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We report on the dependence of the carrier frequency of a nondiffracting optical pulse on the amount of orbital
angular momentum it carries. We provide a unified universal form of such a dependence for the cases of both
scalar and vector pulses with arbitrary frequency spectra. For the case of paraxial optical pulses we consider two
different examples, namely, pulses with exponentially decaying spectra and Gaussian spectra.
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I. INTRODUCTION

Optical pulses, i.e., superpositions of plane waves traveling
at different frequencies, are nowadays a fundamental tool in
many fields of basic and applied research such as atomic
physics, spectroscopy, communications, material processing,
and medicine [1,2]. In particular, nondiffracting pulses, i.e.,
light fields that do not spread during propagation in both time
and space, have attracted a great deal of interest in the past
decade for their interesting and peculiar properties [3]. Among
this class of solutions of Maxwell’s equations, X waves are
surely the most well known. First introduced in acoustics [4,5],
they rapidly found interesting applications in many areas of
physics, such as nonlinear optics [6,7], condensed matter [8],
quantum optics [9], waveguide arrays [10,11], and optical
communications [12].

A very interesting characteristic of nondiffracting waves
is that they are essentially polychromatic superpositions of
Bessel beams. It is well known that Bessel beams are
eigenstates of the Helmholtz equation carrying m units of
orbital angular momentum (OAM) [13]. Having at our disposal
optical pulses with OAM will surely open new horizons and
possibility for the applications of optical pulses. Despite this
fact, however, most of the literature concerning nondiffracting
waves only deals with pulses generated by zeroth-order Bessel
beams, i.e., by beams carrying no OAM at all.

Since the seminal works of Berry and Nye [14] and
Allen et al. [15], however, the concept of OAM of light was
extensively studied from both fundamental [16–19] and exper-
imental points of view, leading to striking applications such as
optical tweezers [20] and spanners [21]. Having the possibility
of bringing the concept of OAM into the domain of optical
pulses will therefore represent a very important step forward
towards new horizons and applications for optical pulses. Even
though some recent works deal with the angular momentum of
optical pulses [22–26], the generation of femtosecond vortex
beams [27,28], and vortex supercontinua [29], OAM is still
seldom associated with optical pulses.

Very recently, we have proposed a simple method for
introducing OAM into the domain of optical pulses, namely,
by generalizing the well-known fundamental X-wave solution
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(valid for m = 0) to the case m �= 0 [30]. We found that
for the particular case of fundamental X waves, the OAM
content of an optical pulse affects its temporal properties by
self-compressing the pulse as the OAM parameter m grows
and by making the carrier frequency of the pulse grow with
m [30]. In this work we intend to generalize those findings,
with particular attention on the role of m in the determination
of the carrier frequency of an optical pulse.

To do that we consider a nondiffracting optical pulse
with arbitrary frequency spectrum and we derive the general
expression of the carrier frequency as a function of the OAM
parameter m. Within the paraxial approximation, moreover, we
show that such a dependence can be written in a universal man-
ner, encompassing the cases of both scalar and vector pulses.

This work is organized as follows. In Sec. II we introduce
the concept of a nondiffracting optical pulse with OAM.
Section III is devoted to the calculation of the carrier frequency
of such a pulse and its relation to the OAM parameter m for
the case of a scalar and a vector pulse. Two explicit examples,
namely, the cases of an exponentially decaying spectrum and
a Gaussian spectrum, are carried out in Sec. IV. A summary is
given in Sec. V. Throughout this work natural units c = � = 1
will be implicitly assumed. This means, in particular, that the
dispersion relation of an electromagnetic field propagating in
vacuum is given by ω = k.

II. NONDIFFRACTING OPTICAL PULSES WITH OAM

We start our analysis by considering a solution ψ(r; ω)
of the scalar Helmholtz equation, i.e., (∇2 + ω2)ψ(r; ω) = 0.
From this solution it is possible to construct an exact solution of
the scalar wave equation (∇2 − ∂2

t )φ(r,t) = 0 in the following
way:

φ(r,t) =
∫

dω f (ω)e−iωtψ(r; ω), (1)

where f (ω) is an arbitrary spectral function. Let us now
consider a Bessel beam [31] as a solution of the Helmholtz
equation, i.e.,

ψ(r; ω) = Jm(ω sin ϑ0R)eimθeiωz cos ϑ0 , (2)

where R =
√

x2 + y2, θ = arctan(y/x), Jm(x) is the Bessel
function of the first kind of order m [32], and ϑ0 is the
Bessel cone angle, i.e., the beam’s characteristic parameter.
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Nondiffracting optical pulses, i.e., solutions of the wave
equation that are localized in space and time, can be then
defined, according to Eq. (1), as a polychromatic superposition
of Bessel beams [3] as follows:

φ(r,t) =
∫

dω f (ω)Jm(ρω)ei(ωζ+mθ), (3)

where ζ = z cos ϑ0 − t is the comoving coordinate attached
to the nondiffracting pulse itself and ρ = R sin ϑ0 has been
introduced for later convenience. Equation (3) with m = 0
describes the well-known fundamental X waves [3]. If m �= 0
instead, Eq. (3) describes a scalar nondiffracting optical pulse
carrying m units of OAM [30].

An exact vectorial solution to Maxwell’s equation can be
built from the scalar field described by Eq. (3) by means
of the so-called Hertz potential method [33]. By choosing
�(r,t) = φ(r,t)f̂ (where f̂ is an arbitrary unit vector) as the
Hertz potential, in fact, the electric and magnetic fields can be
written as follows [33]:

E(r,t) = ∇ × ∇ × �(r,t), (4a)

B(r,t) = ∂

∂t
[∇ × �(r,t)]. (4b)

These vector electric and magnetic fields can be thought
of as polychromatic superpositions of the corresponding
monochromatic electric and magnetic fields generated by
the scalar field ψ(r; ω) exp (−iωt) in Eq. (1). If we in
fact define the monochromatic Hertz potential as P(r; ω) =
ψ(r; ω) exp (−iωt)f̂, this will, according to Eq. (4), gener-
ate the monochromatic vector electric and magnetic fields
E(r,t ; ω) and B(r,t ; ω), respectively. Once these fields are
known, the electric and magnetic fields for a nondiffracting
optical pulse can be simply calculated as follows:

E(r,t) =
∫

dω f (ω)E(r,t ; ω), (5a)

B(r,t) =
∫

dω f (ω)B(r,t ; ω). (5b)

The explicit expressions of the monochromatic vector
electric and magnetic fields are reported in Appendix A.

III. CALCULATION OF THE CARRIER FREQUENCY

The aim of this section is to give an explicit expression
of the dependence of the carrier frequency of an optical
nondiffracting pulse from the OAM parameter m. We begin
by considering the case of a scalar optical pulse and then
generalize our results to vector pulses. We will conclude the
section with a unified description of the two cases.

A. Scalar case

To begin, let us rewrite the scalar pulse given by Eq. (3) in
the form

φ(r,t) = Am(ρ,θ,ζ )eiψm(ρ,θ,ζ ), (6)

where Am(ρ,θ,ζ ) is the pulse amplitude and ψm(ρ,θ,ζ ) is the
pulse phase. These quantities can be calculated by isolating the
real and imaginary parts in Eq. (3) and calculating the modulus

and phase as usual. In particular, for the pulse phase we obtain
the following result:

ψm(ρ,θ,ζ ) = arctan

[S (0)
m (ρ,θ,ζ )

C(0)
m (ρ,θ,ζ )

]
, (7)

where

S (n)
m (ρ,θ,ζ ) =

∫
dω ωnf (ω)Jm(ρω) sin(ωζ + mθ ), (8a)

C(n)
m (ρ,θ,ζ ) =

∫
dω ωnf (ω)Jm(ρω) cos(ωζ + mθ ). (8b)

To obtain the carrier frequency associated with the scalar
pulse in Eq. (6), let us recall that a general optical pulse E(r,t)
can always be written as the product of an envelope function
A(r,t) (generally assumed to slowly oscillate with respect to
the underlying field) times an exponential factor oscillating
with the carrier frequency ωc, i.e.,

E(r,t) = A(r,t)eiωct . (9)

A comparison between this expression and the scalar pulse
given by Eq. (6) reveals that in order to write the field φ(r,t)
in the form of Eq. (9), one should define the carrier frequency
associated with φ(r,t) as follows [30]:

ωc = ∂ψm(ρ,θ,ζ )

∂ζ

∣∣∣∣
ζ=0

. (10)

Substituting Eq. (7) into this equation gives the following
result:

ωc =
∫

dω ω f (ω)Jm(ρω)∫
dω f (ω)Jm(ρω)

. (11)

This is the first result of our work. The carrier frequency of a
nondiffracting scalar optical field carrying m units of OAM is
given by the (normalized) center of mass of the spectrum f (ω)
of the pulse itself, weighted with the Bessel function Jm(ρω).
The m dependence of the carrier frequency is therefore a
direct consequence of the presence of the Bessel function.
Equation (11) is a very general result. Without any further
assumption, however, Eq. (10) is of little help in understanding
how OAM influences the carrier frequency of an optical
pulse. Moreover, there are few analytical solutions of integrals
involving Bessel functions and most of the time only numerical
solutions to Eq. (10) would be available, thus reducing the
possibility of analyzing Eq. (11) for general spectra.

If we assume the pulse to be paraxial, however, Eq. (11)
admits an insightful analytical solution, even for the case of
an arbitrary spectrum f (ω). To do that, let us recall that the
argument of the Bessel function appearing in Eq. (11) is ρω =
Rω sin ϑ0. In the paraxial case, ϑ0 � 1 (which means ρ � 1)
and the Bessel functions appearing in Eq. (11) can be expanded
in a Taylor series with second-order accuracy with respect to
ρ, namely,

Jm(ρω) = ρm

(
ωm

2mm!
− ρ2ωm+2

2m+2(m + 1)!

)
+ O(ρ4). (12)
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Using this expansion and defining the mth moment g(m) of
the spectral function f (ω) as

g(m) =
∫

dω ωmf (ω), (13)

Eq. (11) can be written in the following elegant form:

ωc = g(m + 1)

g(m)
+ ρ2 g(m + 3)

4(m + 1)g(m)
+ O(ρ4). (14)

From this equation one can deduce that, at the leading order in
ρ (i.e., at the leading order in ϑ0), the dependence of the carrier
frequency of the scalar pulse (3) from the OAM parameter m

is given as the ratio between the (m + 1)th and mth moments
of the frequency spectrum f (ω), namely,

ωc = g(m + 1)

g(m)
. (15)

B. Extension to vector pulses

The results obtained in the previous section are valid for a
scalar pulse. In many situations, however, the scalar descrip-
tion of an optical pulse is no longer adequate and a full vector
theory must be employed. As the properties of scalar and vector
pulses are ostensibly different, it is very likely that Eq. (14)
will be affected as well by the vector nature of the pulse. To
prove this, let us consider the case of a vector pulse generated
from the Hertz potential �(r,t) = φ(r,t)ẑ, with φ(r,t) given
by Eq. (3). Using Eqs. (4) and defining the quantity

I (n)
m (ρ,θ,ζ ) = C(n)

m (ρ,θ,ζ ) + iS (n)
m (ρ,θ,ζ ), (16)

the components of the electric field can be written as follows:

Ex(r,t) = i cos ϑ0

R

[
ρ cos θI (2)

m−1 − mIm(1)
]
, (17)

Ey(r,t) = i cos ϑ0

R

[
ρ sin θI (2)

m−1 + imIm(1)
]
, (18)

Ez(r,t) = sin2 ϑ0I (2)
m . (19)

From these expressions it appears clear that in the paraxial
limit, either the x or the y component of the electric field
can be taken as representative of the field itself, while the
z component can be neglected, as it is O(ϑ2

0 ). Without loss
of generality, we then concentrate on the x component. By
rewriting Ex(r,t) as in Eq. (9), the phase 
m(ρ,θ,ζ ) assumes
the following expression:


m(ρ,θ,ζ ) = − arctan

[
sin ϑ0 cos θC(2)

m−1 − mC(1)
m

sin ϑ0 cos θS (2)
m−1 − mS (1)

m

]
, (20)

where the arguments of C(n)
m and S (n)

m have been dropped
for the sake of simplicity. Substituting the expression (20)
into Eq. (10) then gives the following result for the carrier
frequency of a vector pulse:

ωc = A(n)
m (ρ)ρ2 cos2 θ + m2B(n)

m (ρ)

C
(n)
m (ρ)ρ2 cos2 θ + m2D

(n)
m (ρ)

, (21)

where

A(n)
m (ρ) = G(2)

m−1

[
G(3)

m − mG(2)
m

] − mG(1)
m G(3)

m−1, (22)

B(n)
m (ρ) = m2G(1)

m G(2)
m , (23)

C(n)
m (ρ) = G(2)

m−1

[
G(2)

m−1 − mG(2)
m

]
, (24)

D(n)
m (ρ) = m2

[
G(2)

m

]2
, (25)

and G(n)
m ≡ G(n)

m (ρ) = I (n)
m (ρ,0,0).

Equation (21) is the vector counterpart of Eq. (11). As in
the scalar case discussed above, this expression is very general
and holds for any light field, despite its paraxiality. Again, in its
present form Eq. (21) is of little use, as it does not admit further
simplifications, which would allow us to gain more insight
into the role of m in the definition of the carrier frequency ωc

of a vector pulse. In the paraxial approximation ϑ0 � 1 and
substituting Eq. (12) into Eq. (21) gives the following result:

ωc = g(m + 2)

g(m + 1)
− ρ2

[
am(θ )

g(m + 2)g(m + 3)

g2(m + 1)

+ bm(θ )
g(m + 4)

g(m + 1)

]
+ O(ρ4), (26)

with

am(θ ) = 1

8m(m + 1)
{3 cos 2mθ [(m + 1) cos θ + 1]

+ sin θ [3(m + 1) sin 2mθ − sin θ ]

+ (m + 1) − cos2 θ}, (27)

bm(θ ) = 1

4m(m + 1)
[(m + 2) cos θ sin mθ − m sin θ cos mθ ].

(28)

In particular, at the leading order in ϑ0, we obtain

ωc = g(m + 2)

g(m + 1)
. (29)

This result should be compared with the same result obtained
for the scalar case, namely, with Eq. (15).

C. Unified expression for ωc

A direct comparison of Eqs. (26) with (14) allows us to write
the following unified expression of the OAM dependence of
the carrier frequency ωc of an optical pulse in the paraxial
regime:

ωc = g(m + s)

g(m + s − 1)
+ ϑ2

0 F (s)
m (R,θ ) + O

(
ϑ4

0

)
. (30)

Notice that for s = 1 this equation reduces to Eq. (11), while
for s = 2 it reduces to Eq. (26). Therefore, for s = 1 Eq. (30)
describes a scalar pulse, while for s = 2 it describes a vector
pulse. The explicit expression of F (s)

m (R,θ ) for the scalar and
vector cases can be obtained by comparing Eq. (30) with
Eqs. (14) and (26) and it is given as follows:

F (s)
m (R,θ ) =

{ g(m+3)
4(m+1)g(m)R

2, s = 1

am(θ)γ1(m)+bm(θ)γ2(m)
g2(m+1) R2, s = 2,

(31)
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where γ1(m) = g(m + 2)g(m + 3) and γ2(m) = g(m +
1)g(m + 4).

At the leading order in ϑ0, therefore, we have the following
result:

ωc = g(m + s)

g(m + s − 1)
. (32)

This is the main result of our work. The dependence of ωc on
the OAM parameter m can be written in a unified universal
form as given above. Moreover, since the carrier frequency is
given as the ratio between the (m + s)th and (m + s − 1)th
moments of the pulse spectrum f (ω), the dependence of ωc on
the OAM parameter m can be suitably controlled by carefully
engineering the pulse spectrum f (ω).

IV. EXAMPLES

In this section we apply the results obtained above to
two explicit cases, namely, optical pulses with exponentially
decaying spectra, which can be taken as a model for single-
cycle pulses [34], and optical pulses with Gaussian spectra.
For the sake of simplicity, we consider well-collimated pulses,
so we can neglect the ϑ2

0 term in the definition of ωc.

A. Exponentially decaying spectrum

If we choose the following expression for f (ω):

f (ω) = �(ω)e−αω, (33)

where α is a constant with the dimensions of a time that
accounts for the width of the spectrum and �(ω) is the
Heaviside step function [32], then, according to Eq. (30), we
obtain the result

αωc = m + s. (34)

In this case, therefore, the carrier frequency varies linearly
with the amount of OAM carried by the pulse, as shown in
Fig. 1 for the case of both scalar (s = 1) and vector (s = 2)
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FIG. 1. (Color online) Dependence of the carrier frequency ωc

of a scalar (blue line) and a vector (red dashed line) pulse with an
exponentially decaying spectrum from the OAM parameter m. As can
be seen, ωc varies linearly with m in both cases. The scalar (or vector)
nature of the pulse only accounts for a different value of ωc at m = 0.
For this graph, α = 1 is assumed, meaning that ωc is a dimensionless
quantity.

pulses. This result is in accord with the one presented in
Ref. [30]. The explicit expressions of the electric and magnetic
fields corresponding to this choice of spectrum are reported
in Appendix B.

B. Gaussian spectrum

As a second, and actually experimentally realizable, exam-
ple, we choose a Gaussian-like spectrum, i.e.,

f (ω) = γ√
2π

√
ω

ω0
e−γ 2(ω−ω0)2

�(ω), (35)

where ω0 is the central frequency of the spectrum and 1/γ

accounts for the spectrum width. Note that the above spectrum
defines the so-called Bessel X pulses [35]. The explicit
expressions of the electric- and magnetic-field components
corresponding to the choice of spectrum given by Eq. (35) are
given in Appendix C.

The carrier frequency of a Bessel X pulse carrying m units
of OAM is then given by the following relation:

γωc

= H(1)
m+s(3/4,−1/4,−�2)+2�H(2)

m+s(5/4,−1/4,−�2)

H(1)
m+s(1/4,1/4, − �2)+2�H(2)

m+s(3/4,3/4, − �2)
,

(36)

where � = γω0 and

H(1)
k (a,b,x) = �

(
a + k

2

)
1F1

(
b − k

2
;

1

2
; x

)
, (37)

H(2)
k (a,b,x) = �

(
a + k

2

)
1F1

(
b − k

2
;

3

2
; x

)
, (38)

with 1F1(a; b; x) the confluent hypergeometric function [32].
In this case, as can be seen from Fig. 2, the dependence of ωc on
m is more complicated than in the previous case and in particu-
lar for small m, ωc grows nonlinearly with the OAM parameter.
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FIG. 2. (Color online) Dependence of the carrier frequency ωc

of a scalar (blue line) and a vector (red dashed line) pulse with a
Gaussian spectrum from the OAM parameter m. As can be seen, the
dependence of ωc on m is more complicated that the case shown in
Fig. 1, as in this case a Gaussian spectrum is assumed. The scalar
(or vector) nature of the pulse only accounts for a different value of
ωc at m = 0. For this graph, α = 1 is assumed, meaning that ωc is a
dimensionless quantity.
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It is interesting, however, in this case, to consider explicitly
two limiting cases. First, we consider the case when γ → 0,
corresponding to a pulse with a very broad spectrum. Taking
the limit of Eq. (36) for γ → 0 then gives the following result:

γωc � �(3/4 + (m + s)/2)
�(1/4 + (m + s)/2)

, (39)

which for small m gives

γωc � as + bsm, (40)

where as and bs assume different numerical values for the
scalar (s = 1) and vector (s = 2) cases, respectively. Their
explicit expression is not reported. The interested reader
can derive it by explicitly calculating the coefficient of the
first-order Taylor expansion of Eq. (39). For small values of m,
therefore, the carrier frequency varies linearly with the OAM
content of the pulse, in accordance with the results for a very
broad (exponentially decaying) spectrum given by Eq. (34).

As a second case, let us consider the opposite limit, i.e.,
when γ → ∞, corresponding to a quasimonochromatic pulse.
The expansion of Eq. (36) around γ = ∞ thus gives the
following result:

ωc � ω0. (41)

This is in accord with the fact that for a monochromatic beam
oscillating at a frequency ω0, there is no dependence on the
OAM parameter m for the carrier frequency.

V. CONCLUSION

In this work we have explicitly calculated the expression of
the carrier frequency for a scalar and a vector nondiffracting
optical pulse carrying m units of OAM. We have shown that,
in general, the carrier frequency of an OAM-carrying pulse is
influenced by the amount of OAM carried by the pulse itself.
For the simple case of paraxial pulses, we proved that this
relation can be written as the (normalized) (m + s)th moment
of the spectrum of the pulse, where s distinguishes between
the scalar and the vector nature of the pulse. Moreover, we
have also shown that the functional form of this relation is
universally valid and can be applied to both the scalar and the
vector case.

To validate our results, we considered explicitly the case
of an optical pulse with an exponentially decaying spectrum
and a Gaussian spectrum and we calculated explicitly the
dependence of the carrier frequency of such pulses on the
OAM parameter m. Our calculations show that in both cases
the carrier frequency of an optical pulse grows as the amount
of OAM carried by the pulse itself grows. While for the case
of an exponentially decaying spectrum ωc depends linearly on
m, for the more realistic (and experimentally realizable) case
of Bessel X pulses, ωc has a complicated dependence on m. In
this latter case, we have shown that for Bessel X pulses with a
broad spectrum, the linear growth of ωc with m is a very good
approximation.
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APPENDIX A: MONOCHROMATIC FIELDS

In this appendix we give an explicit expression for the
monochromatic fields E(r,t ; ω) and B(r,t ; ω) generated by the
scalar field (3). We assume, for the sake of simplicity, that
the monochromatic Hertz potential P(r,t ; ω) is oriented along
the z axis, i.e.,

P(r,t ; ω) = Jm(ω sin ϑ0R)eimθeiω(z cos ϑ0−t)ẑ. (A1)

Using Eqs. (4), the monochromatic electric and magnetic fields
generated by the above Hertz potential are given by

Ex(r,t ; ω) = Am(r; ω)
[
f

(1)
m−1(r; ω) cos θ − f (2)

m (r; ω)
]
,

Ey(r,t ; ω) = Am(r; ω)
[
f

(1)
m−1(r; ω) sin θ + if (2)

m (r; ω)
]
,

Ez(r,t ; ω) = ω2 sin2 ϑ0e
i(mθ−ζω)Jm(Rω sin ϑ0)

for the monochromatic electric field and

Bx(r,t ; ω) = −iAm(r; ω)
[
f

(1)
m−1(r; ω) sin θ + if (2)

m (r; ω)
]
,

By(r,t ; ω) = iAm(r; ω)
[
f

(1)
m−1(r; ω) cos θ − f (2)

m (r; ω)
]
,

Bz(r,t ; ω) = 0

for the monochromatic magnetic field, where R =
√

x2 + y2,
tan θ = y/x, ζ = z cos ϑ0 − t , and

Am(r; ω) = iω cos ϑ0

R
ei(mθ−ζω),

f (1)
m (r; ω) = Rω sin ϑ0Jm(Rω sin ϑ0),

f (2)
m (r; ω) = mJm(Rω sin ϑ0)eiθ .

APPENDIX B: PULSES WITH AN EXPONENTIALLY
DECAYING SPECTRUM: ELECTRIC

AND MAGNETIC FIELDS

Let us now consider the exponentially decaying spectrum
introduced in Sec. IV A, i.e.,

f (ω) = e−αω�(ω). (B1)

Substituting this expression into Eqs. (5), using the expres-
sions of the monochromatic field components derived in
Appendix A, and using the integral [36]∫ ∞

0
dx xμ−1Jν(βx)e−γ x = βν�μ,ν 2F1(ã,b̃; c̃; ξ ), (B2)

where �μ,ν = �(μ + ν)/[2νγ μ+ν�(ν + 1)], ã = (μ + ν)/2,
b̃ = ã + 1/2, c̃ = ν + 1 and ξ = −R2 sin2 ϑ0/(α + iζ )2, the
electric and magnetic fields for a nondiffracting optical pulse
with an exponentially decaying spectrum can be written as

Ex(r,t) = Cm(r,t,ϑ0)eimθ [eiθ
2F1(a,b; m + 1; ξ )

− 2 cos θ 2F1(a,b; m; ξ )], (B3a)

Ey(r,t) = Cm(r,t,ϑ0)eimθ [−ieiθ
2F1(a,b; m + 1; ξ )

− 2 sin θ 2F1(a,b; m; ξ )], (B3b)

Ez(r,t) = Cm(r,t,ϑ0)eimθ [−ieiθ
2F1(a,b; m + 1; ξ )

− 2 sin θ 2F1(a,b; m; ξ )] (B3c)
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FIG. 3. (Color online) Plot of the intensity distribution of the
components of the electric field as given by Eqs. (B3) in the plane
ζ = 0: (a) |Ex(r,t)|2, (b) |Ey(r,t)|2, and (c) |Ez(r,t)|2. The x and
y axes are expressed in units of ϑ0. For these plots, the following
parameters were used: m = 1, ϑ0 = 1, and α = 1.

for the electric field, where a = (m + 2)/2, b = (m + 3)/2,

Cm(r,t,ϑ0) =
[
m(m + 1)

i2m

]
cos ϑ0(R sin ϑ0)m

R(α + iζ )m+2
, (B4)

and 2F1(a,b; m; x) is the Gaussian hypergeometric func-
tion [32]. For the magnetic field, we instead obtain the
following result:

Bx(r,t) = Dm(r,t,ϑ0)eimθ [eiθ
2F1(a,b; m + 1; ξ )

+ 2 sin θ 2F1(a,b; m; ξ )], (B5a)

By(r,t) = Dm(r,t,ϑ0)eimθ [eiθ
2F1(a,b; m + 1; ξ )

− 2 cos θ 2F1(a,b; m; ξ )], (B5b)

Bz(r,t) = 0, (B5c)

FIG. 4. (Color online) Plot of the intensity distribution of the
components of the magnetic field as given by Eqs. (B5) in the plane
ζ = 0: (a) |Bx(r,t)|2 and (b) |By(r,t)|2. The x and y axes are expressed
in units of ϑ0. For these plots, the following parameters were used:
m = 1, ϑ0 = 1, and α = 1.

where

Dm(r,t,ϑ0) = Cm(r,t,ϑ0)

cos ϑ0
. (B6)

Plots of the components of the electric and magnetic fields
defined above are given in Figs. 3 and 4, respectively.

APPENDIX C: PULSES WITH A GAUSSIAN SPECTRUM:
ELECTRIC AND MAGNETIC FIELDS

We now consider the Gaussian spectrum introduced in
Sec. IV B, i.e.,

f (ω) = γ√
2π

√
ω

ω0
e−γ 2(ω−ω0)2

�(ω). (C1)

To construct vector solutions of the wave equation from this
spectrum, we have to deal with integrals of the following form:

∫ ∞

0
dω

√
γ 2ω

ω0
e−γ 2(ω2+�2)/2eγ 2ω�Jm(ρω). (C2)

An exact analytical solution to the above integral does not
exist in general, mainly because of both the square root factor√

ω and the exponential factor exp (γ 2�ω) appearing in the
integral. We can however give an approximate solution to
the integral in Eq. (C2) if we are able to find a suitable
approximation for such terms. To do that we note that the
asymptotic expansion of the modified Bessel function of the
first kind Im(x) for x → ∞ reads

Im(x) � ex

√
2πx

[1 + e−2xei(m+1/2)π ]. (C3)

Knowing this, we can try to replace the exponentially diverging
term in Eq. (C2) with the modified Bessel function of the first
kind as

eγ 2�ω �
√

2πγ 2�ωIm(γ 2�ω), (C4)

thus obtaining an analytically solvable integral, whose solution
is given by [36]

Im(α,β,γ ) =
∫ ∞

0
dω ω e−αω2

Im(βω)Jm(γω)

= 1

2α
e(β2−γ 2)/4αJm

(
βγ

2α

)
. (C5)

To validate such an approximation, we make use of the results
presented in Ref. [35] for the case m = 0. There, in fact, it
is said that this approximation holds for all the practical (i.e.,
experimentally accessible) cases and for optical pulses as short
as 1 fs as well. Although in Ref. [35] this approximation was
used only to describe Bessel X pulses generated by zeroth-
order Bessel beams, i.e., only for the case m = 0, its validity
can be straightforwardly extended to the case m �= 0. As can
be seen from the expansion (C3), in fact, the dependence on m

does not play any significant role, as the m is contained only in
the second term of the expansion, which vanishes for x → ∞.
This then allows us to take as valid the approximation given
by Eq. (C4) also for the case m �= 0.

Substituting the spectrum (C1) into Eqs. (5) and using the
above results and the expressions for the monochromatic fields
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FIG. 5. (Color online) Plot of the intensity distribution of the
components of the electric field as given by Eqs. (C6) in the plane
ζ = 0: (a) |Ex(r,t)|2, (b) |Ey(r,t)|2, and (c) |Ez(r,t)|2. The x and
y axes are expressed in units of ϑ0. For these plots, the following
parameters were used: m = 1, ϑ0 = 1, and α = 1.

given in Appendix A, the electric and magnetic fields for a
nondiffracting optical pulse with Gaussian spectrum can be
written as

Ex(r,t) = −m cos ϑ0e
i(m+1)θ

R

∂Fm(�,ζ )

∂ζ

− i sin 2ϑ0 cos θeimθ

R

∂2Fm−1(�,ζ )

∂ζ 2
, (C6a)

Ey(r,t) = im cos ϑ0e
i(m+1)θ

R

∂Fm(�,ζ )

∂ζ

− i sin 2ϑ0 sin θeimθ

R

∂2Fm−1(�,ζ )

∂ζ 2
, (C6b)

Ez(r,t) = − sin2 ϑ0e
imθ ∂2Fm(�,ζ )

∂ζ 2
(C6c)

FIG. 6. (Color online) Plot of the intensity distribution of the
components of the magnetic field as given by Eqs. (C9) in the plane
ζ = 0: (a) |Bx(r,t)|2 and (b) |By(r,t)|2. The x and y axes are expressed
in units of ϑ0. For these plots, the following parameters were used:
m = 1, ϑ0 = 1, and α = 1.

for the electric field, where � = R sin ϑ0,

Fm(�,ζ ) =
√

Z(ζ )e−(�2+ζ 2)/2γ 2
Jm[Z(ζ )ω0�]eiω0ζ , (C7)

and

Z(ζ ) = 1 + i
ζ

ω0γ 2
. (C8)

Equation (C7) is the result of the integral (C2) for the case of
the scalar field in Eq. (3). Therefore, Z(ζ ) can be interpreted,
in analogy with Gaussian beams, as an effective complex q

parameter for the pulse. This means that the quantity ζ/(ω0γ
2)

can be interpreted as the equivalent of the pulse’s Rayleigh
range. This is in accord with the fact that, essentially, Eq. (C5)
is the polychromatic counterpart of a Bessel Gaussian beam.

For the magnetic field, we obtain instead the following
result:

Bx(r,t) = − imei(m+1)θ

R

∂Fm(�,ζ )

∂ζ

+ i sin ϑ0 sin θeimθ ∂2Fm−1(�,ζ )

∂ζ 2
, (C9a)

By(r,t) = −mei(m+1)θ

R

∂Fm(�,ζ )

∂ζ

− i sin ϑ0 cos θeimθ ∂2Fm−1(�,ζ )

∂ζ 2
, (C9b)

Bz(r,t) = 0. (C9c)

Plots of the components of the electric and magnetic fields
defined above are given in Figs. 5 and 6, respectively.
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