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The propagation of electromagnetic waves in isotropic dielectric media with local dispersion is studied under
the assumption of small but nonvanishing λ/�, where λ is the wavelength and � is the characteristic inhomogeneity
scale. It is commonly known that, due to nonzero λ/�, such waves can experience polarization-driven bending
of ray trajectories and polarization dynamics that can be interpreted as the precession of the wave “spin”. The
present work reports how Lagrangians describing these effects can be deduced, rather than guessed, within a
strictly classical theory. In addition to the commonly known ray Lagrangian that features the Berry connection, a
simple alternative Lagrangian is proposed that naturally has a canonical form. The presented theory captures not
only the eigenray dynamics but also the dynamics of continuous-wave fields and rays with mixed polarization,
or “entangled” waves. The calculation assumes stationary lossless media with isotropic local dispersion, but
generalizations to other media are straightforward.
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I. INTRODUCTION

Electromagnetic (EM) waves propagating in inhomoge-
neous linear media exhibit a variety of intriguing phenomena
associated with wave polarization. Those include precession
of the polarization vector, known as the Rytov rotation [1–4],
and also the polarization-driven bending of ray trajectories,
known as the optical Magnus effect or the optical Hall
effect [5–8]. As overviewed recently in Ref. [9], these
phenomena can be attributed as manifestations of the Berry
phase [10], which is a fundamental concept emerging also in
many other areas of physics [11–13]. Hence the subject has
been attracting an increased amount of attention, especially
with focus on variational formulations, which are particu-
larly elucidating at studying EM polarization effects in the
geometrical-optics (GO) limit [7,14–17]. Yet a straightforward
universal theory is still lacking. Within existing models, ray
Lagrangians and Hamiltonians either have to be guessed or
are derived using additional postulates such as quantization,
which is, by definition, alien to classical theory. These
ad hoc approaches result in a number of limitations; e.g.,
they are not readily applicable to media with nonlocal and
strongly anisotropic dispersion such as magnetized plasma.
Thus, there is a compelling need for a generalized and
simplified description of EM polarization effects from first
principles.

The purpose of this paper is to present such a description.
More specifically, what we report here is an application
of the general theory that we derived earlier in Ref. [18]
for the Dirac electron. In the present paper we explain how
exactly the same theory can be applied to GO EM waves and
polarization effects in particular. As opposed to Ref. [16], our
derivation is entirely classical. It is also straightforward and
elementary in the sense that the wave Lagrangian does not
need to be guessed, as in Refs. [7,19], but is rather deduced
(basically, using nothing more than matrix multiplication)
according to a formalized algorithm. The known results are
successfully reproduced and are extended as follows. (i) We
show that, in addition to the commonly known ray Lagrangian
that features the Berry connection [19–21], an alternative ray
Lagrangian is possible that naturally has a canonical form

and corresponds to a Hamiltonian simpler than that proposed
in Ref. [7]. We explain how the two Lagrangians are related
and demonstrate their (approximate) equivalence numerically.
(ii) As opposed to the result of Ref. [19], our Lagrangians
are expressed in terms of physical time and wave vector,
so they capture the complete ray dynamics rather than just
the ray trajectory. (iii) In addition to eigenray equations, we
also derive equations for continuous-wave fields and rays with
mixed polarization, or “entangled” waves. This description
captures both the Rytov rotation and the optical Hall effect
simultaneously and it is also manifestly conservative, since
the amplitude equations too are derived from a variational
principle.

The calculation presented below applies to arbitrary linear
stationary lossless media with isotropic local dispersion,
i.e., media whose dielectric and magnetic permittivities are
real scalars depending only on spatial coordinates. However,
within our theory, generalizations to strongly anisotropic
media with nonlocal dispersion, such as magnetized plasma,
are straightforward. The present paper is intended as an
introduction to such calculations. Thus, below we intentionally
focus on a relatively simple problem to show how our general
theory fits the existing literature.

This work is organized as follows. In Sec. II we present
a Lagrangian formalism to describe EM wave propagation in
isotropic stationary dielectric media with local dispersion. In
Sec. III we obtain a reduced model that captures first-order
polarization effects in transverse EM waves. In Sec. IV we
discuss a fluid Lagrangian model, which describes the dy-
namics of the wave envelope, ray trajectory, and polarization.
In Sec. V we derive ray equations in a canonical form. In
Sec. VI we present the noncanonical ray equations and we
compare them with those previously reported. In Sec. VII we
summarize our main results.

II. BASIC EQUATIONS

A. Photon wave function

Consider EM wave propagation in isotropic lossless di-
electric media with local linear dispersion. In this case, the
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governing equations for the electric field E(t,x) and magnetic
field H(t,x) are

∂tE = c

ε
∇ × H, (1)

∂tH = − c

μ
∇ × E, (2)

where ε = ε(x) is the electric permittivity and μ = μ(x) is the
magnetic permeability.

Let us introduce the normalized fields

Ē = √
ε E, (3)

H̄ = √
μ H, (4)

so we can rewrite Eqs. (1) and (2) as

∂t Ē = c

n
∇ × H̄ − c

n
∇(ln

√
μ) × H̄, (5)

∂tH̄ = − c

n
∇ × Ē + c

n
∇(ln

√
ε) × Ē, (6)

where n(x)
.= √

εμ is the refraction index. (From here on, the
symbol

.= denotes definitions.) Due to the linearity of these
equations, we may formally extend them to complex fields.
Then we can express Eqs. (5) and (6) as a vector Schrödinger
equation,

i∂tψ = H (x, − i∇)ψ, (7)

where

ψ(t,x)
.=

(
Ē
H̄

)
(8)

is a six-component wave function, which can be interpreted as
the photon wave function [22,23]. The Hamiltonian operator
is a 6 × 6 matrix given by

H (x,k̂)
.= c

n
λ · k̂ + A, (9)

where k̂ .= −i∇ is the wave-vector (momentum) operator, the
λ matrices are 6 × 6 Hermitian matrices

λ
.=

(
0 iα

−iα 0

)
, (10)

and the matrix A(x) is defined as follows:

A(x)
.= c

n

(
0 −α · ∇(ln

√
μ)

α · ∇(ln
√

ε) 0

)
. (11)

Here the α matrices are 3 × 3 traceless Hermitian matrices
given by [24]

αx .=
⎛
⎝0 0 0

0 0 −i

0 i 0

⎞
⎠, (12)

αy .=
⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠, (13)

αz .=
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠. (14)

These matrices serve as generators for the vector product.
Namely, for any two column vectors A and B, one has

(α · A)B = iA × B, (15)

AT αj B = −i(A × B)j , (16)

where T denotes the matrix transpose.
Let us also point out that, since the Hamiltonian is

Hermitian, it conserves the wave action,

∂μ(ψ†γ μψ) = 0, (17)

where ∂μ = (∂t ,∇), γ μ .= (I6,cλ/n), and I6 denotes the 6 × 6
unit matrix. Throughout this work, the Minkowski metric
is adopted with signature (+, − , − ,−). (Generalizations
to curved metrics are straightforward to apply [23].) Greek
indices span from 0 to 3 and refer to space-time coordinates
xμ with x0 corresponding to the time variable t . Latin indices
span from 1 to 3 and denote the spatial variables xi (except
where specified otherwise). Summation over repeated indices
is assumed. Hence, Eq. (17) can be explicitly written as

∂

∂t

( |Ē|2 + |H̄|2
16π

)
+ ∇ ·

[
c

n

Re(Ē∗ × H̄)

8π

]
= 0, (18)

where the 8π factor was introduced to emphasize the connec-
tion to the well-known Poynting theorem [25].

B. Lagrangian density

Equation (7) has a form akin to the so-called multisym-
plectic form [26–28] and can be readily given a variational
interpretation. Specifically, Eq. (7) can be obtained as the
Euler-Lagrange equation δ� = 0 for the action integral

� =
∫

L d4x, (19)

where d4x ≡ dt d3x and the Lagrangian density L is given by

L = i

2
[ψ†γ μ(∂μψ) − (∂μψ†)γ μψ] + ψ†Mψ. (20)

Here we adopt natural units such that c = 1. We also introduce

M(x) = 1

2n

(
0 α

α 0

)
· ∇ ln Z(x), (21)

where Z(x) is the impedance of the medium,

Z(x)
.=

√
μ

ε
. (22)

It is to be noted that no approximations have been used in
order to obtain this Lagrangian model. Notice also that the
Lagrangian density (20) involves only first-order differential
operators. In Ref. [18] we showed that such a simple structure
is convenient for studying a point-particle model of the spin-
orbit coupling for the Dirac electron. Below we report how
the calculation can also be extended to study the effect of
polarization of classical waves in dielectrics of the specified
type.
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III. REDUCED MODEL

We consider waves such that

ψ(t,x) = ξeiθ , (23)

where θ (t,x) is some rapid real phase and ξ (t,x) is a vector
evolving slowly compared to θ (t,x). Hence, we assume that
the inhomogeneity scale � is large compared to the wavelength,
i.e.,

ε
.= 1

k�
� 1, (24)

where k
.= |k| and

k .= ∇θ (25)

is the wave vector. Below we construct a reduced model of EM
wave propagation using the smallness of ε. Unlike the standard
GO theory, which corresponds to a Lagrangian accurate to the
zeroth order in ε [29,30], this reduced model will yield a ray
Lagrangian accurate to the first order in ε.

A. Eigenmodes in the limit of vanishing ε

In general, there exist multiple eigenfrequencies

ω
.= −∂tθ (26)

that correspond to a local wave vector k. At vanishingly small
ε, these eigenfrequencies are found from the GO limit of
Eq. (7), namely,

ωξ = H0(x,k)ξ, (27)

where H0(x,k)
.= λ · k/n. Notice that the matrix A does not

enter H0, because A is of the first order in ε.
In Eq. (27) there exist in general six independent eigen-

modes, since H0 is Hermitian. These modes can be readily
obtained from

ω2ξ = H 2
0 ξ = 1

n2

(
(α · k)2 0

0 (α · k)2

)
ξ. (28)

Denoting the components of ξ by ξT .= (aT
1 aT

2 ), the equa-
tion for the first three components is

ω2a1 = 1

n2
(α · k)(α · k)a1

= − 1

n2
k × (k × a1)

= 1

n2
[k2a1 − (k · a1)k], (29)

where, in the second line, we have used Eq. (15). As usual,
two eigenmodes are related to the propagation of longitudinal
(k × a1 = 0) modes with zero frequency, while the other four
eigenmodes correspond to the propagation of transversal (k ·
a1 = 0) EM wave modes in the limit of vanishing ε.

We will particularly be interested in transversal EM modes
with positive phase velocities such that

ω = k/n. (30)

Corresponding to this frequency, there are two orthonormal
eigenvectors hq , which are given by

h1(k) = 1√
2

(
e1

e2

)
, h2(k) = 1√

2

(
e2

−e1

)
, (31)

where e1(k) and e2(k) are any two orthonormal vectors in the
plane normal to ek

.= k/k. A right-hand convention is adopted
such that e1 × e2 = ek. Obviously, h1 and h2 are eigenvectors
of H0. For example,

H0h1 = 1

n
(k · λ)h1 = i

n
√

2

(
(α · k)e2

−(α · k)e1

)

= k

n
√

2

(
e1

e2

)
= ωh1, (32)

where in the third line, Eq. (15) was used. A similar calculation
follows for h2.

B. Eigenmode decomposition

Since hq form a complete basis, one can write ξ = hqφ
q ,

where φq are scalar functions. We will assume that only
transverse modes with positive frequencies are actually excited
(we call these modes active), whereas others acquire nonzero
amplitudes only through the medium inhomogeneity or the
finite width of the EM wave packet (we call these modes
passive). In this case,

φq =
{
O(ε0), q = 1,2
O(ε1), q �= 1,2.

(33)

[For future reference, note that φ1,2(t,x) describe the envelopes
corresponding to the linearly polarized modes with the
electric field E aligned parallel to the unit vectors e1 and
e2, respectively.] For given φ1,2, one can always calculate
the amplitudes of passive modes using the complete set
of Maxwell’s equations, but this will not be necessary for
our purposes. As shown in Ref. [18], due to the mutual
orthogonality of all hq , the contribution of passive modes to
L is o(ε), so it can be neglected entirely. In other words,
for the purpose of calculating L, it is sufficient to adopt
ξ ≈ h1φ

1 + h2φ
2, even though the true ξ may have nonzero

projections also on other hq .
It is convenient to rewrite this decomposition in a matrix

form

ξ = �φ, (34)

where

φ(t,x)
.=

(
φ1

φ2

)
(35)

and � is a 6 × 2 matrix having hq as its columns, i.e.,

�(k)
.= 1√

2

(
e1 e2

e2 −e1

)
. (36)

[Below we also consider � as a function of xμ in the sense
that � = �(k(xμ)).] Then, inserting Eq. (34) into Eq. (20),
one obtains [18]

L = K − φ†(E − U)φ + o(ε), (37)

043805-3



D. E. RUIZ AND I. Y. DODIN PHYSICAL REVIEW A 92, 043805 (2015)

where

K .= i

2
[φ†(dtφ) − (dtφ

†)φ], (38)

E .= ∂tθ + k

n
, (39)

U .= �†M� + i

2
[�†γ μ(∂μ�) − (∂μ�†)γ μ�]. (40)

Here dt
.= ∂t + v0 · ∇ is a convective derivative associated

with the zeroth-order (in ε) geometrical optics velocity field

v0
.= ∂ω

∂k
= 1

n
ek. (41)

The terms K and U , which are of order ε, represent corrections
to the standard, lowest-order GO Lagrangian density. Below,
U will be calculated explicitly, whereas terms o(ε) will be
neglected.

C. Stern-Gerlach Hamiltonian

Let us search for a tractable expression for U , which
in Refs. [18,31] was called the Stern-Gerlach Hamiltonian.
Regarding the first term on the right-hand side of Eq. (40), a
straightforward calculation gives

�†M� = 1

2
√

2n
�†

(
0 α · ∇lnZ

α · ∇lnZ 0

)(
e1 e2

e2 −e1

)

= i

4nZ

(
e1 e2

e2 −e1

)(∇Z × e2 −∇Z × e1

∇Z × e1 ∇Z × e2

)
= 0. (42)

Here we introduce the notation e1 .= eT
1 and e2 .= eT

2 . Notably,
these can be understood as adjoint basis vectors, e.g., e2e1 ≡
(e2)i(e1)i ≡ e2 · e1 = 0. Hence, Eq. (40) is simplified to

U = i

2
[�†γ μ(∂μ�) − (∂μ�†)γ μ�]. (43)

Using ∂μ� = (∂�/∂kj )(∂μkj ), we can rewrite U as [18]

U = i

2
k̇ · [�†(∂k�) − (∂k�

†)�]. (44)

Here k̇(t) is given by the lowest-order (in ε) ray equation

k̇(t) = −∂xω(x,k) (45)

and ω is given by Eq. (30). Using Eq. (36), we obtain

�† ∂�

∂kj
− ∂�†

∂kj
�

=
(

0 e1 ∂
∂kj e2 − e2 ∂

∂kj e1

e2 ∂
∂kj e1 − e1 ∂

∂kj e2 0

)
.

Since e1e2 = 0, Eq. (44) leads to

U = −k̇ · A(k)σy, (46)

where σy is the y component of the Pauli matrices,

σy =
(

0 −i

i 0

)
, (47)

and A(k) is a vector with components given by

Aj (k)
.= e1 ∂

∂kj
e2. (48)

For example, one may choose [32]

e1(k)
.=

⎛
⎜⎜⎜⎝

kxkz

k
√

k2
x+k2

y

kykz

k
√

k2
x+k2

y

−
√

k2
x+k2

y

k

⎞
⎟⎟⎟⎠, e2(k)

.=

⎛
⎜⎜⎝

− ky√
k2
x+k2

y

kx√
k2
x+k2

y

0

⎞
⎟⎟⎠, (49)

so that

A(k) = e⊥ × ek

k⊥
, (50)

where kT
⊥

.= (kx,ky,0) and e⊥
.= k⊥/k⊥ or, more explicitly,

A(k) = kz

kk2
⊥

⎛
⎝ ky

−kx

0

⎞
⎠. (51)

D. Lagrangian density: Summary

Substituting Eq. (46) into Eq. (37), we can express the
Lagrangian density as

L = −φ†(∂tθ + k/n)φ

+ i

2
[φ†(dtφ) − (dtφ

†)φ] − φ†σy�φ, (52)

where

�
.= k̇ · A(k). (53)

Let us also use a variable transformation

φ(t,x) = Qη(t,x), (54)

where

Q
.= 1√

2

(
1 1
i −i

)
(55)

and η(t,x) is a new vector with components denoted by

η(t,x)
.=

(
η+
η−

)
. (56)

Hence, the Lagrangian density (52) can be expressed as

L = −η†(∂tθ + k/n)η

+ i

2
[η†(dtη) − (dtη

†)η] − η†σz�η, (57)

where σz is another Pauli matrix,

σz =
(

1 0
0 −1

)
. (58)

Here η±(t,x) describe envelopes corresponding to right-hand
and left-hand circularly polarized modes, respectively (as
defined from the point of view of the source).

The first line of the right hand side of Eq. (57) represents
the lowest-order GO Lagrangian density for these modes. The
second line of Eq. (57), which contains O(ε) terms, introduces
polarization effects, as will be explained below.
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IV. CONTINUOUS-WAVE MODEL

Substituting Eqs. (30) and (45) in Eq. (53), we can rewrite
L as

L = −η†(∂tθ + k/n)η

+ i

2
[η†(dtη) − (dtη

†)η] − η†σz�(x,k)η, (59)

where

�(x,k) = k

n2
A(k) · ∇n. (60)

In this form, the Lagrangian density is analogous to that of
a semiclassical Pauli particle and thus can be approached
similarly [31]. Let us adopt the representation η = z

√
I,

where I(t,x)
.= ψ†ψ is the action density and z(t,x) is a unit

polarization vector (z†z ≡ 1). Since the common phase of the
two components of z can be attributed to θ , we can parametrize
z in terms of just two real functions ϑ(t,x) and ζ (t,x):

z(ϑ,ζ ) =
(

eiϑ cos(ζ/2)
e−iϑ sin(ζ/2)

)
.

Like in the case of the Pauli particle, ζ determines the
relative fraction of spin-up and spin-down quanta, i.e., those
corresponding to left-hand and right-hand polarizations. Also,
one can understand S .= z†σz/2 as the wave “spin vector” (σ
denotes the three Pauli matrices, as usual [18,31]) or, up to a
constant factor, as the Stokes vector [33,34].

Using the above parametrization, the Lagrangian density is
rewritten as

L = −I
[
∂tθ + k

n
+ (dtϑ + �) cos ζ

]
, (61)

which leads to four Euler-Lagrange equations (ELEs). (For
future reference, when an ELE is presented, the denotation
“δa:” means that the corresponding equation was obtained by
varying the action integral with respect to a.) The first ELE is
the action conservation theorem

δθ : ∂tI + ∇ · (IV) = 0. (62)

The flow velocity is given by V = v0 + u, and

u .= ∂

∂k

(
k · ∇ϑ

nk
+ �

)
cos ζ. (63)

Notice that u represents the polarization-driven deflection of
the ray’s “center of gravity” predicted in Refs. [5–7]. The
second ELE is a Hamilton-Jacobi equation

δI: ∂tθ + k

n
+ (dtϑ + �) cos ζ = 0, (64)

whose gradient yields an equation for ∂tk, i.e., the momentum
equation [31]. The third ELE is

δζ : dtϑ = −�. (65)

As it will become clear below, this describes the rotation of
the wave polarization. Finally, the fourth ELE is

δϑ : ∂t (I cos ζ ) + ∇ · (Iv0 cos ζ ) = 0. (66)

Together, Eqs. (62)–(66) provide a complete fluid de-
scription of continuous waves. Note that waves are allowed

to be nonstationary and “entangled”, i.e., contain mixed
polarization. In fact, a combination of Eq. (66) with Eq. (62)
gives

∂t (cos ζ ) + V · ∇(cos ζ ) = 1

I∇ · (Iu cos ζ ), (67)

which shows that ζ is generally not conserved, i.e., the numbers
of spin-up and spin-down quanta necessarily oscillate, unless
a wave is homogeneous. This can be interpreted as an effective
zitterbewegung of a classical wave in an inhomogeneous
medium.

V. RAY DYNAMICS: CANONICAL REPRESENTATION

A. Basic equations

The ray equations corresponding to the above field equa-
tions can be obtained as a point-particle limit. In this limit, I
can be approximated with a delta function,

I(t,x) = δ(x − X(t)), (68)

where X is the location of the wave packet. As in Refs. [18,31],
the Lagrangian density (57) yields a point-particle Lagrangian
L

.= ∫
L d3x, specifically,

L = P · Ẋ − cP

n
+ i

2
(Z†Ż − Ż†Z) − �(X,P) Z†σzZ. (69)

Here P(t)
.= ∇θ (t,X(t)) is the canonical momentum, P = |P|,

and Z(t)
.= z(t,X(t)) is a two-component complex function.

The refraction index and � are evaluated at x = X and k = P;
e.g., n = n(X(t)). Also, the speed of light constant c has been
reintroduced for clarity.

Treating X(t), P(t), Z(t), and Z†(t) as independent vari-
ables, we obtain the following ELEs:

δP: Ẋ(t) = cP
nP

+ (∂P�)Z†σzZ, (70)

δX: Ṗ(t) = cP

n2
∇n − (∂X�)Z†σzZ, (71)

δZ†: Ż(t) = −i�σzZ, (72)

δZ: Ż†(t) = i�Z†σz. (73)

Together with Eqs. (51) and (60), Eqs. (70)–(73) form a
complete set of equations. The first terms on the right-hand
side of Eqs. (70) and (71) describe the ray dynamics in the
GO limit. The second terms describe the coupling of the mode
polarization and the ray curvature.

B. Polarization dynamics

To better understand the polarization equations, let us
rewrite Eq. (72) as an equation in the basis of linearly polarized
modes, i.e., for �(t)

.= φ(t,X(t)),

�̇ = QŻ = −i�QσzZ = −i�(QσzQ
−1)� = −i�σy�.

(74)

[This equation could also be obtained if the ray equations were
derived directly from the Lagrangian density (52).] Since �

is a scalar and σy is constant, this can be readily integrated,
yielding [35]

� = exp(−i�σy)�0 = (I2 cos � − iσy sin �)�0, (75)
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where �(t)
.= ∫ t

0 �(t ′) dt ′ can be recognized as the wave
Berry phase [10], �(t)

.= �(X(t),P(t)), and �0 is a vector
determined by initial conditions. This result can be also be
expressed explicitly as follows:

� =
(

cos � − sin �

sin � cos �

)
�0. (76)

It is seen then that the polarization of the EM field rotates
at the rate �(t) in the reference frame defined by the basis
vectors (e1,e2). Such rotation of the polarization plane, also
known as Rytov rotation, was studied theoretically in Refs.
[1,2,4] and observed experimentally in Ref. [3]. Clearly,
Eq. (65) describes the same effect.

C. Ray dynamics for pure states

If a ray corresponds to a strictly circular polarization such
that σzz = ±z, the Lagrangian (69) can be simplified down to

L± = P · Ẋ − cP

n
∓ �(X,P), (77)

where L± governs the propagation of right and left polarization
modes, respectively. This Lagrangian has a canonical form
L± = P · Ẋ − H±(X,P), where H± is a Hamiltonian given by

H±(X,P) = cP

n(X)
± cP

n2(X)
A(P) · ∇n(X). (78)

The variables X and P serve as the canonical coordinate and
momentum, so they satisfy the canonical Hamilton’s equations

δP: Ẋ(t) = cP
nP

± ∂P�, (79)

δX: Ṗ(t) = cP

n2
∇n ∓ ∂X�. (80)

Since H± is time independent, one also readily obtains energy
(frequency) conservation along the ray trajectory,

H±(X(t),P(t)) = const. (81)

VI. RAY DYNAMICS: NONCANONICAL
REPRESENTATION

A. Ray variables

If the point-particle limit is taken without explicitly invok-
ing Eq. (53), an alternative representation of the ray Lagrangian
can be obtained that connects our results to those found in the
existing literature. For pure states, this alternative Lagrangian
is given by

L± = p · ẋ − cp

n(x)
∓ ṗ · A(p), (82)

where ṗ · A(p) is known as the Berry connection term [19].
Notice, in particular, that adding ∂kχ (k) to A(k), where χ (k)
is an arbitrary scalar function, changes L± merely by a perfect
time derivative and thus does not affect the motion equations.
Also notice that we have introduced a different notation for the
ray variables [(x,p) instead of (X,P)] for the following reason.

On the one hand, as an approximation of the Lagrangian
(77), Eq. (82) is expected to yield dynamics similar to that

yielded by Eq. (77). On the other hand, notice that Eq. (82)
does not have a canonical form. This means that (x,p) do not
satisfy Hamilton’s equations and thus, clearly, cannot be the
same as (X,P). To understand the connection between the two
sets of variables, let us rewrite Eq. (82) as

L± = p · ẋ − cp

n
∓ d

dt
(p · A) ± p · dA

dt
. (83)

Dropping the perfect time derivative and introducing

q .= x ± A, (84)

we obtain a Lagrangian in a canonical form

L± = p · q̇ − cp

n(q ∓ A(p))
. (85)

The quantity cp/n(x) serves as the canonical energy and is
conserved,

cp/n(x) = const. (86)

Also, since 1/n(x) is assumed smooth, one can replace this
function with its first-order Taylor expansion. Then

L± = p · q̇ − cp

n(q)
∓ cp

n2(q)
A(p) · ∇n(q), (87)

where we omitted terms O(ε2), as usual. By comparing this
with Eq. (77), we find that

x = X ∓ A(P), p = P. (88)

Notice that |x − X| is of the order of the wavelength, i.e., small
enough to make x and X equally physical as measures of the
ray location.

B. Ray equations

The equations for x and p can be obtained by combining
Eqs. (79), (80), and (88), or they can be derived directly as
ELEs corresponding to the Lagrangian (82):

δp: ẋ(t) = cp
np

± ṗ × (∇p × A), (89)

δx: ṗ(t) = cp

n2
∇n. (90)

Using Eq. (51), we can also rewrite them as

ẋ(t) = cp
np

± ṗ × p
p3

, (91)

ṗ(t) = cp

n2
∇n. (92)

Equations (91) and (92) were reported previously in
Refs. [8,16]. The equations presented in Refs. [14,15,19–
21] can also be obtained from Eqs. (91) and (92) for the
rescaled momentum ρ

.= np/(cp) and rescaled “time” ds
.=

c dt/n(x(t)). Specifically, one gets

x′ = ρ

ρ
± λ

ρ ′ × ρ

ρ3
, ρ ′ = ∇n, (93)

where primes denote derivatives with respect to s and we used
that λ

.= n(x)/p is a constant of motion, as seen from Eq. (86).
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FIG. 1. (Color online) Comparison between ray trajectories predicted by the canonical Lagrangian (77) and the noncanonical Lagrangian
(82). The red line represents X(t) − A(P(t)), where X(t) and P(t) are found by numerical integration of Eqs. (79) and (80). The blue line
shows x(t), as found by numerical integration of Eqs. (91) and (92). The black dashed line plots the “spinless” ray trajectory governed by the
lowest-order GO ray Lagrangian L0 given by Eq. (94). The refraction index is chosen to be n(x) = 1 + exp[−(y2 + z2)/�2], the characteristic
width is � = 10, and A is chosen in the form (51). The length unit is a

.= √
2/p0. The initial location is x0 = (0,10,0), and the initial momentum

is p0 = (1,0,1)/a; hence ε ∼ 1/(p0�) ∼ 0.07. It is seen that the canonical Lagrangian and the noncanonical Lagrangian predict results that,
for the specified parameters, are essentially indistinguishable from each other yet differ noticeably from those yielded by L0.

C. Comparison of the two models

As we showed explicitly in Sec. VI A (and also by con-
struction), the canonical Lagrangian (77) and the noncanonical
Lagrangian (82) differ only by O(ε2) and thus are equivalent
within their accuracy domain. (The same applies to the earlier
theories [8,14–16,19–21] too, where the ray Lagrangians are
also derived to the first order in ε.) This means, in particular,
that the effect of the Berry connection term in Eq. (82) can
be attributed simply to the choice of coordinates, while the
underlying physics can also be described by the canonical
Lagrangian (78).

The advantage of the Lagrangian (77) is its manifestly
symplectic structure, which is convenient, for instance, for
numerical simulations [26]. On the other hand, the Lagrangian
(82) leads to gauge-invariant equations, in the sense that they
are manifestly independent of the coordinate representation for
the basis vectors e1 and e2. Also, assuming that A is chosen in
the form (51), using the noncanonical Lagrangian (82) can be
advantageous when p2

x + p2
y → 0, because the right-hand side

in Eqs. (91) and (92) remains finite in this case unless p → 0.
Therefore, whether the canonical or noncanonical form is more
convenient in a given case depends on a specific application.

To illustrate how accurate the agreement is between the
two models, we also performed comparative numerical simu-
lations. Figure 1 shows the ray trajectories for a right-polarized
wave using the canonical (77) and the noncanonical (82)
representations. For completeness, we also show the calculated
ray trajectory as determined by the lowest-order GO ray
Lagrangian

L0 = p · ẋ − cp/n(x), (94)

which does not account for polarization effects. As anticipated,
the ray trajectories predicted by the Lagrangians (77) and
(82) are almost identical and yet differ noticeably from the

“spinless” ray trajectory predicted by Eq. (94), namely,

δp: ẋ(t) = cp
np

, (95)

δx: ṗ(t) = cp

n2
∇n. (96)

VII. CONCLUSION

In this paper we studied the propagation of electromagnetic
waves in isotropic dielectric media with local dispersion under
the assumption of small but nonvanishing ε

.= λ/�, where λ is
the wavelength and � is the characteristic inhomogeneity scale.
It is commonly known that, due to nonzero ε, such waves can
experience polarization-driven bending of ray trajectories and
polarization dynamics that can be interpreted as the precession
of the wave “spin”. Here we reported how Lagrangians
describing these effects can be deduced, rather than guessed,
within a strictly classical theory. In addition to the commonly
known ray Lagrangian that features the Berry connection, a
simple alternative Lagrangian was also proposed that naturally
has a canonical form. We explained how the two Lagrangians
are related and demonstrate their equivalence numerically. The
presented theory captures not only the eigenray dynamics but
also the dynamics of continuous-wave fields and rays with
mixed polarization, or “entangled” waves. Our calculation
assumes stationary media with isotropic local dispersion, but
generalizations to other media are straightforward.
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