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Triangular and honeycomb lattices of cold atoms in optical cavities
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4INLN, Université de Nice-Sophia Antipolis, CNRS; 1361 Route des Lucioles, F-06560 Valbonne, France

5Institute of Advanced Studies, Nanyang Technological University, 60 Nanyang View, Singapore 639673, Singapore
6Laboratoire Kastler Brossel, Ecole Normale Supérieure CNRS, UPMC; 4 Place Jussieu, F-75005 Paris, France

(Received 27 July 2015; published 8 October 2015)

We consider a two-dimensional homogeneous ensemble of cold bosonic atoms loaded inside two optical cavities
and pumped by a far-detuned external laser field. We examine the conditions for these atoms to self-organize
into triangular and honeycomb lattices as a result of superradiance. By collectively scattering the pump photons,
the atoms feed the initially empty cavity modes. As a result, the superposition of the pump and cavity fields
creates a space-periodic light-shift external potential and atoms self-organize into the potential wells of this
optical lattice. Depending on the phase of the cavity fields with respect to the pump laser, these minima can
either form a triangular or a hexagonal lattice. By numerically solving the dynamical equations of the coupled
atom-cavity system, we have shown that the two stable atomic structures at long times are the triangular lattice
and the honeycomb lattice with equally populated sites. We have also studied how to drive atoms from one lattice
structure to another by dynamically changing the phase of the cavity fields with respect to the pump laser.
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I. INTRODUCTION

Cavity QED (CQED) investigates the interaction of atoms
with confined electromagnetic field modes. When atoms are
coupled to a high-finesse optical resonator, the usual free-
space dipole force they experience is strongly enhanced and,
at the same time, the back-action of atoms on the confined
light field cannot be ignored any longer. As a consequence
both atoms and light must be treated on the same footing
and the dynamics for the atomic motion and the cavity field
becomes strongly nonlinear. These hybrid systems open the
way to new physical situations, in particular when cold atoms,
bosonic or fermionic, are loaded inside optical cavities [1,2].
Furthermore, it is possible to probe the properties of these
systems in a nondestructive way by using the field leaking
outside the cavity [3].

Trapping Bose-Einstein condensates (BEC) in laser-driven
high-finesse optical cavities [4] has been realized experimen-
tally recently [5–8]. The strong atom-cavity coupling enhances
nonlinear effects and bistable behavior [9–12] and even chaos
[13] set in. In the dispersive regime where the pump and cavity
fields are both far detuned from the atomic transition, the light
fields impart forces on the atoms which thus move. In turn,
the light fields pick up phase shifts induced by the refractive
index of this moving atomic dielectric medium. This alters
the light forces, thus the atomic motion, thus the accumulated
dispersive phase shifts, and this combined atom-field process
loops self-consistently. As a result, when the pump field
strength is larger than some critical value, the atomic cloud
scatters constructively the pump photons into the cavity modes.
This causes an abrupt increase of the number of photons
inside the cavity, a phenomenon referred to as superradiance,
and the atoms achieve self-organization into the effective
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optical lattice created by the coherent superposition of the
pump and cavity fields [14–18]. Self-organization breaks the
initial translation symmetry. In other words, photon scattering
couples the initial zero-momentum state of the atomic cloud to
a superposition of higher recoil momentum states. This effect
has been used to simulate the Dicke superradiance quantum
phase transition [19–21] in a BEC-cavity system where two
collective motional modes of the condensate play the role
of the two hyperfine spin states of the original Dicke model
[22–24]. The nonequilibrium dynamics of such BEC-cavity
systems have been studied [25–31] and the case has been
generalized to fermions inside optical cavities [32–35]. Some
recent theoretical proposals have generalized the model even
further by introducing cavity-assisted Raman coupling in order
to reach phases such as self-organized magnetic lattices of
bosons [36] or topologically nontrivial phases of fermions
[37,38].

In this article we consider a two-dimensional system similar
to the experiment in [23] but with two crossing cavities in
order to examine the possible formation of self-organized
triangular and honeycomb lattices of cold bosons as a result
of superradiance. Lately, the honeycomb lattice has attracted
a lot of attention in the cold atom community because of its
unique band structure mimicking Weyl-Dirac quasiparticles at
the so-called Dirac points [39–43]. By numerically simulating
the real-time dynamics of the cavity-atoms system we show
that, depending on the relative phase φ of the cavity fields with
respect to the pump field, three distinct atomic lattice structures
are possible when noninteracting atoms and identical cavities
are considered. The first one is a triangular lattice, the cavity
fields being in phase with the pump laser (φ = 0). The second
one is a honeycomb lattice with density-balanced sites, the
cavities and pump fields being in quadrature (φ = π/2). The
last one is a honeycomb lattice with density-imbalanced sites,
the relative phase φ being in between zero and π/2. We
address the long-time stability of these atomic lattices as well
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FIG. 1. (Color online) Schematic drawing of the setup that can
be used to create 2D triangular and honeycomb lattices of bosonic
cold atoms. A cloud of atoms (blue disk) is loaded inside two initially
empty optical cavities symmetrically oriented by the angle θ = π/3
about axis Oy. The atoms are then pumped by a retro-reflected
classical laser field (Oy direction) and release photons into the modes
of the cavities. In return, the coherent superposition of the pump
and cavity fields creates an effective periodic potential and atoms
self-organize themselves into the corresponding potential wells. A
triangular or honeycomb lattice structure of atoms thus emerges as a
result of superradiance processes.

as the possibility of driving the atoms from one structure to
another.

The rest of this paper is organized as follows. In Sec. II
we introduce the experimental setup that we consider and give
the relevant Hamiltonian in the dispersive regime (Sec. II A).
The dynamical equations of the coupled atoms-cavities system
are derived in Sec. II B. They give rise to an effective lattice
potential for the center-of-mass motion of the atoms which
is studied in detail in Secs. II C, II D, and II E. Using the
symmetry properties of the effective lattice potential, we derive
the atomic equations of motion in reciprocal space in Sec. III.
The condition for the normal to superradiance phase transition
is obtained by studying the linear response of the system in
Sec. IV. Finally, in Sec. V, we present our numerical results
about the atoms and cavity field dynamics, the superradiance
phase transition (Sec. V A), the long-time stability of the differ-
ent atomic lattices which are obtained (Sec. V B) as well as the
possibility of switching the system between these different lat-
tice structures (Sec. V C). We summarize the work in Sec. VI.

II. PHYSICAL SITUATION AND MODEL

A. Hamiltonian

To study the self-organization of bosonic atoms into a
triangular or a honeycomb lattice as a result of superra-
diance, we consider two high-finesse optical cavities with
frequencies ωj (j = 1,2) located in the xy plane and oriented
symmetrically about the y axis by an angle θ = π/3 (see
Fig. 1). A two-dimensional (2D) dilute cloud of noninteracting
two-level ultracold bosonic atoms (resonance frequency ωa ,
excited-state lifetime �) is then loaded inside these cavities,
which we assume do not contain any photons initially. A

monochromatic standing wave at frequency ωp (obtained by
retro-reflecting a classical laser field propagating along unit
vector ŷ) is used to pump the atoms. In such a system, the
atoms scatter the pump field photons into the cavity modes and
self-organize in the potential wells of the effective potential
created by the standing wave and cavity fields.

In the following, we assume that spontaneous emission
processes are fully negligible so that the atomic dynamics
is Hamiltonian. This is achieved when both the pump and
cavity fields are far detuned from the atomic resonance
frequency, |ωp − ωa| � � and |ωj − ωa| � �. We further
assume that the rotating-wave approximation is valid such
that fast variables can be eliminated. This is the case when
|ωp − ωa| � ωp and |ωp − ωj | � ωp. Finally, we assume
that one can adiabatically eliminate the atomic excited state
amplitude so that atoms, initially prepared in their ground state,
mostly evolve in their ground state. This is the case when
the Rabi oscillation has a small amplitude, which happens
when the pump detuning �a = ωp − ωa is much larger in
magnitude than the kinetic energy of the atoms in their excited
state, the pump and cavity Rabi frequencies, and the pump-
cavity detuning �j = ωp − ωj . Under all these assumptions,
and since the pump is described by a classical field, the
Hamiltonian describing the coupled dynamics between the
cavity fields and the 2D motion of atoms, in their internal
ground state and at center-of-mass position �r = xx̂ + yŷ, reads

H =
∫

d�r�†H� −
∑
j=1,2

��j a
†
j aj , (1)

H = − �
2

2m

(
∂2

∂x2
+ ∂2

∂y2

)
+ �
2

p

�a

F 2
p (�r)

+
∑
j=1,2

�g2
j

�a

F 2
j (�r)a†

j aj

+
∑
j=1,2

�gj
p

�a

Fp(�r)Fj (�r)(a†
j + aj )

+ �g1g2

�a

F1(�r)F2(�r)(a†
1a2 + a

†
2a1), (2)

where 
p is the pump Rabi frequency, gj the atom-cavity
coupling strength, and � and aj the atomic and cavity bosonic
annihilation operators. The atomic operator is normalized to
the total number of atoms N ,

∫
d�r �†(�r,t)�(�r,t) = N . With

a suitable choice of the origin of coordinates, the pump and
cavity mode functions can be written as

Fp(�r) = cos(�kp · �r),
(3)

Fj (�r) = cos(�kj · �r + φ/2),

where φ is a controllable phase that can be changed, for
example, by moving the pump mirror along Oy. The pump and
cavity wave vectors are �kp = kpŷ and �kj = kj b̂j respectively,
with the unit-length vectors,

b̂1 = sin θ x̂ + cos θ ŷ =
√

3

2
x̂ + 1

2
ŷ,

b̂2 = − sin θ x̂ + cos θ ŷ = −
√

3

2
x̂ + 1

2
ŷ. (4)
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The pump and cavity wavelengths are λp = 2π/kp = 2πc/ωp

and λj = 2π/kj = 2πc/ωj , c being the speed of light.

B. Dimensionless mean-field equations

In the rest of this paper, we consider the mean-field
regime where the field operators are replaced by their mean
values, �(�r,t) → 〈�(�r,t)〉 ≡ ψ(�r,t) and aj (t) → 〈aj (t)〉 ≡
αj (t), and quantum fluctuations are discarded. We next
define the pump recoil energy ER = �

2k2
p/(2m). Using k−1

p ,

ω−1
R = �/ER , and ER as space, time, and energy units, the

dimensionless Schrödinger equation for the atomic wave
function reads

i∂τϕ( �ρ,τ ) =
[
−

(
∂2

∂x̃2
+ ∂2

∂ỹ2

)
+ Up cos2 ỹ

+
∑
j=1,2

ηj (αj + α∗
j ) cos ỹ cos(�b′

j · �ρ + φ/2)

+U12(α∗
1α2 + α1α

∗
2 ) cos(�b′

1 · �ρ + φ/2)

× cos(�b′
2 · �ρ + φ/2)

+
∑
j=1,2

Uj |αj |2 cos2(�b′
j · �ρ + φ/2)

]
ϕ( �ρ,τ ), (5)

where τ = ωRt , �ρ = kp�r = x̃x̂ + ỹŷ, ϕ( �ρ,τ ) = ψ(�r,t)/kp,
and �b′

j = �kj/kp = (λp/λj )b̂j . Note that the normalization
condition for the reduced atomic wave function is unchanged,∫

d �ρ |ϕ( �ρ,τ )|2 = N . The various dimensionless coupling con-
stants appearing in Eq. (5) are

Up = 
2
p

ωR�a

Uj = g2
j

ωR�a

ηj = gj
p

ωR�a

U12 = g1g2

ωR�a

. (6)

Introducing the dimensionless cavity decay constants κj , the
equations of motion for the cavity field amplitudes read

i∂τα1 = −(δ1 + iκ1)α1 + NU12I12α2 + Nη1I1p,
(7)

i∂τα2 = −(δ2 + iκ2)α2 + NU12I12α1 + Nη2I2p,

where δj = �j − NUjIj is the shifted cavity resonance
frequency and where

Ij = 1

N

∫
d �ρ|ϕ( �ρ,τ )|2 cos2(�b′

j · �ρ + φ/2),

I12 = 1

N

∫
d �ρ|ϕ( �ρ,τ )|2 cos(�b′

1 · �ρ + φ/2) cos(�b′
2 · �ρ + φ/2),

Ijp = 1

N

∫
d �ρ|ϕ( �ρ,τ )|2 cos ỹ cos(�b′

j · �ρ + φ/2). (8)

Note that, because of the normalization of the atomic wave
function, the I integrals do not depend on the actual number
of atoms N .

C. Effective potential for atoms

From Eq. (5), one immediately sees that the pump
and cavity fields create an effective potential for the atom

center-of-mass dynamics:

Veff( �ρ,τ ) = Up cos2 ỹ +
∑
j=1,2

Uj |αj |2 cos2(�b′
j · �ρ + φ/2)

+U12(α∗
1α2 + α∗

2α1) cos(�b′
1 · �ρ + φ/2)

× cos(�b′
2 · �ρ + φ/2)

+
∑
j=1,2

ηj (α∗
j + αj ) cos ỹ cos(�b′

j · �ρ + φ/2). (9)

This effective potential can be recast under the simpler and
suggestive form,

Veff( �ρ,τ ) = �|
(�r,t)|2
ER�a

, (10)

featuring the complex Rabi field amplitude,


(�r,t) = 
pFp(�r) +
∑
j=1,2

gjαj (t)Fj (�r), (11)

associated, in the mean-field regime, with the coherent
superposition of the pump and cavity classical standing-wave
electrical field amplitudes. As one can see, the pump and cavity
fields are balanced when nj = |αj |2 = (
p/gj )2 = Up/Uj

(j = 1,2).
We will restrict our subsequent analysis to a red-detuned

pump field, �a < 0, for which the minima of the effective
potential, Eqs. (9) and (10), are found at the maxima of the
norm of the Rabi field, Eq. (11), and will thus be the deepest.

D. Lattice symmetry of the effective potential

Let us define the two vectors �a′
j = (λj/λp)�aj (j = 1,2)

with

�a1 = π

(
x̂

sin θ
+ ŷ

cos θ

)
= 2π

(
x̂√
3

+ ŷ
)

,

(12)

�a2 = π

(
− x̂

sin θ
+ ŷ

cos θ

)
= 2π

(
− x̂√

3
+ ŷ

)
,

and |�aj | = 4π/
√

3. As readily checked, they satisfy the prop-
erty �a′

i · �b′
j = 2πδij . As a consequence, and by construction,

the cavity mode functions Fj are left invariant when �ρ is
translated by any integer combination of the �a′

j . The pump
mode function Fp is also left invariant provided �a′

j .ŷ is a
multiple integer of 2π . The simplest choice, which also fulfills
the conditions leading to Eq. (2), is λj = λp. If this condition
is not strictly obeyed, Fp will still be approximately invariant,
to a very good accuracy, if |kp − kj |L � 1, where L is the
size of the atomic cloud. In the rest of the paper we will
assume this condition to hold such that the approximation
λ1 ≈ λ2 ≈ λp ≡ λ is perfectly justified. In turn, it means that
the cavity and pump fields have almost the same frequencies,
|�j | � ωp.1

Within these assumptions, it follows that the Bravais lattice
associated with the effective potential Veff( �ρ,τ ) is L = { �R =

1Since |�j | � ωp , the cavity fields are also red detuned from the
atomic transition.
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FIG. 2. (Color online) (Left panel) Triangular Bravais lattice
associated with the effective potential Veff( �ρ,τ ), Eq. (9), and its
Bravais vectors �a1 and �a2, Eq. (12). (Right panel) The corresponding
triangular reciprocal lattice spanned by vectors b̂1 and b̂2, Eq. (4). The
initial zero-momentum state of the atomic cloud (black disk at the
center) is directly coupled to 18 points of the reciprocal lattice (shown
as numbered colorful circles) by Schrödinger’s equation, Eq. (5).
Circles with the same color and number refer to a given coupling
term in Eq. (5): purple circles 1 and blue circles 2 correspond to
pump-cavity coupling terms η1 and η2 respectively; red circles 3
correspond to intercavity coupling term U12; green circles 4 and
brown circles 5 correspond to intracavity coupling terms U1 and U2

respectively; orange circles 6 correspond to the pump coupling term
Up .

∑
j lj �aj ; lj ∈ Z}; see Fig. 2. It is triangular and its unit cell

is A = {∑i vi �ai ; 0 � vi � 1} with dimensionless area S =
2(2π )2/

√
3. The corresponding reciprocal lattice R = { �K =∑

j pj b̂j ; pj ∈ Z} is also triangular and its first Brillouin zone

is B = {∑j uj b̂j ; |uj | � 1/2} with dimensionless area � =
(2π )2/S = √

3/2.

E. Case of identical cavities

In the following, we will examine the simplest case
where the cavities have exactly the same characteristics, ω1 =
ω2 = ωc, g1 = g2 = gc, and κ1 = κ2 = κc. Then a reflection
symmetry about axis Oy (x → −x) amounts to exchange the
cavity fields, �k1 ↔ �k2. If we further assume that the cavities are
initially empty and the initial atomic cloud is also symmetric
with respect to Oy, then the subsequent time evolution will
always enforce α1 = α2 at all times.2 In this case the Rabi
field, Eq. (11), writes


( �ρ,τ ) = 
p cos ỹ + 2
c(τ ) cos

(
ỹ + φ

2

)
cos

(√
3x̃

2

)
,

(13)

with 
c(τ ) = gcα1(τ ) = gcα2(τ ). It is immediately seen that,
in this case, the effective potential is always reflection
symmetric about planes located at x̃ = 2nπ/

√
3 (n ∈ Z) and

in particular about axis Oy (x → −x). It is also easy to prove

2As a word of caution, this is a mathematical statement. In real life,
as is well known in chaotic systems, numerical rounding-off errors
may artificially break symmetries in actual simulations. An example
is seen in Fig. 11 where n1 and n2 are not perfectly equal.

that the potential for φ + nπ (n ∈ Z) is obtained by a mere
translation of the potential for φ. Furthermore, the potential
for −φ is simply obtained by reflecting the potential for φ

about axis Ox (y → −y). This means that, for all practical
purposes, the range of cavity phases can be restricted to
0 � φ � π/2.

For φ = π/2, the Bravais unit cell hosts two energy-
balanced minima which can be labeled A and B, so that the
full lattice of minima is now a honeycomb lattice made of two
shifted A and B triangular lattices; see Fig. 3. Interestingly
enough, this honeycomb structure does not depend on the
relative weight between the pump and cavity Rabi amplitudes.3

Indeed, when φ = π/2, the potential is symmetric under
�ρ → π ŷ − �ρ. This immediately ensures the existence of an
even number of energy-balanced minima in the Bravais unit
cell, here two.

When φ is continuously decreased from π/2, the A and
B minima become energy imbalanced, still retaining a nice-
looking honeycomb structure when φ is not too small. This
situation is interesting for producing bands with nonvanishing
Chern numbers. When φ gets closer to zero, the honeycomb
structure is lost for all practical purposes and the lattice of
deepest minima is triangular.

Irrespective of the value of φ, and for a priori different
mean-field values αj , it is worth mentioning that the effective
potential gets shifted by �a1/2 when the sign of α2 is flipped, by
�a2/2 when the sign of α1 is flipped, and by (�a1 + �a2)/2 = 2π ŷ
(which corresponds to a shift of λ along axis Oy) when both
signs are flipped. It is straightforward to check that Eqs. (5)
and (7) indeed remain invariant when the sign of α1 and/or
α2 is flipped and the corresponding translation by �aj/2 is
implemented on the mode functions and atomic wave function
ϕ( �ρ,τ ). Therefore, for each set of coupling parameters, there
are four possible solutions associated with given numbers of
cavity photons (nj = |αj |2), all related by translations along
�a1/2 and/or �a2/2. Depending on the initial conditions, the
system may select any one of these solutions.

III. SCHRÖDINGER EQUATION IN RECIPROCAL SPACE

We now rewrite Schrödinger’s equation, Eq. (5), by expand-
ing the atomic wave function ϕ( �ρ,τ ) in reciprocal space:

ϕ( �ρ,τ ) =
√

NA
S

∑
�K∈R

∑
�q∈B

C �K (�q,τ )ei(�q+ �K)· �ρ, (14)

where NA is the number of atoms in the unit Bravais cell A.
The normalization conditions now read

∫
A

d �ρ |ϕ( �ρ,τ )|2 = NA, (15)
∑
�K∈R

∑
�q∈B

|C �K (�q,τ )|2 = 1. (16)

It is straightforward to see that �q is actually conserved
during the evolution. Indeed, the effective potential Veff( �ρ,τ )

3However nice-looking honeycomb structures are obtained with
balanced or almost-balanced Rabi amplitudes.
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FIG. 3. (Color online) Effective potential Veff( �ρ,τ ) given by Eq. (9) and its lattice structure of minima (in units of the common wavelength
λ associated to the cavity and pump fields) for three values of the cavity phase φ appearing in the mode functions Fj (�r) (see text). (Right
panels) For φ = π/2 a honeycomb structure is obtained for the potential minima which have all same depths. (Middle panels) For lower
values, e.g., φ = π/4, a honeycomb structure is obtained but with energy-imbalanced minima. (Left panels) For φ = 0, a triangular lattice is
obtained for the potential minima. The dimensionless coupling parameters are Up = −4, Uj = U12 = −0.02, ηj = −√

2/5 [see Eq. (6)] and
αj (τ ) = 〈ai(τ )〉 = 15 (j = 1,2). With these values, the pump and cavity fields are almost balanced since Up/Uj = 200 and nj = |αj |2 = 225;
see text after Eq. (11).

being periodic under Bravais translations, it cannot scatter and change �q. Substituting Eq. (14) into Eq. (5) and using
Eq. (4), we obtain the following dynamical equations for the coefficients C �K (�q,τ ):

i∂τC �K = (�q + �K)2C �K + Up

4

(
2C �K + C �K+2b̂1+2b̂2

+ C �K−2b̂1−2b̂2

) +
∑
j=1,2

Uj |αj |2
4

(
2C �K + eiφC �K−2b̂j

+ e−iφC �K+2b̂j

)

+
∑
j=1,2

ηj (αj + α∗
j )

4

(
eiφ/2C �K−b̂1−b̂2−b̂j

+ e−iφ/2C �K+b̂1+b̂2+b̂j
+ eiφ/2C �K+b̂1+b̂2−b̂j

+ e−iφ/2C �K−b̂1−b̂2+b̂j

)

+ U12(α∗
1α2 + α∗

2α1)

4

(
eiφC �K−b̂1−b̂2

+ e−iφC �K+b̂1+b̂2
+ C �K−b̂1+b̂2

+ C �K+b̂1−b̂2

)
, (17)

where the �q dependence of the C coefficients is the same on both sides of the equation. The dynamical equations for the cavity
fields αj , Eq. (7), remain the same but with the integrals in Eq. (8) now reading

Ij = 1

4

∑
�K �q

C∗
�K
(
2C �K + e−iφC �K+2b̂j

+ eiφC �K−2b̂j

)
,

I12 = 1

4

∑
�K,�q

C∗
�K
(
e−iφC �K+b̂1+b̂2

+ eiφC �K−b̂1−b̂2
+ C �K+b̂1−b̂2

+ C �K−b̂1+b̂2

)
,

Ijp = 1

4

∑
�K,�q

C∗
�K
(
e−iφ/2C �K+b̂1+b̂2+b̂j

+ eiφ/2C �K−b̂1−b̂2−b̂j
+ e−iφ/2C �K−b̂1−b̂2+b̂j

+ eiφ/2C �K+b̂1+b̂2−b̂j

)
. (18)

Generally, in superradiance and self-organization problems,
the atomic system is initially homogeneous (zero-momentum
state), meaning that only the C coefficient with �K = 0 and

�q = 0 is nonzero initially (and equal to 1 because of the
normalization condition). In the course of time, as a result of
superradiance, higher-momentum states will be occupied. For
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our system, the dynamical equations (17) couple C �K=0(�q =
0,t = 0) to the 18 points of the reciprocal lattice R shown in
Fig. 2. Each of these points will be in turn coupled to other
points in the reciprocal lattice with even higher momenta.
In the following sections, we restrict our calculations to
momenta transfers less than 3�k, i.e., to reciprocal lattice
points �K = ∑

j pj b̂j with |pj | � 3 and |p1 − p2| � 3. These
37 points in total include the initial zero-momentum state,
the 18 states to which this state is directly coupled, and the
18 other states to which the states with momentum �k (the
points closest to the initial zero-momentum state) are directly
coupled.

IV. INSTABILITY AND PHASE TRANSITION CONDITION

In this section, we study the conditions for superradiance to
take place and focus on the pump strength needed to destabilize

the initial state for given cavity parameters. For this purpose
we consider the linear response of the system to perturbations
added to the initial cavity fields and atomic wave function. We
thus substitute α

(0)
j → α

(0)
j + δαj and C

(0)
�K → C

(0)
�K + δC �K into

the dynamical equations [Eqs. (7) and (17)] and in the integrals
given in Eq. (18). Our initial state is α

(0)
j = 0 (empty cavities)

and C
(0)
�K = δ �K0δ�q0 (homogeneous cloud). For this initial state,

Ij = 1/2 and I12 = 0. Since �q cannot change under evolution,
as explained in Sec. III, its value remains zero and will
thus be omitted. The linearized perturbed equations then
read

i∂τ δαj = −
(

�j − NUj

2
+ iκj

)
δαj + NηjδIjp, (19)

with

δIjp = 1

4

∑
�K

C
(0)∗
�K

(
e−iφ/2δC �K+b̂1+b̂2+b̂j

+ eiφ/2δC �K−b̂1−b̂2−b̂j
+ e−iφ/2δC �K−b̂1−b̂2+b̂j

+ eiφ/2δC �K+b̂1+b̂2−b̂j

)

+ 1

4

∑
�K

δC∗
�K
(
e−iφ/2C

(0)
�K+b̂1+b̂2+b̂j

+ eiφ/2C
(0)
�K−b̂1−b̂2−b̂j

+ e−iφ/2C
(0)
�K−b̂1−b̂2+b̂j

+ eiφ/2C
(0)
�K+b̂1+b̂2−b̂j

)
, (20)

and

i∂τ δC �K =
(

�K2 + Up

2

)
δC �K + Up

4

(
δC �K+2b̂1+2b̂2

+ δC �K−2b̂1−2b̂2

) +
∑
j=1,2

ηj (δαj + δα∗
j )

4

(
eiφ/2C

(0)
�K−b̂1−b̂2−b̂j

+ e−iφ/2C
(0)
�K+b̂1+b̂2+b̂j

+ eiφ/2C
(0)
�K+b̂1+b̂2−b̂j

+ e−iφ/2C
(0)
�K−b̂1−b̂2+b̂j

)
. (21)

Equations (20) and (21) only involve reciprocal lattice vectors
of the form �K + �Q with a transfer lattice vector �Q = ∑

j Qj b̂j

satisfying Qj = 0, ±1, ±2 and (Q1 − Q2) = 0, ±1. Then it
can be seen that all phase factors can be gauged away:

C
(0)
�K+ �Q → C̃

(0)
�K+ �Q = eir( �Q)φ/2 C

(0)
�K+ �Q, (22)

δC �K+ �Q → δC̃ �K+ �Q = eir( �Q)φ/2 δC �K+ �Q, (23)

where (Q1 + Q2) = 4n + r( �Q), with n ∈ Z, |r( �Q)| � 3, and
r( �Q) the (positive or negative) remainder with smallest
absolute value. In other words, the stability of our initial state
is independent from the cavity phase which can thus be set to
φ = 0 in the stability analysis.

Let us define the column vector Y = ({δC �K},{δαj })T ,
where the superscript T denotes transposition. The linearized
equations [Eqs. (19) and (21)] can then be rewritten in compact
form i∂τX = MX where the stability matrix M controls
the dynamics of the (doubled) perturbation column vector
X = (Y ,Y ∗)T around our initial condition. As one can see,
the perturbation will grow, and the initial system is unstable,
as soon as the eigenvalues ω of M have a positive imaginary
part. The matrix M has the following four-block structure:

M =
[

F G

−G∗ −F ∗

]
, (24)

where the star stands for complex conjugation and where the
submatrix G is symmetric GT = G. It is easy to show that
σxMσx = −M∗, where the usual entries of the Pauli matrix
σx have been replaced by the null and identity matrices. As
a consequence, ω and −ω∗ are both eigenvalues of M, with
eigenstates Xω and σxX

∗
ω, and the real parts must come in

opposite pairs.
Figure 4 shows the real and imaginary parts of the

eigenvalues of the stability matrix M as functions of the pump
coupling parameter Up and obtained for fixed typical cavity
experimental parameters. Note that we have not reproduced
in these plots eigenvalues with large imaginary parts (equal to
the cavity damping rates κj ). As expected from the symmetry
of M, one can see that the real parts come indeed in opposite
pairs. However, contrary to what a quick and misleading glance
at the plots may let think, imaginary parts should not come in
opposite pairs. Indeed, the submatrix F becomes Hermitian,
F † = F , only when the cavities are lossless which implies the
additional symmetry σzMσz = M†. In this particular case,
both ω and ω∗ are eigenvalues and the imaginary parts would
also come in opposite pairs. This is not the case here since the
cavities are lossy (κj �= 0). And indeed, a careful check shows
that seemingly opposite values of the imaginary parts are in
fact slightly different. We have checked that this difference
approaches zero when the cavity damping rates κj go to zero
and the cavities become lossless. Another important point to
mention is that all the imaginary parts (positive or negative)
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FIG. 4. (Color online) Imaginary (top panels) and real parts (bottom panels) of the eigenvalues ω of stability matrix M as functions of
the (negative) dimensionless pump coupling parameter Up (red-detuned pump). We have used 37 reciprocal lattice vectors to compute and
diagonalize M; see discussion end of Sec. III. Positive imaginary parts signal instability of our initial state (empty cavities, homogeneous
atomic cloud). The dimensionless cavity parameters are Uj = U12 = −1.74 × 10−2, �j = −4.7 × 103, and κj = 480 (j = 1,2). The total
number of atoms is N = 1.5 × 105.

are either two- or fourfold degenerate. The twofold degeneracy
is always present and comes from the fact that ω and −ω∗ are
both eigenvalues. The occasional fourfold degeneracy comes
from an additional spatial symmetry of the system: When
cavities are identical, the system is reflection symmetric about
axis Oy regardless of the value of φ; see discussion after
Eq. (13). Therefore, in some cases, there are two additional
eigenstates of M coexisting with Xω and σxX

∗
ω and sharing

the same imaginary part. They are linear combinations of the
images of these eigenstates obtained by reflecting them about
axis Oy. Writing �K = ∑

j pj b̂j , these images are obtained
by exchanging p1 ↔ p2 and δα1 ↔ δα2. We have confirmed
this fact by verifying that the four-dimensional eigenspace
associated with fourfold degeneracies is indeed stable under
reflection about axis Oy.

For the cavity parameters used in the plots, the top left
panel of Fig. 4 suggests that our initial state is stable and
superradiance cannot take place when |Up| � 1. A few other
stable regions appear when |Up| increases further. For larger
values |Up| � 15, a continuous instability develops; see top
right panel of Fig. 4 where eigenvalues with growing positive
imaginary parts are visible. The threshold for unstable behavior
at weak pump fields does not change when the number of
reciprocal lattice vectors used to compute and diagonalize M
is increased. However, by expanding the momentum transfer
limits and including more reciprocal lattice vectors, additional
eigenvalues with positive imaginary parts appear in the range
|Up| > 1.

A word of caution about the conclusions drawn from the
linear stability analysis is necessary. Indeed, the picture may
change when subsequent nonlinear terms are included to refine
the analysis. As a matter of fact, as we have numerically
checked, our initial state is still dynamically unstable when
|Up| is chosen in between the linear instability regions visible
in the top left panel of Fig. 4. However, when |Up| is chosen
within the linear instability regions, a better atomic lattice
structure is obtained numerically.

V. SELF-ORGANIZED TRIANGULAR AND HONEYCOMB
LATTICES

We present now the results of our numerical simulations
of the dynamical equations [Eqs. (7) and (17)] with the
integrals given in Eq. (18). As mentioned in Sec. III, we
only consider momenta transfer to atoms up to 3�k, which
amounts to including 37 points of the reciprocal lattice in our
simulations. Starting from empty cavities and a homogeneous
atomic cloud, the system undergoes, for appropriate laser fields
strengths, a superradiant phase transition and subsequently
self-organizes into either a triangular or a honeycomb lattice
of atoms depending on the value of the cavity phase φ.

A. Transition to the superradiant state

1. Cavity phase φ = 0

To check that the system does enter a superradiant phase,
we monitor the dynamics of the system for a pump field
strength larger than the lower bound found in the linear stability
analysis; see Sec. IV. Our numerical simulations confirm
the superradiant state for Up � −1. However, the effective
potential is not deep enough to support a sharp and stable
lattice of atoms. This is because the pump field is too weak and
cannot feed a sufficient number of photons inside the cavities.
This problem is overcome by decreasing further the pump field
strength down to Up = −3; see Fig. 5. As shown in the top left
panel and the insets, the number of photons inside the cavities
increases steadily and reaches nj ≈ 10 after a short time τ � 8.
The atomic density has been computed at three different times.
At small times, and before superradiance takes place (τ = 2),
the atomic cloud self-organizes according to the minima of the
pump standing-wave potential alone. As superradiance takes
place and the number of photons inside the cavities increases
(τ = 25 and τ = 130), the superposition of the pump and
cavity fields creates a sufficiently deep potential and the atoms
self-organize into the triangular lattice of potential minima (see
left panel of Fig. 3). It should be noted that, within the time
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FIG. 5. (Color online) As a result of superradiance, an initial homogeneous atomic cloud loaded inside empty identical cavities self-
organizes into a triangular lattice when the cavity phase is set to φ = 0. The pump dimensionless coupling strength is Up = −3 and all
other parameters are the same as in Fig. 4. Atoms scatter pump photons into the cavity modes and, after a short while, superradiance and
self-organization take place. (Top left panel) Cavity photon numbers nj = |αj |2 (j = 1,2) as functions of time τ = ωRt . The insets show the
logarithms of n1 and n2 as a function of time and the horizontal grid lines mark the values 1, 10, and 100. From a mathematical point of view,
the symmetry of the dynamical equations and of the initial state enforces n1 = n2 at all times as confirmed here by the numerical simulation.
(Top right panel) Atomic density distribution at time τ = 2, before superradiance takes place. The atomic cloud self-organizes according to the
minima of the pump standing-wave potential alone since the cavity fields are almost zero. [Bottom left (τ = 25) and bottom right (τ = 130)
panels] Atomic density distributions, and their corresponding color codes, after superradiance and self-organization have taken place. The
atomic lattice, just like the lattice of minima of the effective potential, is clearly triangular.
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FIG. 6. (Color online) Same as Fig. 5 but with a cavity phase set to φ = π/4. (Left panels) Cavity photon numbers nj = |αj |2 (j = 1,2)
as functions of time τ = ωRt . [Middle (τ = 25) and right (τ = 130) panels] After superradiance and self-organization have taken place, an
atomic honeycomb lattice with density-imbalanced consecutive sites is formed.
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FIG. 7. (Color online) Same as Fig. 5 but with a cavity phase set to φ = π/2. (Left panels) Cavity photon numbers nj = |αj |2 (j = 1,2)
as functions of time τ = ωRt . [Middle (τ = 25) and right (τ = 125) panels] After superradiance and self-organization have taken place, an
atomic honeycomb lattice with density-balanced consecutive sites is formed.

span shown in Fig. 5, the number of cavity photons fluctuates
a lot, even if it remains sizable, and the effective potential
fluctuates, too. This is because the system has not yet reached
the steady state. However, these fluctuations do not alter the
triangular nature of the lattice of potential minima and, in turn,
the triangular nature of the self-organized atomic lattice.

2. Cavity phase φ = π/4

As suggested by the results of the linear stability analysis
developed in Sec. IV, superradiance takes place irrespective of
the value of the cavity phase φ. However, the lattice structure
of the potential minima is triangular only when φ = 0;
otherwise it is rather hexagonal (see Sec. II E). To check this
point, we have considered the same initial state and we have
numerically solved Eqs. (7), (17), and (18) with φ = π/4. In
this case, we expect superradiance to organize atoms according
to the energy-imbalanced wells of the honeycomb potential;
see middle panel of Fig. 3 for an example of such a potential,
with more atoms trapped in the deeper wells. This is indeed
the behavior observed in Fig. 6 where the obtained atomic
density distributions are shown at times τ = 25 and τ = 130
and display the form of a density-imbalanced honeycomb
lattice.

3. Cavity phase φ = π/2

By the same token, when φ = π/2, the wells of the
honeycomb potential have all the same depth and we expect
superradiance to drive the atoms into a density-balanced
honeycomb lattice; see right panel of Fig. 3. This is indeed
what our numerical results show; see Fig. 7 where the atomic
distributions obtained at times τ = 25 and τ = 125 are given.

One may have noticed that, for the same coupling parame-
ters, the atomic honeycomb lattices have lower contrasts than
the triangular one. As one can see in Fig. 3, the honeycomb
minima are already shallower than the triangular ones when
the number of cavity photons is the same. Here the dynamics
develops less cavity photons for the honeycomb lattice than
for the triangular one. Moreover, for the honeycomb lattice,
the atoms are distributed over twice as many sites than for the
triangular lattice. All these reasons conspire to produce less
contrasted atomic lattices for the honeycomb structure than for
the triangular one. For the parameters chosen here, we infer
from Eq. (11) that the pump and cavity fields have the same
order of magnitude when nj = Up/Uj ≈ 172. As seen from
Figs. 5–7, this is the case for φ = 0 where nj fluctuates roughly
around 175. For φ = π/2 and φ = π/4, nj fluctuates roughly
around 50, or a bit less, and the pump field is larger than the
cavity fields.
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FIG. 8. (Color online) Long-time dynamics of the system shown in Fig. 5 (φ = 0). (Left panel) Cavity photon numbers nj = |αj |2 (j = 1,2)
as functions of time τ = ωRt . The cavity steady states are reached around a time τ = 2000. (Middle panel) Contour plot of the (stable) atomic
density distribution obtained at time τ = 3000. (Right panel) Effective lattice potential Veff at τ = 3000.
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FIG. 9. (Color online) Long-time dynamics of the system shown in Fig. 6 (φ = π/4). (Left panel) Cavity photon numbers nj = |αj |2
(j = 1,2) as functions of time τ = ωRt . The cavity steady states are reached around a time τ = 4000. (Middle panel) Contour plot of the
atomic density distribution obtained at time τ = 1500. (Right panel) Veff at τ = 1500. As one can see, the density-imbalanced atomic honeycomb
lattice obtained at short times in Fig. 6 is not a stable structure at long times. The atoms reorganize in the deepest potential wells of the effective
potential shown in the right panel and form a stable triangular lattice.

B. Long-time stability of the different lattice structures

As seen in Figs. 5–7, the cavity photon numbers nj suffer
strong temporal fluctuations. This means that the effective
potential fluctuates, too, and thus, in turn, so does the atomic
distribution. In fact, the system needs more time to reach
the steady state. Figure 8 shows the long-time evolution of
the system when φ = 0 (triangular lattice). The steady state
is reached around time τ ≈ 2000 with a number of cavity
photons n1 = n2 ≈ 2800. In this case the cavity fields largely
dominate over the pump field and the wells of the effective
potential organize in a rectangular array rendering the (exact)
triangular symmetry less apparent as is shown in Fig. 8.
However, the atoms accumulate in the deepest minima of this
effective potential which still form a nice regular triangular
lattice. The contour plots in Fig. 8 show an example of the
atomic density distribution and the effective potential at time
τ = 3000. This distribution does not change in time once the
system has reached the steady state.

When 0 < φ < π/2, as we have seen, atomic honeycomb
lattices with density-imbalanced consecutive sites are syn-
thesized. However, these structures are not stable in the
long-time limit and atoms reorganize themselves into the
deepest potential wells which form a triangular lattice. As an
example, Fig. 9 shows the atomic density distribution and the
effective potential obtained at time τ = 1500 for φ = π/4. As
clearly seen the density-imbalanced atomic honeycomb lattice
found at early times (see Fig. 6) has disappeared in favor of
the triangular atomic sublattice of deepest wells.

These density-imbalanced atomic honeycomb lattices
destabilize in favor of the triangular lattice after a certain
latency time T . After the time T , there is no visible occupation
of the shallower lattice sites.4 The atomic lattice is purely
triangular and becomes the stable structure in the long-time
regime. The latency time T depends on the potential energy
difference between consecutive sites. Since this potential

4In our plots, this happens when the maximum of the atomic density
at the deeper lattice wells reaches the value 1.8 approximately.

mismatch decreases when φ increases, T gets longer when
φ → π/2 (see Fig. 10). Note, however, that the cavity photon
numbers take a time longer than T to reach their steady
state.

When φ = π/2, the effective potential is hexagonal with
perfectly energy-balanced minima. We thus expect a stable
density-balanced atomic honeycomb lattice to emerge from
the self-organization process. As one can see from Fig. 11,
this is indeed the case, but the cavity photon numbers now
reach their steady state after a much longer time. They even
fluctuate a lot during their temporal evolution and induce in
turn fluctuations of the atomic lattice. These atomic density
fluctuations get strongly reduced after the time τ = 6000 but,
even at time τ = 104, the system has not yet fully reached its
steady state. As one may have noticed, our numerical results
produce different cavity photon numbers n1 �= n2 even if their
average behavior is the same and their asymptotic values are
equal. This asymmetry is due to the sensitivity of this system
to numerical errors. However, the difference in n1 and n2

approaches zero as the system reaches its steady state.
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FIG. 10. (Color online) Dimensionless latency time T against the
cavity phase φ. After T , atoms have reorganized into the deepest wells
of the energy-imbalanced effective potential obtained for φ ∈ ]0,π/2[
and exhibit a triangular lattice structure. This time T increases when
the energy mismatch between the principal and secondary potential
minima decreases, i.e., when φ increases. It diverges when φ →
π/2. The atomic honeycomb lattice obtained at φ = π/2 is a stable
structure.
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FIG. 11. (Color online) Long-time dynamics of the system described in Fig. 7 (φ = π/2). (Left panel) Cavity photon numbers nj = |αj |2
(j = 1,2) as functions of time τ = ωRt . As one can see, the cavity photon numbers fluctuate a lot and, in turn, so does the atomic honeycomb
lattice. At the longest time τ = 104 of our numerical simulation, the system has not yet fully reached its steady state. (Middle panel)
Corresponding contour plot of the atomic density. (Right panel) Effective lattice potential Veff obtained at this longest time. The atomic
honeycomb lattice is a stable structure but it takes a much longer time to reach the steady state.
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FIG. 12. (Color online) Transition from the density-imbalanced honeycomb atomic lattice to the triangular atomic lattice. (Top left panel)
Pump and cavity phase temporal sequences and time evolution of the cavity photon numbers. The cavity phase changes linearly from φi = π/4
to φf = 0 over the time interval �τ = 200. Meanwhile, the pump strength Up decreases from 0 to Uf = −20 over the time window 3�τ = 600.
The other parameters are the same as in Fig. 4. Contour plots show the atomic density obtained at time τ = ωRt = 200, before the cavity phase
starts to decrease (top right panel), at time τ = 260, just before the triangular lattice become the dominant structure (bottom left panel), and at
time τ = 400, when the cavity phase has reached its target value φf = 0 (bottom right panel). The triangular lattice becomes the prominent
structure around τ ≈ 280, well before the cavity phase reaches the target value 0. At this time, the cavity photon numbers rise considerably
and then increase linearly in time like the pump strength for the rest of the time sequence.
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C. Driving atoms from one lattice structure to another

So far, we have considered the dynamical behavior of
the cavity-atom system for a fixed pump strength, chosen
above the threshold for superradiance, and we have studied
the self-organization of atoms into triangular or hexagonal lat-
tice structures for different cavity phases. We now investigate
the possibility of driving atoms from one lattice structure to
another by changing in time both the pump strength and the
cavity phase. The protocol we explore is the following. The
pump strength increases linearly in time from 0 to some final
value Uf over a certain time window 3�τ . Meanwhile, the
cavity phase is set at φi initially. After superradiance takes
place and enough number of photons are produced inside the
cavities, the phase is then changed linearly in a time interval
of �τ to its final value φf . Finally, the cavity phase keeps this
target value for the rest of the time sequence.

We present below the time evolution of the cavity photon
numbers and the atomic distribution obtained numerically

for this experimental protocol for three possible cavity phase
values: φ = 0, φ = π/2, and some intermediate value that we
choose to be φ = π/4.

1. Switching the cavity phase between 0 and π/4

When the system starts with φi = 0, the atoms organize
in a triangular lattice. By switching the cavity phase to φf =
π/4, a new optical potential is produced featuring additional
shallower wells. However, we know from Sec. V B that when
0 < φ < π/2, the stable structure at long times is the triangular
lattice formed by atoms occupying the deepest potential wells.
Since atoms have already self-organized in a triangular lattice,
changing the cavity phase from 0 to π/4 will not affect the
atomic distribution which thus remains triangular. On the
other hand, when the system starts instead with φi = π/4 and
the cavity phase is changed to φf = 0, the transition to the
triangular lattice is inevitable and is illustrated in Fig. 12.
As the cavity phase decreases, the secondary minima of the
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FIG. 13. (Color online) Transition from the triangular atomic lattice to the density-balanced atomic honeycomb lattice. (Top left panel)
Pump and cavity phase temporal sequences and time evolution of the cavity photon numbers. The cavity phase changes linearly from φi = 0
(triangular lattice) to φf = π/2 (energy-balanced honeycomb lattice) over the time interval �τ = 200. Meanwhile, the pump strength Up

decreases from 0 to Uf = −20 over the time window 3�τ = 600. The other parameters are the same as in Fig. 4. When the cavity phase
departs from 0, secondary minima start to grow and the effective potential becomes an energy-imbalanced honeycomb potential. However, the
atomic density keeps its triangular lattice structure where atoms are sitting at the deeper minima of the effective potential. When the cavity
phase reaches π/2 then the atomic density starts oscillating in time between the two triangular sublattices of the honeycomb lattice which now
have the same depth. (Top right panel) Shows the atomic density at time τ = 400 when phase reaches π/2. (Bottom left panel) Atomic density
distribution at time τ = 402. The initial triangular lattice is still dominant. (Bottom right panel) Atomic density distribution at time τ = 404.
The atomic distribution now lives mainly on the other triangular sublattice of the honeycomb lattice.
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effective potential obtained for φi = π/4 become shallower
and shallower and are occupied by fewer and fewer atoms.
The triangular lattice becomes the prominent structure around
τ ≈ 280, well before φ reaches the target value 0, which
triggers a considerable rise of the cavity photon numbers.

2. Switching the cavity phase between 0 and π/2

In this case, both the triangular and density-balanced
honeycomb lattices are stable structures of the static situation.
Figure 13 shows what happens when we start from the
triangular lattice (φi = 0) and gradually increase the cavity
phase to φf = π/2. As one expects from the previous case,
the atomic lattice structure remains triangular as long as the
cavity phase has not reached its target value, 0 < φ(τ ) < π/2.
Interestingly enough, once the cavity phase has reached
φf = π/2, the atomic density distribution starts to oscillate
between the wells of the two triangular sublattices of the
energy-balanced effective potential, taking the form of density-
imbalanced atomic honeycomb lattices in between. These two

triangular sublattices are simply shifted by −(�a1 + �a2)/3. As
a net result, the atomic density looks like “blinking” between
two shifted triangular lattices, a sign of a bi-stable behavior.
This blinking does not stop if the pump strength is kept
fixed, rather than linearly increasing, after the cavity phase
has reached φf = π/2. It even speeds up if the pump strength
is ramped up faster. The bottom panels in Fig. 13 display
the atomic densities at times τ = 402 and τ = 404, showing
that, for the experimental parameters chosen, the oscillation
period between the two triangular lattices is comparable to
the pump recoil time ω−1

R . It is worth recalling that, once the
cavity phase is set to π/2, the minima of the effective potential
have the same depth and display a honeycomb structure,
irrespective of the cavity photon numbers (as long as they
are not zero). This case should not thus be confused with
the previous case (0 < φ < π/2) where the lattice potential
has minima with different depths. Our present results then
show that, for time-driven parameters, the density-balanced
honeycomb structure is a transient state between two stable
triangular structures.
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FIG. 14. (Color online) Transition from the density-balanced atomic honeycomb lattice to the triangular atomic lattice. (Top left panel)
Pump and cavity phase temporal sequences and time evolution of the cavity photon numbers. The cavity phase changes linearly from
φi = π/2 to φf = 0 over the time interval �τ = 200. Meanwhile, the pump strength Up decreases from 0 to Uf = −20 over the time window
3�τ = 600. The other parameters are the same as in Fig. 4. (Top right panel) Atomic density distribution at time τ = 100, forming the expected
density-balanced honeycomb lattice. As the cavity phase departs from π/2, consecutive potential wells start to have different depths. As long
as the potential mismatch is weak enough, the density-balanced honeycomb lattice resists the phase change but, with increasing potential
mismatch, finally gives in and becomes a fading density-imbalanced honeycomb lattice around τ = 250 (bottom left panel). When the cavity
phase becomes even smaller, before it reaches φ = 0 at τ = 300, the atoms reorganize into the stable triangular structure. (Bottom right panel)
Atomic density distribution at time τ = 600.
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Figure 14 shows what trivially happens for the reverse
process, i.e., when we start with φi = π/2 and decrease
gradually the cavity phase to φf = 0. Once the cavity phase
departs from π/2, the effective potential has minima with
different depths. As long as the potential mismatch is weak
enough, the initial density-balanced honeycomb structure
resists but, with increasing potential mismatch, finally gives in
and a density-imbalanced honeycomb lattice is formed around
τ = 250. Then, as the cavity phase decreases further, the depth
of the secondary minima, as well as the number of atoms
sitting on them, decreases rapidly. Before the cavity phase
finally reaches φ = 0 at τ = 300, the atoms choose the deeper
triangular sublattice which becomes the stable structure as
expected.

3. Switching the cavity phase between π/4 and π/2

We address now the last case, namely the transition between
the two possible, density-balanced or density-imbalanced,
atomic honeycomb lattices. We first consider switching the

cavity phase from φi = π/4 to φf = π/2. In this case, some
of the atoms are sitting in the shallower potential wells of
the effective honeycomb potential while the majority of them
are hosted in the deeper ones; see Fig. 15. By increasing the
cavity phase, the shallower sites become deeper. However, the
atoms in the deeper wells tend to stay where they are (see
Sec. VC1) until the cavity phase becomes exactly π/2 and
all potential wells have same depth. At this point, the atomic
lattice is hexagonal with almost density-balanced sites. Then,
for the rest of the time sequence, atoms start oscillating in time
between the two stable triangular sublattices, featuring the
“lattice blinking” already observed in the preceding Sec. VC2.

When the system starts with φi = π/2, the initial atomic
lattice is a density-balanced honeycomb lattice. By gradually
decreasing the cavity phase, the potential wells of one
of the two triangular sublattices become shallower. However,
the initial density-balanced atomic honeycomb lattice resists
the potential mismatch even after the cavity phase has reached
its final value φ = π/4. It gets finally destabilized around τ ≈
600 and takes the form of a density-imbalanced honeycomb
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FIG. 15. (Color online) Transition from the density-imbalanced to the density-balanced atomic honeycomb lattice. (Top left panel) Pump
and cavity phase temporal sequences and time evolution of the cavity photon numbers. The cavity phase increases linearly from φi = π/4
to φf = π/2 over the time interval �τ = 200. Meanwhile, the pump strength Up decreases from 0 to Uf = −20 over the time window
3�τ = 600. The other parameters are the same as in Fig. 4. (Top right panel) Atomic density at time τ = 200 where the cavity phase starts
to increase. Later on, as the cavity phase increases, the shallower wells become deeper, however, the atoms in deeper wells do not move to
the shallower wells until phase becomes exactly π/2 and all sites have same depth. (Bottom left panel) Atomic density at time τ = 400 when
the cavity phase reaches π/2 one gets an almost density-balanced atomic honeycomb lattice. From this time on, and for the rest of the time
sequence, the atomic density starts oscillating fast in time between the two stable triangular sublattices. (Bottom right panel) Hinting at this
oscillating behavior, the atomic density at time τ = 401.
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FIG. 16. (Color online) Transition from the density-balanced to the density-imbalanced atomic honeycomb lattice. (Top left panel) Pump
and cavity phase temporal sequences and time evolution of the cavity photon numbers. The cavity phase decreases linearly from φi = π/2
to φf = π/4 over the time interval �τ = 200. Meanwhile, the pump strength Up decreases from 0 to Uf = −30 over the time window
4.5�τ = 900 (same rate as previous cases). The other parameters are the same as in Fig. 4. (Top right panel) Atomic density at time τ = 100
when the cavity phase is π/2 and one gets a density-balanced atomic honeycomb lattice. When the phase departs from π/2, similar to what
happens in Fig. 14, the initial density-balanced honeycomb lattice resists destabilization, even though the lattice potential is imbalanced, but
finally gives in around τ ≈ 600, well after the cavity phase has reached its final value φ = π/4. (Bottom left panel) Atomic distribution at
τ = 650. (Bottom right panel) Atomic distribution at τ = 900. The atomic lattice transits to the triangular lattice at long times through a
density-imbalanced honeycomb lattice.

lattice; see Fig. 16. As explained in Sec. V B, this structure is
not stable in the long-time limit and destabilizes subsequently
into a triangular lattice as the atoms in the shallower sites move
to the deeper sites.

VI. CONCLUSION

In this work we have proposed to load a two-dimensional
cloud of noninteracting cold bosonic atoms inside two identical
initially empty optical cavities with an angle of 2π/3 between
their axes. The atoms are driven by an external laser field.
We have given the Hamiltonian of this hybrid system in the
dispersive regime and we have derived the corresponding
dynamical equations in the mean-field regime. The coherent
superposition of the cavity and pump fields creates a dynamical
effective lattice potential with a triangular Bravais structure
in which the atoms move. As a result of superradiance, the
atoms self-organize into a triangular or a honeycomb lattice
inside the cavities, the nature of the lattice depending on the

relative phase between the pump and the cavity fields. Using
the symmetry properties of the effective potential, we have
derived the dynamical equations in reciprocal space and we
have investigated the condition required for superradiance to
take place. Linear response theory shows that superradiance
takes place irrespective of the relative phase between the
cavity and pump fields. This is confirmed by our numerical
results: Atoms self-organize into a triangular lattice when
pump and cavity fields are in phase, into a density-balanced
honeycomb lattice when the fields are in quadrature and into a
density-imbalanced honeycomb lattice in between. The stable
atomic structures in the long-time limit are the triangular and
density-balanced honeycomb lattices. The density-imbalanced
honeycomb lattice only survives for a limited amount of time
which becomes longer and longer as the cavity and pump fields
approach quadrature. In the end, atoms redistribute equally
into the triangular sublattice made of the deepest potential
wells. We have also studied the transition between these
different lattice structures when the relative phase between
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the fields is dynamically changed and confirmed the stability
of the triangular and density-balanced honeycomb structures.
A natural extension of this work would include the study of the
survival time of the density-imbalanced honeycomb lattices,
the (possibly chaotic) dynamics leading to superradiance when
the fields are in quadrature, and, importantly, the effect of
atomic interactions on the self-organization process.
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