
PHYSICAL REVIEW A 92, 043815 (2015)

Nonlinear absorption and phase shift in coupled optical cavities
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The nonlinear absorption process and associated phase shift in coupled optical cavities are studied
experimentally by observing optical resonance properties. In the coupled cavity configuration, two optical
cavities, one for a fundamental beam and the other for a second-harmonic (SH) beam, are coupled by a nonlinear
crystal for the second-harmonic generation (SHG). The cavity for the SH beam effectively extends the nonlinear
crystal length so that the frequency-conversion efficiency of the SHG, which is proportional to the square of the
crystal length, is enhanced. In the observation, power reduction of the fundamental beam at resonance is observed
as a small dip in the resonance curve. According to a model calculation, it is found that this power reduction is
caused by blue-induced infrared absorption.
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I. INTRODUCTION

Enhancement of second-harmonic generation (SHG) in
optical cavities in which both the fundamental beam and the
second harmonic (SH) beam are resonant simultaneously has
been studied. The SH beam is coupled with the fundamental
beam through the nonlinear crystal (NLC) for the SHG, and
the cavity for the SH beam effectively extends the nonlinear
crystal length. Hence the SHG efficiency can be enhanced
substantially.

Doubly resonant monolithic optical cavities in which both
the fundamental beam and the SH beam can be simultaneously
resonant in a single cavity have advantages in mechanical
stability. The SHG enhancement in the macroscopic doubly
resonant cavities has been demonstrated and studied [1–3],
and later microscopic monolithic doubly resonant cavities
are extensively studied experimentally [4–8] and theoret-
ically [9–13] because of high nonlinearity in addition to
the mechanical stability. Examples are planar microcavities
[7,10,12], microdisk cavities [4,9,11], and photonic crystal
cavities [5,6]. It is also suggested that the third-harmonic
generation can be enhanced [13]. In the case of coupled optical
cavities [14] in which the fundamental and the SH beams
are in two spatially separated optical cavities with a shared
optical path with the NLC, cavity design is less restricted
compared to the double-resonant configuration because dis-
persion compensation is unnecessary. In addition, any kind
of NLC can be used, and hence application to any range of
wavelength is possible. As an important application, this setup
can be easily applied to the fourth-harmonic generation by
inserting another NLC in the cavity for the SH beam [15,16].
As a drawback, the size of the cavities tends to be large
compared to the double-resonant cavity configuration, and the
stabilization of the cavities is required. A scheme to stabilize
the cavity length at resonance with the fundamental beam is
available [17].

In order to optimize the SHG enhancement, the power loss
mechanism in the coupled cavities should be studied in detail.
In this paper, the power loss mechanism in the macroscopic
coupled cavities is studied experimentally and theoretically by
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the observation of the resonance curves. One of the important
power loss mechanisms of the fundamental beam in the high-
power range is blue-induced infrared absorption (BLIIRA)
or green-induced infrared absorption [18–20]. It is suggested
that the BLIIRA is an absorption process in the NLC of the
infrared beam from energy states of polarons that are produced
as a result of excitation of electrons in the NLC by the blue
SH beam [18,21]. In the coupled-cavity configuration since
the blue SH beam is enhanced substantially, the BLIIRA can
be an important power loss mechanism even in the low-power
range in which normally the BLIIRA is not important. In the
theoretical analysis, the phase shift induced by the power loss
is taken into account in addition to the BLIIRA.

II. EXPERIMENTAL SETUP

Figure 1 is a schematic of the experimental setup. This
setup is essentially the same as that of Fig. 1(b) in Ref. [16].
Two optical cavities are coupled through the NLC for the
SHG (952 → 476 nm). The cavity for the fundamental beam
(952 nm) consists of one input coupler (IC) and three mirrors
(M1, M2, and M3), and that for the SH beam (476 nm) consists
of two dichroic mirrors (DM1 and DM2) and two mirrors (M4
and M5). The dichroic mirrors are highly reflective at 476 nm
and antireflective at 952 nm. For convenience, the cavities for
the 952 and 476 nm are referred to as the “first cavity” and
the “second cavity” hereafter, respectively. The first (second)
cavity length is 34 cm (12 cm), which implies the free spectral
range is 880 MHz (2.5 GHz).

The 952-nm laser beam (∼270 mW) provided by the single-
mode grating-feedback external cavity laser diode followed by
the tapered amplifier is coupled into the first cavity through
the IC with a partial reflection coating. The reflectivity of the
IC is 70%. It may seem that this condition is overcoupling,
but later it turns out that the impedance-matching condition
is well satisfied with this IC reflectivity. The NLC is a
10-mm-long periodically poled lithium niobate of type-0 phase
matching. One of the mirrors of the first cavity (M2) is
attached on a piezoelectric transducer (PZT1) for the cavity
length adjustment. Similarly, M4 is attached on a piezoelectric
transducer (PZT2).
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FIG. 1. (Color online) Schematic of the experimental setup.

III. RESULTS AND DISCUSSIONS

In the experiment, the intensities of the transmitted
952-nm beam monitored with PD1, the reflected 952-nm
beam monitored with PD2, and the transmitted 476-nm beam
monitored with PD3 are observed as functions of the first
cavity length swept by applying a triangular voltage of
10 Hz to the PZT1 (35 μm s−1). During sweeping the first
cavity length, it is close to resonance only for ∼10 ms so that
the power measurements at PD1, PD2, and PD3 are carried
out only for 10 ms. The irrelevant change in the cavity length
caused by mechanical vibrations is negligibly small during this
measurement period.

During the measurement, the mechanical length of the
second cavity is kept constant, and the optical cavity length
can be shifted because of the optical power dependence of the
refractive index of the NLC. Therefore, the optical phase shift
after propagating one round of the cavity is expressed as

φi = δi + �i, (1)

where δi (i = 1 for the first cavity and i = 2 for the second
cavity) is the phase shift corresponding to the mechanical
translation of the cavity mirror and �i is the nonlinear phase
shift corresponding to the change in the refractive index of the
NLC. For convenience, δi is referred to as “mechanical phase
shift,” and �i is referred to as “nonlinear phase shift.”

In Fig. 2, the results with the conditions of the on-resonant
second cavity (labeled A), off-resonant second cavity (B), and
no second cavity (C) are shown. In the case of the on-resonant
second cavity, the voltage applied to PZT2 is kept constant
so that the highest SHG power is obtained during the sweep
of the first cavity length. Therefore, the second cavity is
considered to be on-resonant under the effect of the nonlinear
phase shift. The case of no second cavity corresponds to the
conventional cavity-enhanced SHG, and in this experiment
it is accomplished by placing a beam stop between M5 and
DM2 in Fig. 1. Because almost no reflection is observed in
Fig. 2(b) when both cavities are on-resonant, it is expected
that the impedance-matching condition is sufficiently satisfied
as stated before. In order to confirm the impedance-matching
condition, the reflection beam power with the use of the
80%-reflectivity IC is monitored [the inset of Fig. 2(b)] for the
resonant second cavity. In this figure, a small increase (antidip)
in the reflection power is observed at the resonance. This result
implies that the 80% IC is for the undercoupling condition at
resonance. From this result, the single round-trip loss in the
first cavity can be estimated to be larger than 20% when both

FIG. 2. (Color online) (a) Transmission intensity of the funda-
mental beam, (b) reflection intensity of the fundamental beam, and
(c) the SH beam intensity in the coupled optical cavities when the
first cavity length is swept. These values are expressed as functions of
the mechanical phase shift of the first cavity. The mechanical phase
shift is evaluated by the voltage applied to PZT1. The lines labeled
A, B, and C represent the cases of the on-resonant second cavity,
off-resonant second cavity, and no second cavity, respectively. The
inset of (b) shows the reflection intensity of the fundamental beam
when the 80% -reflectivity input coupler is used. For clarity, lines B
and C are shifted vertically in (a)–(c) and magnified by factor of 10
in (c).
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cavities are on-resonant. It should be noted that the impedance-
matching condition is not satisfied (overcoupling) in the case
of the off-resonant second cavity (B) or the no second cavity
case (C). This result suggests that the optical power loss in the
first cavity depends on the SH optical power. Discussions of
this nonlinear power loss mechanism are given later.

The result in Fig. 2(c) shows that when the second cavity
is on-resonant the SHG efficiency is enhanced by factor of
80 compared with the no second cavity case. The SH beam
power at resonance with the no second cavity case [the peak
of line C in Fig. 2(c)] is about 40 mW, and therefore the
SH power in the on-resonant second cavity is expected to be
∼3.2 W. In addition, it is also found that the SHG is suppressed
when the second cavity is off-resonant [SHG shown with line
B in Fig. 2(c) is weaker than that with line C]. A small
resonance identified by an arrow in Fig. 2(c) is due to the
higher-order transversal Gaussian beam mode caused by the
mode mismatching.

The fundamental-beam transmission line reduces at the line
center (a small dip), and it is asymmetric. According to the
result of the reflection power [A in Fig. 2(b)], it is shown that
the impedance-matching condition for the fundamental beam
is satisfied regardless of the presence of the dip. Therefore it
is found that the dip is not caused by the reduction of the input
coupling efficiency. We consider that the nonlinear power loss
and the nonlinear phase shift stated before cause the dip and
the line asymmetry in Fig. 2(a).

There can be two possibilities for the power loss. (i) At
resonance, the energy in the first cavity is transferred as a SH
beam power to the second cavity through the SHG, and as a
result the first cavity power is depleted. (ii) At resonance, the
SH beam in the second cavity is intense so that the BLIIRA
is a remarkable loss mechanism. As a result, the fundamental
beam is absorbed in the NLC, and the first cavity power is
dissipated.

For understanding the loss mechanism in the coupled
cavities in detail, a model calculation is carried out as
follows. In this model, the power transfer of the fundamental
beam to the SH beam by the NLC, the nonlinear power
absorption by the BLIIRA process, and the nonlinear phase
shift associated with the BLIIRA are considered. As stated
before, the nonlinear phase shift is caused by the change in
the refractive index of the NLC depending on the optical beam
power. The change in the refractive index is caused by the
change in the crystal temperature induced by the power loss
and by the optical Kerr effect.

In the NLC, the optical field propagating along the z axis
from z = 0 to z = L (L is the crystal length) is expressed in
the complex representation as

E = E1(z)ei(n1kz−ωt) + E2(z)e2i(n2kz−ωt), (2)

where E1 and E2 are the complex field amplitudes of the
fundamental and the SH beams, respectively, ω is the angular
frequency of the fundamental beam, k is the wave number in
vacuum of the fundamental beam, and n1 and n2 are refractive
indices of the fundamental and the SH beams, respectively.
Since we consider the phase-matched case only, we assume
n = n1 = n2. Equation (2) is substituted into the wave
equation with the nonlinear polarization term and the linear

damping term [22]. With the slowly varying envelope approx-
imation (d2E1,2/dz2 is ignored), the field amplitudes satisfy

dE1

dz
+ κ1

2
E1 − iχ (2)ω

2nc
E∗

1E2 = 0, (3)

dE2

dz
+ κ2

2
E2 − iχ (2)ω

nc
E2

1 = 0, (4)

where κ1 and κ2 are the power damping constants of the
fundamental beam and the SH beam, respectively, χ (2) is the
second-order susceptibility of the nonlinear crystal, and c is the
speed of light in vacuum. The third term of Eq. (4) corresponds
to the SHG, and the third term of Eq. (3) corresponds to the
power depletion of the fundamental beam by the SHG. In this
analysis, we consider the power loss is due to the BLIIRA,
and hence κ1 depends on the SH power E2E

∗
2 . Although the

power saturation of the BLIIRA is observed in Ref. [20], as
a first approximation, the linear dependence is assumed as
κ1 = αE2(z)E∗

2 (z) and κ2 = 0. In addition, if E2(z) is not
modified significantly in the single transmission in the NLC,
it may be a good approximation to choose κ1 = αE2(0)E∗

2 (0).
Equations (3) and (4) cannot be analytically solved. Since

the purpose of this analysis is not to obtain exact numerical
values, we apply another approximation to give an insight. In
the present experiment, the field amplitudes of the fundamental
beam and the SH beam are supposed not to change significantly
in the NLC, and therefore Eqs. (3) and (4) are approximated
as

E1(L) = E1(0) − αE2(0)E∗
2 (0)L

2
E1(0)

+ iχ (2)ωL

2nc
E∗

1 (0)E2(0), (5)

E2(L) = E2(0) + iχ (2)ωL

nc
E2

1(0). (6)

Here dEi(z)/dz is approximately replaced with [Ei(L) −
Ei(0)]/L (i = 1 or 2).

Each beam out of the crystal is fed back to the crystal around
the cavity, undergoing the mechanical phase shift determined
by the cavity length and the damping by the power loss at the
mirrors, and so on. In addition, for the fundamental beam, the
power is provided through the IC. Hence,

E1(0) = r1γ1e
i(δ1+�1)E1(L) + t1E0, (7)

E2(0) = γ2e
i(δ2+�2)E2(L) (8)

should be satisfied in the stationary state, where r1 and t1
are the field reflectivity and the field transmittance of the IC,
respectively, γ1 and γ2 are amplitude damping ratios of the
fundamental beam and the SH beam, respectively, and E0 is
the input optical field. In Eqs. (7) and (8), the nonlinear phase
shift at the NLC (�i) is also considered. The phase convention
in this calculation is determined that E0 is real valued. The
parameters γ1 and γ2 represent not only the power loss at the
mirrors, but also the linear damping in the NLC.

We assume that the nonlinear phase shift �i is expressed as
ηiE2(L)E∗

2 (L). If the optical Kerr effect is taken into account,
the nonlinear phase shift should be not only a function of E2,
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but also a function of E1. In the present analysis, however,
we consider the phase shift induced by the BLIIRA only, and
therefore the nonlinear phase shift is supposed to be dependent
on E2.

In the stationary state, Eqs. (5)–(8) are simultaneously
satisfied. For the numerical calculation, the optical-field
intensities are calculated as functions of the mechanical phase
shift of the first cavity (δ1). In the present calculation, the
parameter values are set as follows. It should be noted that the
calculation is not to determine the parameter values exactly
with nonlinear fitting, which is not carried out in this paper,
but to confirm the effect of the BLIIRA and the nonlinear phase
shift. χ (2) is 1.1 × 10−11 m V−1, which is determined by the
single-path SHG efficiency. α is 2 × 10−11 m V−2, which is
estimated by the result in Ref. [18]. Because the BLIIRA
coefficient strongly depends on the fabrication process of
the NLCs, the value of α may not be exactly the same as
that used in Ref. [18]. However, we expect that the value
of α in this study is close to the estimated one. Similarly,
η1 = η2/2 = −2.2 × 10−14 rad m2 V−2 is determined to agree
with the result in Ref. [18]. The negative sign is chosen
because in general the refractive index becomes low for higher
temperatures. The mechanical phase shift of the second cavity
(δ2) is kept constant during the measurement so that the highest
SH power is obtained. With several trial numerical calcu-
lations, we choose δ2 = 55 mrad. γ2 = 0.985, γ1 = 1, r1 =√

0.7, t1 = √
0.3, and n = 2.2. Input field intensity E0 is√

4I0/(πε0cw2), supposing that E0 is the center field intensity
of the Gaussian beam, where I0 is the input power (270 mW),
ε0 is the electric constant, and w = 40 μm is the beam radius
in the NLC (1/e2 in power).

Figure 3 shows the result of the numerical calculation. The
fundamental beam power (a) and the SH beam power (b) are
shown as functions of δ1. Solid lines represent the results with
BLIIRA and the nonlinear phase shift. For comparison, the
dashed lines represent the results with BLIIRA and without
the nonlinear phase shift, and the dotted lines represent the
results without BLIIRA and the nonlinear phase shift. In the
calculations with no nonlinear phase shift (dashed lines and
dotted lines), the value of δ2 is set to zero.

When the BLIIRA and the nonlinear phase shift are taken
into account in the model, the calculation (solid lines) agrees
well with the observation in Fig. 2. In the case of no BLIIRA
and no nonlinear phase shift (dotted lines), the fundamental
beam power depletion by the SHG is only considered,
and in this case the dip structure cannot be reproduced.
In the case of the dashed lines in Fig. 3, the dip structure of
the fundamental beam transmission can be reproduced, but the
asymmetric structure and the linewidth of the resonance curve
do not agree with the observation. In this case, the linewidth
becomes wide, and this widening is due to the increase in the
power loss of the BLIIRA.

The ratio of the BLIIRA damping to the SHG conversion
can be evaluated as the ratio of the second term to the third term
on the right-hand side of Eq. (5), namely, αncE2/(χ (2)ω). In
the calculation, it is estimated that the SH power in the second
cavity is 3.1 W at resonance, and this ratio is 0.8. From this
calculation, it is found that the BLIIRA and the nonlinear
phase shift associated with the BLIIRA are as significant as
the SHG in the coupled-cavity configuration. Qualitatively, the

FIG. 3. (Color online) (a) Numerically calculated fundamental
beam power and (b) SH beam power as functions of the mechanical
phase shift of the first cavity for the case of the on-resonant second
cavity. The solid lines represent the results with BLIIRA and the
nonlinear phase shift, the dashed lines represent the results with
BLIIRA and without the nonlinear phase shift, and the dotted lines
represent the results without BLIIRA and the nonlinear phase shift.
The plots are normalized to the peak power.

BLIIRA causes the dip structure, and the asymmetric distortion
of the line shape is caused by the nonlinear phase shift for the
fundamental beam.

The line narrowing of the solid line in Fig. 3(a) is
qualitatively understood as follows. The value of δ2 is chosen
to compensate the nonlinear phase shift. Only when the
compensation works well, the second cavity is on-resonant,
and the SH beam power is intense. Therefore, the resonance
of the second cavity occurs within the narrow range of
the mechanical phase shift of the first cavity (the range is
determined by the values of δ2 and η2). If δ1 is out of this
range, the SH power is not intense because the second cavity
is off-resonant, and therefore the BLIIRA is not significant.
As a result, the power loss in the first cavity is small, and the
linewidth becomes narrow.
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The thermal effect by the BLIIRA causes not only the
nonlinear phase shift, but also phase mismatching of the SHG
in the NLC and a thermal lens effect (photorefractive effect).
Further discussions for these effects are for future papers. In
addition, the saturation effect of the BLIIRA [20] should be
taken into account for further discussions.

IV. CONCLUSIONS

In conclusion, the optical powers of the fundamental beam
and the SH beam in the coupled cavities are observed in detail
to study the power loss mechanism and the nonlinear phase
shift. In the experiment, the SH beam intensity is enhanced by

a factor of 80 by the second cavity. By theoretical analysis,
it is found that there are two power loss mechanisms of
the fundamental beam, namely, power transfer to the SH
beam and the BLIIRA. The single round-trip power loss
ratio of the fundamental beam is estimated as over 20%
from the impedance-matching condition. In the coupled-cavity
configuration, the BLIIRA and the associated nonlinear phase
shift are important since the SH beam is significantly enhanced
in the second cavity. In order to reduce the power loss by
the BLIIRA in the coupled-cavity configuration, NLCs with
less BLIIRA, such as lithium triborate and periodically poled
KTiOPO4 should be used so that efficient fourth-harmonic
generation is expected.
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