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Realization of arbitrary discrete unitary transformations using spatial and internal
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Any lossless transformation on ns spatial and np internal modes of light can be described by an nsnp × nsnp

unitary matrix, but there is no known procedure to effect an arbitrary nsnp × nsnp unitary matrix on light in ns

spatial and np internal modes. We devise an algorithm to realize an arbitrary discrete unitary transformation on
the combined spatial and internal degrees of freedom of light. Our realization uses beam splitters and operations
on internal modes to effect arbitrary linear transformations. The number of beam splitters required to realize a
unitary transformation is reduced as compared to existing realization by a factor n2

p/2 at the cost of increasing
the number of internal optical elements by a factor of 2. Our algorithm thus enables the optical implementation
of higher dimensional unitary transformations.
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I. INTRODUCTION

Linear optics is important in quantum information process-
ing. The problem of sampling the output coincidence distribu-
tion of a linear optical interferometer, i.e., the BosonSampling
problem, is hard to simulate on a classical computer [1]. Linear
optics enables the efficient simulation of quantum walks [2–4].
Single-photon detectors and linear optics allow for efficient
universal quantum computation [5,6].

Arbitrary linear optical transformations can be realized on
various degrees of freedom (DOFs) of light. For instance,
any 2 × 2 unitary transformations on the polarization DOF
can be decomposed into elementary operations that are
implemented using quarter- and half-wave plates [7–9]. Any
unitary transformation on an arbitrary number of spatial modes
can be realized as an arrangement of beam splitters, phase
shifters and mirrors [10–12], and of temporal modes using
nested fiber loops or dispersion [13–15]. Finally, unitary
transformations on orbital-angular-momentum modes of light
can be realized using beam splitters, phase shifters, holograms,
and extraction gates [16].

Experimental implementations employ spatial modes of
light to perform quantum walks [17–19], BosonSampling [20–
24], bosonic transport simulations [25], and photonic quantum
gates [26–28]. Implementing linear optical transformations on
n spatial modes requires aligning O(n2) beam splitters [10];
this requirement poses the key challenge to the scalability of
linear optical implementation of unitary transformations.

One approach to overcoming the challenge of realizing
a higher number of modes is to use internal DOFs, such
as polarization, arrival time, and orbital angular momentum,
in addition to the spatial DOF. In particular, any lossless
transformation on ns spatial and np internal modes can be
described by an nsnp × nsnp unitary transformation. However,
there is no known method to effect an arbitrary nsnp × nsnp

unitary transformation on the state of light in ns spatial and np

internal modes.
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Here we aim to devise an efficient realization of an arbitrary
unitary transformation using spatial and internal DOFs. By
efficient we mean that the cost of realizing the transformation,
as quantified by the number of required spatial and internal
optical elements, scales no faster than a polynomial in the
dimension of the transformation. Specifically, we construct
an algorithm to decompose an arbitrary nsnp × nsnp unitary
transformation into a sequence of O(n2

s ) beam splitters and
O(n2

s ) internal transformations, each of which acts only on the
internal modes of light in one spatial mode.

In contrast to the Reck et al. approach, which allows the
realization of any discrete unitary transformation in spatial
modes alone, our approach enables the realization into spatial
and internal modes [29]. At the cost of increasing the required
number of internal optical elements by a factor of 2, we reduce
the required number of beam splitters by a factor of n2

p/2
as compared to the Reck et al. method. Another difference
between our method and the Reck et al. method is that our
method requires only balanced beam splitters, which are easier
to construct accurately [30].

Reducing the required number of beam splitters at the
cost of increasing the number of optical elements is desirable
both in free-space and in on-chip implementations of linear
optical transformations. Free-space implementations of linear
optics require beam splitters to be stable with respect to each
other at subwavelength length scales. On-chip beam splitters
rely on evanescent coupling, which requires overcoming the
challenge of aligning different optical channels. On the other
hand, operations on internal elements do not require mutual
stability and are typically easier to align and are therefore
preferred over beam splitters.

Moreover, our approach is advantageous experimentally
because of its flexibility in the choice of np and ns . For
instance, consider the realization of a 6 × 6 unitary matrix.
The Reck et al. approach allows for a realization of this
transformation on an interferometer with six spatial modes.
Depending on experimental requirements, our approach allows
for a realization of the 6 × 6 transformations using either (i)
six spatial modes (ns = 6, np = 1), (ii) three spatial and two
internal modes, for instance polarization (ns = 3, np = 2),
(iii) two spatial and three internal modes (ns = 2, np = 3)
or (iv) one spatial and six internal modes (ns = 1, np = 6).
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Our algorithm is based on the iterative use of the cosine-sine
decomposition (CSD). The relevant background of the CSD
is presented in Sec. II. We detail our decomposition algorithm
in Sec. III. The cost of realizing an arbitrary unitary matrix is
presented in Sec. IV. We conclude with a discussion of our
decomposition algorithm in Sec. V.

II. BACKGROUND: COSINE-SINE DECOMPOSITION

In this section, we present the relevant background of the
CSD, which is the key building block of our decomposition
algorithm. We describe the factorization of an arbitrary
(m + n) × (m + n) unitary matrix using the CSD. The section
concludes with the realization of a 4 × 4 unitary transforma-
tion on two spatial and two polarization modes of light as
enabled by the CSD.

The CSD factorizes an arbitrary unitary matrix as follows
[31–33]. For each (m + n) × (m + n) unitary matrix Um+n,
there exist unitary matrices Lm+n,Sm+n,Rm+n, such that

Um+n = Lm+n(S2m ⊕ 1n−m)Rm+n, (1)

where Lm+n and Rm+n are block diagonal:

Lm+n =
(

Lm 0
0 L′

n

)
, Rm+n =

(
R

†
m 0

0 R
′†
n

)
(2)

and S2m is an orthogonal cosine-sine (CS) matrix

S2m ≡ S2m(θ1, . . . ,θm)

def=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cos θ1 sin θ1

. . .
. . .

cos θm sin θm

− sin θ1 cos θ1

. . .
. . .

− sin θm cos θm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(3)

The decomposition of Um+n into Lm+n, S2m, and Rm+n

is depicted in Fig. 1. Here and henceforth, the respective
subscripts of the matrix symbols denote the dimension of the
matrix.

The matrices Lm+n, S2m, and Rm+n can be constructed
using the singular value decomposition as follows. In order to
perform CSD on Um+n, we express it as a 2 × 2 block matrix

Um+n ≡
(

A B

C D

)
, (4)

FIG. 1. (Color online) Depiction of the CSD. Um+n is an (m +
n) × (m + n) unitary matrix. The CSD factorizes Um+n into the block-
diagonal matrices represented by Lm,L′

n,R
†
m,R′†

n and a CS matrix
S2m (3).

(a)

(b)

FIG. 2. (Color online) Realization of a 4 × 4 unitary matrix U4

as a transformation on two spatial and two polarization modes of
light. (a) The CSD factorizes U4 into the left and right matrices
L2,L

′
2,R

†
2,R

′†
2 and the CS matrix S4 (7). (b) The left and right matrices

are realized as combinations of quarter- and half-wave plates, and the
CS matrix is realized using two balanced beam splitters and two wave
plates.

where A and D are square complex matrices of dimension
m × m and n × n respectively, and B and C are rectangular
with respective dimensions m × n and n × m. Each row of the
matrix Lm (Rm) is a left-singular (right-singular) vector of A,
as we prove in Appendix A. Similarly, L′

n and R′
n are the left-

and right-singular vectors of D. Finally, {cos θi} is the set of
singular values of A. The singular vectors and values of any
complex matrix can be computed efficiently using established
numerical techniques [34–37].

Now we illustrate the realization of an arbitrary 4 × 4
unitary matrix as a linear optical transformation on two spatial
and two polarization modes [4]. The realization is enabled by
the CSD, which decomposes the given matrix U4 according to

U4 =
(

L2

L′
2

)
S4

(
R

†
2

R
′†
2

)
(5)

for m = n = 2 as depicted in Fig. 2(a). By definition, U4 acts
on the four-dimensional space H4, which we identify with the
combined space

H4 = H(s)
2 ⊗ H(p)

2 (6)

of spatial and polarization modes. Thus, the 2 × 2 matrices L2

and R
†
2 are identified with transformations acting on the two

polarization modes of light in the first spatial mode. Likewise,
L′

2 and R
′†
2 correspond to transformations on polarization in

the second spatial mode. Each of these operators L2,L
′
2,R

†
2,R

′†
2

can be realized with two quarter-wave plates, one half-wave
plate, and one phase shifter [7,8].
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The matrix S4 in Eq. (5) is a CS matrix of the form

S4(θ1,θ2) =

⎛
⎜⎝

cos θ1 sin θ1

cos θ2 sin θ2

− sin θ1 cos θ1

− sin θ2 cos θ2

⎞
⎟⎠. (7)

This matrix can be decomposed further according to

S4(θ1,θ2) = (B2 ⊗ 12)(�2 ⊕ �
†
2)(B†

2 ⊗ 12), (8)

where

B2
def= 1√

2

(
1 i

i 1

)
, (9)

�2
def=

(
eiθ1 0
0 eiθ2

)
. (10)

The transformation (B2 ⊗ 12) in Eq. (8) represents balanced
beam splitters, whereas the transformations �2 ⊕ �

†
2 can be

realized using wave plates acting separately on the polarization
of light in the two spatial modes. Figure 2(b) depicts the optical
circuit for the realization of U4 using beam splitters, phase
shifters, and wave plates.

Although the realization of arbitrary 4 × 4 transformations
on two spatial and two polarization modes is known [4],
there is no known realization of an arbitrary nsnp × nsnp

transformation on ns spatial and np internal modes. In the
next section, we present a decomposition algorithm to enable
this realization.

III. ALGORITHM TO DESIGN EFFICIENT REALIZATION

Here we describe the algorithm to decompose an arbitrary
unitary matrix into beam splitter and internal transformations.
Our algorithm is in two parts. First, we decompose the given
unitary matrix into internal transformations and CS matrices.
Next we factorize the CS matrices into beam splitter and
internal transformations. MATLAB code for the CSD and for
our decomposition algorithm is available online [38].

This section is structured as follows. Section III A details
the inputs and outputs of the decomposition algorithm. The
step-by-step decomposition of the unitary into internal and CS
matrices is presented in Sec.on III B. The factorization of the
CS matrices into elementary operations is described in Sec.
III C.

A. Inputs and outputs of algorithm

Here we present the inputs and outputs of our decom-
position algorithm. Our algorithm receives an nsnp × nsnp

unitary matrix as an input. The algorithm returns a sequence of
matrices, each of which describes either a beam splitter acting
on two spatial modes or an internal unitary operation, which
acts on the internal DOF in one spatial mode while leaving
the other modes unchanged. The remainder of this section
describes the basis and the form of the matrices yielded by our
algorithm.

The operators returned by the algorithm act on the com-
bined space

H = Hs ⊗ Hp, (11)

where Hs and Hp are spanned

Hs = span
{|s1〉,|s2〉, . . . ,

∣∣sns

〉}
, (12)

Hp = span
{|p1〉,|p2〉, . . . ,

∣∣pnp

〉}
(13)

by the ns spatial modes and the np internal modes, respectively,
for positive integers ns and np. Each operator acting on the
combined state of light can be represented by an nsnp × nsnp

matrix in the combined basis

{|ck�〉 def= |sk〉 ⊗ |p�〉 : k ∈ {1, . . . ,ns},� ∈ {1, . . . ,np}}
of the spatial and the internal modes. Our algorithm returns
the matrix representations of the operators in this combined
basis {|ck�〉}.

The matrices returned by the algorithm represent either
internal or beam splitter transformations. Each internal trans-
formation acts on the internal state of light in a spatial mode but
not on the light in the other spatial modes. In the composite
basis, the internal transformations acting on the kth spatial
mode are represented as

U (k)
np

def= 1np(k−1) ⊕ Unp
⊕ 1np(ns−k) (14)

for np × np unitary matrix Unp
.

The algorithm also returns beam splitter matrices, which
mix each of the corresponding internal modes of light in two
spatial modes. The matrix representation of this operator in
the composite basis is given by

B(k)
2np

def= 1np(k−1) ⊕ (
B2 ⊗ 1np

) ⊕ 1np(ns−k−1) (15)

for B2 as defined in Eq. (9) representing a balanced beam
splitter. To summarize, the algorithm returns a sequence of
matrices, each of which is an internal transformation in the
form of Eq. (14) or is a balanced beam splitter transformation
in the form of Eq. (15).

B. Decomposition of unitary matrix into internal
and CS matrices

In this section, we present the first stage of our algorithm.
This stage decomposes the given unitary matrix into matrices
representing internal transformations (14) and CS transforma-
tions:

S
(k)
2np

(
θ1, . . . ,θnp

) def=1np(k−1) ⊕ S2np

(
θ1, . . . ,θnp

)
⊕ 1np(ns−k−1),

(16)

which enact the CS matrix S2np
≡ S2np

(θ1, . . . ,θnp
) (3) on the

internal degrees of light in two spatial modes without affecting
the light in other modes.

The first stage comprises ns − 1 iterations. Of these, the
first iteration factorizes the given nsnp × nsnp unitary matrix
into a sequence of internal and CS matrices and one (ns −
1)np × (ns − 1)np unitary matrix. This smaller unitary matrix
is factorized in the next iteration. Figure 3 depicts the first of
the ns − 1 iterations that comprise the first stage.

In general, the j th iteration receives an (ns + 1 − j )np ×
(ns + 1 − j )np unitary matrix. This iteration decomposes
the received unitary matrix into a sequence of internal and
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(a)

(b)

(c)

FIG. 3. (Color online) A depiction of the first iteration of our
algorithm for the decomposition of a given unitary Unsnp

into internal
(green) and CS (brown) matrices. (a) First, the Unsnp

unitary matrix

is CS decomposed into (i) a 2np × 2np CS matrix S
(1)
2np

acting on

the first two spatial modes, (ii) internal unitary matrices L(1)
np

and

R(1)†
np

, each of which act on the internal degrees of the first spatial

mode, and (iii) left and right unitary matrices L
′(1)
(ns−1)np

and R
′(1)†
(ns−1)np

acting on the remaining ns − 1 spatial modes. (b) The matrix L
′(1)
(ns−1)np

is further CS decomposed. The resultant R
′(2)†
(ns−2)np

from the second

decomposition commutes with CS matrix S
(1)
2np

and can thus be

absorbed into R
′(1)†
(ns−1)np

. (c) The algorithm repeatedly decomposes
the left unitary matrices. The resultant right unitary matrices are
absorbed into the initial right unitary matrix. At the end of one
iteration, the algorithm decomposes Unsnp

unitary operation into CS
matrices, internal unitary matrices, and the matrix U(ns−1)np

. The next
iteration of the algorithm decomposes the smaller U(ns−1)np

unitary
matrix.

CS matrices, and a smaller (ns − j )np × (ns − j )np unitary
matrix which is decomposed in the next iteration.

Now we describe the j th iteration of the decomposition
algorithm in detail. First, the given unitary matrix U(ns+1−j )np

is CS decomposed by setting m = np and n = (ns − j )np in
the CSD. This CSD yields the following sequence of matrices:

U(ns+1−j )np
=Lnp+(ns−j )np

(
S2np

⊕ 1(ns−1−j )np

)
× Rnp+(ns−j )np

, (17)

for block-diagonal unitary matrices

Lnp+(ns−j )np
=

(
Lnp

0
0 L′

(ns−j )np

)
,

Rnp+(ns−j )np
=

(
R

†
np

0
0 R

′†
(ns−j )np

)
, (18)

and orthogonal CS matrix S2np
.

In other words, the first CSD of the j th iteration factorizes
the received unitary transformation acting on ns + 1 − j

spatial modes into (i) a 2np × 2np CS matrix S2np
acting on the

j th and (j + 1)th spatial modes, (ii) internal unitary matrices
Lnp

and R
†
np

, each of which act on the internal degrees of
the j th spatial mode, and (iii) left and right unitary matrices
L′

(ns−j )np
and R

′†
(ns−j )np

acting on the remaining ns − j spatial
modes. Figure 3(a) depicts this first CSD for the first iteration.

Next the matrix L′
(ns−j )np

is CS decomposed. The resultant

R
′†
(ns−j−1)np

from this second CSD commutes with CS matrix
S2np

yielded by the first CSD [39]. Hence, the operators

R
′†
(ns−j−1)np

and S2np
can be swapped, following which we

multiply R
′†
(ns−j−1)np

by R
′†
(ns−j )np

. Figure 3(b) depicts this
second round of CSD and of the multiplication of the two
right matrices.

The left unitary matrices thus obtained are repeatedly
factorized using the CSD. The resultant right unitary matrices
are absorbed into the initial right unitary matrix R

′†
(ns−1)np

.
Thus, we are left with internal and CS matrices and with a
unitary matrix

U(ns−j )np
=

ns−j−1∏
�=0

R
′†
(ns−j−�)np

(19)

obtained by multiplying each of the right unitary matrices. This
completes a description of the j th iteration of the algorithm.

In summary, at the end of the j th iteration, the algorithm
decomposes the received U(ns+1−j )np

transformation into in-
ternal and CS matrices and U(ns−j )np

as depicted in Fig. 3(c).
The (j + 1)th iteration of the algorithm receives this smaller
U(ns−j )np

unitary matrix and decomposes it into internal and
CS matrices and an even smaller unitary matrix. The algorithm
iterates over integral values of j ranging from 1 to ns − 1.
Figure 4 depicts the output of the algorithm at the end of the
final, i.e., (ns − 1)th, iteration. This completes a description of
the first stage of the algorithm.

At the end of the first stage, the given unitary matrix
has been factorized into a sequence of internal (14) and CS
matrices (3). The internal matrices can be implemented using
optical elements if a suitable realization is known for the
internal DOF; such realizations are known for polarization
[7,8], temporal [13], and orbital-angular-momentum [16]
DOFs. In the next section, we present a realization of the
CS matrix using beam splitters acting on spatial modes and
internal transformations.

C. Decomposition of CS unitary matrix
into elementary operators

Here we show how the CS matrices can be decomposed
into a sequence of beam splitter transformations and internal
unitary matrices. Specifically, we construct a factorization of
any 2np × 2np CS matrix S2np

, which is in the form of Eq. (3),
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FIG. 4. (Color online) A depiction of the output of the first stage of our decomposition algorithm (Sec. III B) for the case of ns = 4 spatial
modes and np internal modes. The given 4np × 4np unitary matrix is decomposed into 42 = 16 internal matrices (green) and ns(ns − 1)/2 = 6
CS matrices (brown). As usual, the right subscript of the matrices is the dimension of the space that the respective operators act on. The right
superscript represents the spatial mode that the operators act on. The left subscript specifies the index of iteration that constructed the respective
matrices.

into a sequence of two balanced beam splitter matrices and two
internal-transformation matrices.

Our decomposition of the CS matrix relies on the following
identity:

S2np

(
θ1, . . . ,θnp

) = (
B2 ⊗ 1np

)(
�np

⊕ �†
np

)(
B†

2 ⊗ 1np

)
,

(20)
where B2 ⊗ 1np

represents a balanced beam splitter (9) and

�np

def=

⎛
⎜⎝

eiθ1

. . .
eiθnp

⎞
⎟⎠ (21)

is a transformation on the internal modes. Thus, any CS matrix
can be realized using two balanced beam splitters and two
internal transformations.

To summarize, the first stage of our algorithm decomposes
the given unitary matrix into internal (14) and CS matrices
(16). The next stage factorizes the CS matrices returned by the
first stage into internal and beam splitter (15) transformations,
thereby completing our decomposition algorithm.

IV. COST ANALYSIS: NUMBER OF OPTICAL ELEMENTS
IN REALIZATION

Here we discuss the cost of realizing an arbitrary nsnp ×
nsnp unitary matrix using our decomposition, where the cost
is quantified by the number of optical elements required
to implement the matrix. Optical elements required by our
decomposition algorithm include balanced beam splitters,
phase shifters, and elements acting on internal modes. We
conclude this section with a specific example of decomposing
a 2n × 2n transformation into spatial and polarization DoFs.
In this case, our decomposition reduces the required number
of beam splitters to half with the additional requirement of
wave plates as compared to using only spatial modes.

Consider the decomposition of an arbitrary nsnp × nsnp

unitary transformation. Realization of this transformation
using the Reck et al. method requires nsnp spatial modes and
nsnp(nsnp − 1)/2 biased beam splitters [10]. In comparison,
our decomposition requires ns(ns − 1) beam splitters. Thus,
we reduce the number of beam splitters required to realize an
nsnp × nsnp transformation by a factor of

η = nsnp(nsnp − 1)/2

ns(ns − 1)
> n2

p/2. (22)

Although our decomposition reduces the required number
of beam splitters, the number of optical elements required for

internal transformations increases by a factor of 2. The Reck
et al. approach requires nsnp(nsnp + 1)/2 phase shifters to
effect an nsnp × nsnp unitary transformation on spatial modes.

Our approach relies on decomposing to beam splitter and
internal unitary transformations, so we count the number of
internal optical elements required in our transformation. Re-
alizing an np × np internal transformation typically requires
n2

p internal optical elements [8,13,16]. Our decomposition
requires n2

s arbitrary internal transformations, which are rep-
resented by matrices {Lnp

,L′
np

,Rnp
,R′

np
} in the output. These

arbitrary transformations can be realized using a total of n2
s n

2
p

internal optical elements. Furthermore, our decomposition
also requires ns(ns − 1) internal transformations in the form
of �np

(21). Each of these transformations can be realized
using np optical elements for the polarization, temporal,
and orbital-angular-momentum modes [40]. In summary, our
decomposition requires a total of nsnp(nsnp + ns − 1), which
is an increase by a factor

ξ = nsnp(nsnp + ns − 1)

nsnp(nsnp + 1)/2
= 2 + O(1/np) (23)

over the cost of the Reck et al. approach.
Now we consider the example of using polarization as the

internal DOF. Specifically, we compare the cost of realizing
an arbitrary 2n × 2n transformation using (i) the Reck et al.
approach on only spatial modes and (ii) our decomposition
on the spatial and polarization modes of light, i.e., ns = n

and np = 2. The Reck et al. decomposition requires 2n spatial
modes, n(2n − 1) beam splitters, and n(2n + 1) phase shifters.
In comparison, our approach requires n(n − 1) balanced beam
splitters, n2 phase shifters, and 3n(n − 1)/2 wave plates. Thus,
our decomposition reduces the required number of beam
splitters and phase shifters by a factor of 2 each at the expense
of an additional 3n(n − 1)/2 wave plates.

To summarize this section, our realization of an arbitrary
nsnp × nsnp unitary matrix reduces the number of beam
splitters required by a factor of at least np. This completes
the analysis of the cost of our decomposition.

V. CONCLUSION

In conclusion, we devise a procedure to efficiently realize
any given nsnp × nsnp unitary transformation on ns spatial
and np internal modes of light. Our realization uses inter-
ferometers composed of beam splitters and optical devices
that act on internal modes to effect the given transformation.
Such interferometers can be characterized by using existing
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procedures [41,42] based on one- and two-photon interference
on spatial and internal DOFs [43–46]. We thus enable the
design and characterization of linear optics on multiple degrees
of freedom.

We overcome the problem of decomposing the given unitary
transformation into internal transformations by performing
the CSD iteratively. We also open the possibility of using
an efficient iterative CSD in problems where the single-shot
CSD is currently used [47–49].

By employing np internal modes, the number of beam
splitters required to effect the transformation is reduced by
a factor of n2

p/2 at the cost of increasing the number of
internal elements by a factor of 2. Our procedure facilitates
the realization of higher dimensional unitary transformations
for quantum information processing tasks such as linear optical
quantum computation, BosonSampling, and quantum walks.
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APPENDIX: CONSTRUCTION

In this Appendix, we present our construction of the CSD.
Recall that our CSD procedure is a building block of our
main decomposition algorithm, which is discussed in Sec.
III. Although this procedure matches the output of existing
procedures [31,32], our procedure emphasizes the key role of
the singular value decomposition in the CSD. Furthermore, nu-
merical implementations of our CSD procedure are expected to
be more efficient and stable as compared to existing procedures
because of the efficiency and stability of established singular-
value-decomposition algorithms [34,35]. Note that efficiency
of numerical implementations refers to the computational
cost of performing the decomposition and differs from the
requirement of efficient realization, which deals with the
number of optical elements required to experimentally realize
the matrices.

First, we recall that the singular value decomposition
factorizes any m × n complex matrix M into the form

M = W�MV † (A1)

for m × m unitary matrix W , n × n unitary matrix V , and
real non-negative diagonal matrix �M . The matrices W and
V diagonalize M M† and M†M , respectively. In other words,
the rows of W and V are the eigenvectors of M M† and M†M .
These rows are called the left- and right-singular vectors of M .

Now we describe the CSD of a given (m + n) × (m + n)
unitary matrix U . In order to perform CSD of this matrix, we
express it as a 2 × 2 block matrix

U =
(

A B

C D

)
, (A2)

for complex matrices A, B, C, and D of dimensions m ×
m, n × m, m × n, and n × n, respectively. From the unitarity

of U , we have

U U † ≡
(

AA† + B B† AC† + B D†

C A† + D B† C C† + D D†

)
= 1m+n, (A3)

U †U ≡
(

A†A + C†C A†B + C†D
B†A + D†C B†B + D†D

)
= 1m+n. (A4)

Considering the blocks on the diagonals of Eq. (A3), we obtain
the matrix equations

AA† + BB† = 1m, (A5)

CC† + DD† = 1n. (A6)

Equations (A5) and (A6) imply that

[AA†,BB†] = 0, (A7)

[CC†,DD†] = 0, (A8)

i.e., AA† commutes with BB† and CC† commutes with DD†.
Furthermore, AA† and BB† are normal matrices. Hence, AA†

and BB† are diagonalized by the same matrix; or A and B

have the same (up to a phase) left-singular vectors, denoted by
the unitary matrix Lm. From Eq. (A8), C and D have the same
left-singular vectors, denoted by L′

n.
From Eq. (A4), we have

A†A + C†C = 1m, (A9)

B†B + D†D = 1n. (A10)

Following the same line of reasoning as that used for obtaining
common left-singular vectors, we observe that matrices A and
C have the same right-singular vectors, say Rm, and B and D

have the same right-singular vectors R′
n.

The left- and right-singular vectors of the matrices
{A,B,C,D} can be employed to diagonalize these matrices
according to

A = Lm�AR†
m, (A11)

B = Lm�BR′†
n , (A12)

C = L′
n�

CR†
m, (A13)

D = L′
n�

DR′†
n , (A14)

for diagonal complex matrices {�A,�B,�C,�D}. The ma-
trices consisting of the absolute values of the corresponding
complex elements of {�A,�B,�C,�D} matrices are denoted
by |�A|, |�B |, |�C |, and |�D| and comprise the singular
values of A, B, C, and D matrices, respectively. Equations
(A11)–(A14) can be combined into a single (m + n) × (m +
n) matrix equation:(

A B

C D

)
=

(
Lm

L′
n

)(
�A �B

�C �D

)(
R

†
m

R
′†
n

)

⇒ U = L̃m+n�̃m+nR̃m+n. (A15)

Factorization (A15) is similar to the CSD because L̃m+n and
R̃m+n block diagonal unitary matrices and �̃m+n comprises
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diagonal blocks. In the remainder of this Appendix, we show
that �̃m+n can be brought into the form of a CS matrix (3),
thereby completing the construction of the CSD.

If the matrices Lm (L′
n) and Rm (R′

n) are calculated from the
singular value decomposition of A (D), then �A (�D) is a real
and non-negative diagonal matrix. The matrices Lm, L′

n, Rm,
and R′

n also diagonalize the matrices C and D resulting in �B

and �C . Unlike �A and �D , which consist of real elements,
these matrices �B and �C are complex matrices in general. In
other words, the diagonal matrices �B and �C are of the form

�B = P |�B |,
�C = −|�C |P †,

(A16)

where P is an m × m diagonal unitary matrix. The phases Pjj

in Eq. (A16) for C are complex conjugates of the phases for
B because of the unitarity of �.

We can remove the matrix P from �B and �C by redefining
Lm and Rm as

L̃m = LmP, (A17)

R̃m = RmP. (A18)

Thus, Eq. (A15) can be rewritten as

U =
(

LmP

L′
n

)(
�A |�B |

−|�C | �D

)(
P †R†

m

R
′†
n

)
(A19)

or

U = Lm+n�m+nRm+n. (A20)

Note that the matrix �m+n comprises only real elements.
Furthermore, �m+n is unitary because it is a product �m+n =
L
†
m+nUR

†
m+n. Hence, λm+n is an orthogonal matrix.

The orthogonality of the � implies that any two rows and
any two columns of the matrix are orthogonal. Therefore, the
2 × 2 block matrices

�i =
(

�i,i �i,i+m

�i+m,i �i+m,i+m

)
(A21)

is also an orthogonal matrix. Any 2 × 2 orthogonal matrix is
of the form

�i =
(

cos θi sin θi

−sinθi cos θi

)
(A22)

for 1 � i � m.
Next we consider the case of i > m. For the matrix �B all

the columns with the index i > m are zero. Similarly, for the
matrix �C all the rows with the index i > m are zero. From the
unitarity of �m+n, we see that each of the diagonal elements
in the last n − m columns and rows of the matrix �D is unity.
In summary, the matrix �m+n is of the form

�m+n = S2m ⊕ 1n−m (A23)

for S2m a CS matrix in the form of Eq. (3).
This completes our procedure for factorizing a given unitary

matrix using the CSD. MATLAB code for our CSD procedure
is available online [38].
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