions where the Wigner function takes on
negative values.

than a Rabi period τ/2 for the parameters. For even larger
β � 3 the first revival stabilizes while subsequent revivals of
the population show interferencelike patterns and decline.

In order to provide deeper insight into this behavior we show
in Figs. 4(b) and 4(c) the Wigner function of the mechanical
oscillator for two different values of β and eight different
instances of time as marked by the open circles in the density
plot, Fig. 4(a) [and in Fig. 3(b) for β = 1]. For both cases the
mechanical oscillator starts in the vacuum state represented
by the Gaussian Wigner function of minimal uncertainty. For
β = 1 the phase space distribution begins to follow the
trajectory belonging to the radiation pressure of a single photon
inside the cavity until at t ≈ 2τ/5 the quasiprobability distri-
bution splits into two contributions and the nonclassicality of
this state manifests itself in the negative parts in between which

are denoted by encircled areas. This behavior is caused by the
coherent swapping between the states |e,0〉 and |g,1〉 of differ-
ent radiation pressures corresponding to the two trajectories
n = 0 and n = 1 in Fig. 2(a). At t ≈ 3τ/5 the two contributions
are clearly distinguishable and merge again towards the end
of the mechanical period at t ≈ τ , hence bringing atom and
cavity back into resonance. One can observe, however, that
the Wigner function is mostly localized around t ≈ 6τ/5,
i.e., after more than one mechanical period. We conjecture
that this delay stems from the Rabi oscillations taking place
simultaneously with the oscillation of the mechanical element.
After that, the quasiperiodic behavior starts into another round.
For β = 2 the time evolution of the Wigner function is coined
by the appearance of strong interferences in phase space for
almost all instances of time as shown in Fig. 4(c). Only at
t = 0 and the first revival at t ≈ 1.3τ is it positive; already
at the next revival at t ≈ 2.6τ negativities and a delocalized
Wigner function can be observed. This spread in phase space
and the interferences explain incomplete population of the
excited state and the fading of the later revivals: no sharp
mirror position and thereby no defined resonance between
atom and cavity can be found for later times. We also checked
if the blockade effect persists for higher photon numbers and
found indeed very similar characteristics.

2. The case g = ν/2

We briefly consider the case g = ν/2, whose limit for
small β was analyzed in Sec. IV A 2. The numerical results
in this case for β = 1 are presented in Fig. 5. The excited
state population in Fig. 5(a) alternatingly displays incomplete
and almost full revivals separated by roughly �t = 1.75τ . In

(a)

(b)

FIG. 5. (a) Time evolution of the excited state population for the
initial state |e,0〉|0〉mec for β = 1 and g = ν/2. The unperturbed Rabi
oscillations (β = 0) are shown by the dashed line. (b) Wigner function
of the mechanical oscillator state at the eight instances denoted by
open circles in (a). The encircled areas indicate regions where the
Wigner functions take on negative values; more circles correspond to
more negative values.
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contrast to the previous case g = ν, the Wigner functions of
the mechanical oscillator shown in Fig. 5(b) exhibits much
more pronounced negativities. This phase space structure of
the mechanical oscillator can be interpreted as an extrapolation
of the simple superposition of vacuum and Fock state |1〉mec,
Eq. (20), being present for β → 0, towards β = 1.

Before we go over to the dissipative dynamics we point
out the connection of our model to the photon blockade in
optomechanical systems. The photon blockade [13] results
from the interaction between the cavity field mode and the
mechanical object due to the radiation pressure which lifts
the degeneracy of the equidistant spectrum of the harmonic
oscillators. Descriptively expressed, if a resonant photon is
scattered into the cavity, a second photon is effectively detuned
from resonance and therefore reflected with increased proba-
bility. When the entering photon stems from a second cavity
which coherently couples to the optomechanical resonator in
the form of a beam-splitter-like interaction, the analogy to the
model presented is established by replacing this second cavity
with a two-level atom.

V. DISSIPATIVE DYNAMICS

In this section we include spontaneous decay of the atom
with rate �, cavity losses at rate κ , and damping of the
mechanical oscillator on a time scale 1/γ into account. In
the regime considered in this work the dissipative dynamics
can be described by the master equation

∂�

∂t
= L� = 1

i�
[H,�] + Ltls� + Lcav� + Lmec� (22)

in Born-Markov approximation. The strong optomechanical
coupling requires a treatment where the damping of the cavity
and the mechanical oscillator cannot be treated independently
[27,28]. The nonunitary parts of the dynamics are given by

Ltls� = �

2
D[|g〉〈e|]�, (23)

Lcav� = κ

2
D[a]� + 4γ

kBT

�ν
D[βa†a]�, (24)

Lmec� = γ

2
m̄D[b† − βa†a]� + γ

2

(
m̄ + 1

)
D[b − βa†a]�,

(25)

where we introduced the superoperator notation D[X]� =
2X�X† − X†X� − �X†X to describe Lindblad terms. The
mean thermal phononic occupation at temperature T is given
by m̄ = [exp(�ν/kBT ) − 1]−1. Again the same initial state
�(t = 0) = |ψ(t = 0)〉〈ψ(t = 0)| was chosen and its time
evolution was calculated by numerical diagonalization of the
Liouville operator L in Eq. (22).

When the dissipative dynamics is dominated by the me-
chanical damping, i.e., γ � κ,�, the mechanical oscillator
approaches its thermal state and thereby averages out the Rabi
oscillations of the atom-cavity subsystem towards a constant
value of the atomic population as shown in Fig. 6(a) for
γ = 0.1ν (solid) and γ = 0.4ν (dashed). Nevertheless, the
suppressed Rabi oscillations are observable even for such
mechanical decay rates which are much larger than in typical
existing or planned optomechanical setups with Q factors in
the order of 103–106 [29–31].

(a)

(b)

(c)

FIG. 6. Time evolution of the excited state population under
dissipative dynamics for g = ν. (a) The bad oscillator case (� = κ =
0) for β = 1. The mean phononic occupation is m̄ = 0.25 and the
mechanical decay rates are γ = 0.1ν (solid) and γ = 0.4ν (dashed).
(b) The good oscillator case (γ = 0) with the atomic and cavity
decay rates � = κ = 0.1ν (solid) and the undamped case (dashed) for
β = 2. (c) Wigner function of the mechanical oscillator for the good
resonator case of (b) at times t = τ , t = 4τ , and t = 50τ . Encircled
areas denote negativities of the Wigner function.

For high-Q mechanical oscillators the relevant time scale
for damping is given by the atomic and cavity decay. Such a
situation is depicted in Fig. 6(b) for κ = � = 0.1ν and β = 2
(solid) where we also show the undamped case (dashed) for
comparison. For such high values of β where the Wigner
function exhibits pronounced negativities one might suppose
that the virtually undamped mechanical oscillator is capable
of supporting a nonclassical quasistationary state. However,
the snapshots in Fig. 6(c) reveal that the time evolution
disembogues into a nontrivial quasistationary Wigner function
where, however, all negativities are averaged out due to the
randomness of the spontaneous emission and cavity losses.
We remark that in an experiment where the emitted photon
is recorded the negativity of the Wigner function persists for
such a single quantum trajectory [32].

VI. INITIAL STATES

We eventually analyze the dependence of the modified Rabi
oscillations on the initial state. Current technology provides
techniques which allow for the preparation of atomic and
cavity states to a high degree of fidelity. The initial state of
the mechanical oscillator is prepared by laser cooling. Most
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relevant initial states to be considered are hence displaced
thermal states of the form

μα,m̄ = D(α)

[
1

m̄ + 1

(
m̄

m̄ + 1

)b†b
]
D†(α), (26)

such that �(t = 0) = |e,0〉〈e,0|μα,m̄. The initial mechanical
displacement is characterized by the complex value α and
the extension in phase space is proportional to the mean
thermal occupation m̄. The variance of the mechanical number
operator in these states has the value �m2 = m̄(m̄ + 1) +
(2m̄ + 1)|α|2. We restrict ourself to the familiar case of g = ν

and β = 1. In order to compare the behavior of the modified
Rabi oscillations with the ideal case, i.e., an initial mechanical
vacuum, we adopt the measure

F (α,m̄) =
∫ 6τ/5

0
dt

[
P 0,0

e (t) − P α,m̄
e (t)

]2
, (27)

representing the mean quadratic deviation of the atomic
population P α,m̄

e (t), belonging to μα,m̄, from the ideal case
P 0,0

e (t), integrated over a time window where the suppression
takes place. In Fig. 7(a) we show a density plot of F (α,m̄)
for |α| � 1 and m̄ � 2 in the good resonator case with
κ = � = 0.05ν and coupling strengths g = ν and β = 1. For

(a)

(b)

FIG. 7. (a) Density plot of the measure F (α,m̄) for the suppres-
sion of the Rabi oscillation in dependence on |α| and m̄ of the
initial state (for each modulus |α| an average over eight equidistant
polar angles was performed). The dashed lines indicate the constant
values of the phonon number variance �m2 = 1,2.75,6. (b) Shows
two exemplary evolutions of the excited state population for the
initial states denoted by open circles in (a) with |α| = 0.5, m̄ = 1
(solid line) and |α| = 1, m̄ = 2 (dashed-dotted line) corresponding
to the values F = 0.15 and F = 0.25, respectively. As references
the case of the usual initial state, viz., α = 0, m̄ = 0, for κ = � = 0
is shown by the dashed line and the unperturbed Rabi oscillations
by the dotted line. The parameters are g = ν, β = 1, γ = 0, and
κ = � = 0.05ν.

the complex parameter α we performed an average over eight
equidistant polar angles for each modulus |α|. From the density
plot a quite stable behavior of the suppressed Rabi oscillations
can be read off, which only marginally diminishes for tem-
peratures corresponding to m̄ � 0.25 and displacements up to
|α| = 0.5, but even higher temperatures and displacements are
tolerable.

To clarify the expressiveness of the deployed measure we
additionally depict the time evolution of the atomic population
in Fig. 7(b) for the different initial states indicated by open
circles in Fig. 7(a), i.e., |α| = 0.5, m̄ = 1 and α = 1, m̄ = 2
which correspond to F = 0.15 and F = 0.25, respectively.
Strongly displaced thermal states hence do not exhibit an
appreciable maximum in the region around t = 6τ/5, as found
in the ideal case (dashed line and Fig. 3). The higher the dis-
placement and mean thermal occupation the flatter the curves
for the time evolution of the excited state population become,
thereby drastically diminishing the visibility of the suppres-
sion effect. Nevertheless, within a quite large region in the
parameter space of the initial states, the effect remains clearly
distinguishable.

VII. CONCLUSION

We identified a distinctive feature in the highly nonlinear
regime of a hybrid optomechanical system which manifests
itself in the suppression of Rabi oscillations of the atom-cavity
subsystem and dynamically produces nonclassical Wigner
functions in the mechanical degree of freedom. The presented
phenomenon is linked to blockade effects of nonlinear sys-
tems, particularly to the photon blockade of optomechanics.
We analyzed the dynamics of this suppression and gave a
qualitative and intuitive explanation using the time evolution
of the mechanical Wigner function. We also pointed out that
even under the influence of dissipation the main features of the
effect are still observable.

For the case of a resonant atom-cavity interaction, the
effect is clearly observable when β � 1 and g ≈ ν. Since it
is based on the coherent time evolution, strong coupling is
required, meaning κ,� � g and γ � ν. The latter require-
ment is already achieved in the majority of optomechanical
experiments with high-Q mechanical elements. Ground-state
cooling is required such that the initial state fulfills m̄ � 1. We
exemplify these requirements based on current experiments,
such as the experiment of Ref. [2], with a mechanical frequency
ν = 2π × 4 GHz, a mechanical (optical) Q factor of Q = 105

(Q = 106), and m̄ ≈ 1, only lacking the necessary strong
optomechanical coupling which should, along with the cavity-
dipole coupling, also be in the GHz range. In upcoming hybrid
systems with diamond-based crystal cavities [6,31], a resonant
interaction with color centers with linewidths in the MHz range
could be tailored, basically fulfilling the requirements for the
observation of the suppression effect presented here.

With this work we provided deeper insight into the
rather unexplored area of the nonlinear dynamics of hybrid
optomechanical systems being potentially pivotal for future
quantum technological applications interfacing different quan-
tum degrees of freedom.
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A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, and O. Painter,
Nature (London) 520, 522 (2015).

[30] D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and
T. J. Kippenberg, Nature (London) 524, 325 (2015).

[31] L. Kipfstuhl, F. Guldner, J. Riedrich-Möller, and C. Becher, Opt.
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