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Reversing the persistent current of particles in a driven optical ring lattice
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We study the dynamics of persistent bosonic currents in closed-loop atom circuits in the form of ring lattices
and under the action of time periodic driving. The closed-loop atom circuits are described by a Bose-Hubbard
model in the presence of a Peierls phase and with periodic boundary conditions. We find that the motion of matter
waves can be controlled with the help of an external driving only applied in one site of the ring lattice. For tuned
values of the interaction strength between particles, we show that there exists a frequency range of the external
driving where not only suppression but also reversion of the persistent bosonic currents is achieved. Applications
of our results are discussed.
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I. INTRODUCTION

Optical rings have been proposed as an ideal experimental
setting for testing the superfluid behavior in matter waves
in closed-loop atom circuits [1]. In fact, persistent, closed-
loop, bosonic currents of particles have been experimentally
observed in optical rings upon breaking the time reversal
symmetry [1,2]. In recent times, major experimental develop-
ments, mostly focus on the motion Bose-Einstein condensates
over toroidal shape rings [3], have generated renewed interest
[4] in the study of the motion of cold atoms in closed-loop
atom circuits. These experiments have achieved building small
optical rings [5], opening up a window for the exploration
of atoms moving in small settings. For these systems, the
Bose-Hubbard model has been shown to describe well the
superfluid behavior of matter waves in ring lattices [1].

Since persistent currents or bosonic particles currently
are experimentally feasible, controlling them has become
an important issue of investigation to build future quantum
devices [6,7]. In particular, the search for mechanisms to
coherently control these persistent currents in closed-loop
atom circuits, such as ring lattices, is a necessary step towards
this goal.

An important property of boson particles of the same
species is their interaction among each other. This property
becomes relevant when two or more boson particles in an
optical lattice share the same lattice site [8]. In the Bose-
Hubbard model for bosons, this property is modeled as an
on-site interaction. On the other hand, it is well known that, for
integer fillings, the bosonic-interaction strength beyond some
critical value can halt the motion of particles trapped in optical
lattices [9]. Obviously, below this critical value the particles in
the system can in principle move without restriction regardless
of the occupation number. We show in what follows that the
presence of an on-site interaction with a strength below the
critical value can act in other ways to affect the motion of
particles and/or currents in optical lattices.

In the context of ring lattices, a more complex scenario can
be observed when the lattice is driven by ac fields [10]. In
fact, the presence of ac fields offer two main advantages to the
lattice system. First, it allows the construction of an artificial
gauge field [11], where tunneling is assisted by ac fields, thus
leading to the accumulation of the so-called Peierls phase [12].
Such a phase is needed when superfluid persistent currents of

particles are created in different ring-lattice configurations.
Second, it can induce changes in the dynamics of interacting
matter waves, including suppression of tunneling in a periodic
lattice [13,14], tunneling of atoms in a double-well potential
[15], ratchet dynamics [16], and others [17]. Yet, the full extent
of ac-field applicability remains an open question.

In the present work we harness the on-site interaction
to control the transport properties of persistent, closed-loop
currents of particles in optical ring lattices. In particular, we
show, by properly tuning the interaction strength [18], that it
is possible to reverse a persistent current of particles in optical
ring lattices in the presence of an on-site ac impurity.

In the context of superfluidity of matter waves in lattice
rings, the presence of an on-site impurity can be interpreted as a
barrier. The superfluid behavior of matter waves in the presence
of a local stationary barrier has been explored in recent
experiments [3] showing that a precise control of arresting
the superfluid flow of particles can be achieved. In the present
theoretical work, we go beyond the stationary barrier concept
and study the effects arising from the interplay between a
local ac barrier and the ubiquitous on-site interaction in optical
ring lattices. In particular, we are concerned with frequency
values of the ac barrier much higher than the characteristic
frequencies of the system. In this high frequency regime,
phenomena similar to dynamical localization [19] and/or
coherent destruction of tunneling [20,21] can be expected to
arise.

The present work is organized as follows. In Sec. II, we
introduce the model for particles moving in a ring lattice in
the presence of an ac driving applied on a single lattice site.
In Sec. III, we study the dynamics for two particles on three
lattice sites with the help of the energy spectrum as a function
of both the amplitude of the ac driving and interaction strength
between particles. In particular, we analytically show how,
for two particles in three lattice sites, the bosonic current is
reversed by tuning the amplitude of the driving. Numerical
results for more particles in three, four, and six lattice sites are
also considered and analyzed. In the last section, the results
are summarized and applications are discussed.

II. MODEL

The superfluid circulation of atoms in optical ring lattices
have been studied by using the Bose-Hubbard model in the
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FIG. 1. (Color online) Optical potentials created by superimposing biharmonic lattices in directions forming angles of 90 degrees in (b)
and 120 degrees in (a) and (c). (a) Array of triangular ring lattices. (b) Array of square ring lattices. (c) Array of hexagonal ring lattices. Dark
regions correspond to the deep parts of the potential where the particles are usually trapped.

presence of a Peierls phase [1]. In the present analysis we
also consider the additional presence of a single impurity that
mimics an ac barrier in the ring lattice. In this case, the Bose-
Hubbard Hamiltonian for the superfluid motion of bosons in
optical ring lattices and in the presence of a time-dependent
driving field reads as

Ĥ = −�

L∑
i

(eiφ′
â
†
i âi+1 + e−iφ′

â
†
i+1âi)

+ U

2

L∑
i=1

n̂i(n̂i − 1) + A(t)
L∑

i=1

â
†
i âiδi,i0 , (1)

where â
†
i ( âi), creates (annihilates) a particle at the ith site

and n̂i = âi†âi is the particle number operator. In Eq. (1),
δi,i0 is the Kronecker delta with 1 � i0 � L and L is the total
number of sites. Besides, φ′ in Eq. (1) is defined as φ′ = φ/L,
where φ is the so-called Peierls phase. The Hamiltonian in
Eq. (1) is written as the addition of three terms, which can be
interpreted as follows. The first term of the Hamiltonian (1) is
the kinetic term of the Hamiltonian whose strength is given by
the hopping constant �. The second term of the Hamiltonian
(1) accounts for the on-site bosonic interaction with a strength

given by the constant U . The third term of the Hamiltonian (1)
accounts for the impurity mimicking the barrier located at the
i0 site of the ring lattice. This latter Hamiltonian term contains
a coefficient A(t), which is in general time dependent and
accounts for an external driving. In order to consider closed-
loop particle currents in ring lattices the periodic boundary
condition â

†
i+L = â

†
i must be satisfied.

Examples of the optical ring lattices that we are considering
are shown in Fig. 1. These types of rings are currently being
built by interference of several laser beams so that the intensity
distribution is equivalent to a periodic superposition of two
biharmonic optical potentials [22–24] on a two-dimensional
plane (see also [25]).

A. Time independent system: stationary barrier

Let us first analyze the case when external driving does
not depend on the time, i.e., A(t) = constant. So, in this
case the barrier is stationary. A similar scenario has been
discussed in the frame of superfluid persistent currents of
bosonic particles in toroidal Bose-Einstein condensates, where
the precise control in arresting superfluid flows has been
achieved [3]. For few bosonic particles in a ring lattice, the

043625-2



REVERSING THE PERSISTENT CURRENT OF PARTICLES . . . PHYSICAL REVIEW A 92, 043625 (2015)

0 50 100 150 200
U/Ω

0

1

2

3

6 

3
24

0 2 4 6 8 10
U/
(a) (b)

Ω

-5

0

5

10

15

20

25

30

E
ne

rg
y 1

-4

-3

FIG. 2. (Color online) (a) Energy spectrum vs interaction strength U/�. N = 3, L = 3. The blue dot is the ground state for U/� = 0,
depicted in Fig. 3 for A/ω = 0. The inset shows a section of energy values for the ground state where the symbol of a diamond
depicts the energy state with U/� = 1.105. This symbol is also depicted in the left panel, second row of Fig. 5 for A/ω = 0.
(b) Current of particles of the ground state vs interaction of particles for two, three, four, and six particles moving in a three-site ring
(L = 3). φ′ = π/5.

particle current operator Ĵ is defined as

Ĵ = − i�

L

L∑
i

(eiφ′
â
†
i âi+1 − e−iφ′

â
†
i+1âi). (2)

By studying the behavior of these particle currents in ring
lattices in the presence of a constant barrier, we observe that
the magnitude of the currents in general decreases as the barrier
height increases. In fact, the persistent closed-loop current of
particles vanishes in the limiting case of an infinite barrier. Of
course, this result is expected since an infinite barrier height, in
practice, corresponds to a lattice with two separated extremes.
So, no persistent closed-loop current of particles can exist.
Notice that for Bose-Einstein condensates the precise control
in arresting superfluid flows is associated with dissipative
effects [3], because the presence of a barrier implies work
against the persistent motion of particles.

In the particular case of the absence of interaction and
external driving, i.e., A(t) = U = 0, Eq. (1) can only describe
the ground state of a superfluid system [see the lowest energy
state in Fig. 2(a)]. Notice that the ground state appears well
separated from the rest of the energy states.

In the presence of the interaction (U �= 0), we observe that,
in the regime where U/� � 1, the particle current of the
ground state [Fig. 2(b)] depends only on the filling number. In
this latter regime, the current exhibits finite constant values
if the filling number is noninteger; otherwise the current
vanishes, as shown in Fig. 2(b). This behavior is in agreement
with the superfluid-Mott transition for integer fillings.

In the regime where U ∼ �, the current becomes sensitive
to changes of the U value and/or the number of particles, and
a fast monotonic decaying of the current occurs as U grows
[see Fig. 2(b)].

B. Time-dependent system: local ac barrier

It has been theoretically and experimentally shown that
the motion of particles in a lattice can be affected by the

action of an external ac field [19,20]. The periodic form of
the ac driving satisfies the property A(t) = A(t + T ) where
T is the period. Since the frequency of the driving can be
controlled on demand, different time scales of the system
can be explored. These scales are characterized by the ratio
between the frequency ω of the driving and the characteristic
tunneling rate �. In particular, for the high frequency regime,
i.e., ω/� � 1, the time evolution of the system is governed
by � and can be separated from the characteristic time scale
of the driving, i.e., the period T = 2π/ω. Thus in this limiting
case the time-periodic Hamiltonian, Ĥ (t) = Ĥ (t + T ), in
the absence of interaction takes the effective form Ĥeff =
−∑

�eff(â
†
i âi+1 + â

†
i+1âi). Here �eff = �J0 and J0 = J0(A

ω
)

is the Bessel function of the first kind and zero order, where A is
the maximum of the ac-field amplitude for t � 0. Accordingly
with this effective expression, the tunneling between nearest
neighbors is reduced to zero when the A/ω ratio takes the J0

root values [26]. In this case, the motion of bosonic particles
in a lattice is interrupted and, therefore, the bosonic current of
particles is halted. This process is usually referred to as either
the dynamical localization [19] or the coherent destruction of
tunneling [21,27].

With respect to the presence of the interaction term in the
Hamiltonian system (1), it has been shown that this term in
combination with an external ac field can induce a superfluid-
Mott insulator transition in lattices [14]. Moreover, it has been
observed that a time periodic modulation of the interaction
term produces by itself a many-body coherent destruction of
tunneling in lattices [28]. This has been exploited to generate
exotic effective Hamiltonians [29] opening new avenues for
further explorations.

III. RESULTS

Despite the fact that the ac field acts only in one site of
the ring lattice, the whole system becomes periodic in time,
i.e., the Hamiltonian (1) is periodic in time. This implies that
there exists a complete set of solutions, ψn(t), of Eq. (1),
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FIG. 3. (Color online) (Upper panel) Quasienergy spectrum vs
amplitude A/ω. The blue dot is the ground state depicted in Fig. 2(a)
for U/� = 0. (Lower panel) Bosonic current of the first quasienergy
state plotted in the upper panel vs A/ω. The parameters are φ′ = π/5,
U/� = 0, N = 3 for L = 3.

usually referred to as Floquet states [30]. The Floquet states
are periodic up to a phase, i.e., ψn(t) = e−iεnt/T 	n(t), with
	n(t + T ) = 	n(t), where εn ∈ [−ω/2,ω/2] are the so-called
quasienergy values [31,32]. Here the Floquet states and their
corresponding quasienergy values are computed using the
same procedure proposed in Ref. [33].

The upper panel of Fig. 3 shows the quasienergy spectrum
as a function of the A/ω ratio, where the lowest band of
the depicted bunch of quasienergy bands corresponds to the
continuation of the ground state (unperturbed system) into the
ac driving domain. When the A/ω ratio is equal to the root
values of the J0 Bessel function, several states of the ring lattice
become degenerated, i.e., the quasienergy curves associated
with these states cross each other at these root points. However,
we observe that the two lowest quasienergy bands, depicted
in Fig. 3, do not cross each other regardless of the maximum

amplitude value A. In order to distinguish these two bands
from the other ones, in the following, we will refer to them as
the first and second band, where the first one is the continuation
of the ground state.

In the lower panel of Fig. 3, it is shown the magnitude J
vs the A/ω ratio of the current of particles associated with
the first and second quasienergy bands, plotted in the upper
panel of Fig. 3. Notice that the current operator of particles
Ĵ is defined in Eq. (2). In line with our previous analysis,
the current, associated with the states of the first and second
quasienergy bands vanishes when the A/ω ratio is equal to the
root values of the J0 Bessel function.

In the present work, we are interested in studying effects that
arise in the Hamiltonian system (1) when the ac driving, A(t),
is tailored so that the A/ω ratio takes values in the vicinity of
the roots of the J0 Bessel function.

In order to characterize the system, it is convenient to fix the
A/ω ratio in one root value of the J0 function and vary the U/�

parameter. In Fig. 4(a), we show the quasienenergy spectrum as
a function of the interaction U/�. In this new parameter space,
the first and second bands cross each other in a resonance point.
We now impose the U/� parameter to be at the resonance
point in order to study the particle-current behavior of the first
and second quasienergy bands. For that purpose, we let the
A/ω ratio vary around this point, as shown in Fig. 4(b). We
observe that these currents change their sign as the A/ω ratio
takes values below and above the resonance point.

In order to systematically describe this phenomenology,
let us consider the simplest case: two particles moving in a
three-site ring. In the Fock basis the wave function of the
system can be cast as

|ψ〉 = a1(t)|2,0,0〉 + a2(t)|1,1,0〉 + a3(t)|1,0,1〉
+ a4(t)|0,2,0〉 + a5(t)|0,1,1〉 + a6(t)|0,0,2〉, (3)

where |m1,m2,m3〉 denotes the state with occupancy number
states mν at the lattice sites ν = 1,2,3. The aν are complex
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FIG. 4. (Color online) (a) Quasienergy ε vs U/�. A/ω = 2.4048. (b) (Upper panel) Quasienergy vs A/ω. The arrows indicate the
continuation of the ground state into the ac driving domain (first quasienergy band). (Lower panel) Current of the first and second quasienergy
states vs A/ω for U = 3�. The current for the first band is highlighted in green. Notice that in the crossings the current changes its sign. Two
particles in three lattice sites.
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coefficients which depend on time t and fulfill the normaliza-
tion condition

∑
ν |aν |2 = 1.

The evolution equations for the coefficients are

iȧ1 = 2A(t)a1 + Ua1 −
√

2�a2e
iφ′ −

√
2�a3e

−iφ′
,

iȧ2 = A(t)a2 −
√

2�a1e
−iφ′ −

√
2�a4e

iφ′

−�a3e
iφ′ − �a5e

−iφ′
,

iȧ3 = A(t)a3 − �a2e
−iφ′ − �a5e

iφ′

−
√

2�a6e
−iφ′ −

√
2�a1e

iφ′
,

iȧ4 = Ua4 −
√

2�a2e
−iφ′ −

√
2�a5e

iφ′
,

iȧ5 = −
√

2�a4e
−iφ′ − �a3e

−iφ′ −
√

2�a6e
iφ′ − �a2e

iφ′
,

iȧ6 = −
√

2�a5e
−iφ′ −

√
2�a3e

iφ′ + Ua6. (4)

Interestingly, the system (4) also can be made with two-
dimensional photonic lattices, where the time t becomes the
propagation coordinate of the system. In photonic systems
the Peierls phases are created by periodically modulating pa-
rameters of coupled optical resonators or waveguides [34,35].
Likewise, ac fields can be mimicked by properly curving the
waveguides [36].

In order to simplify the system (4) we introduce the trans-
formation: a1(t) = b1(t)e−i

∫ t

0 2A(s)ds , a2(t) = b2(t)e−i
∫ t

0 A(s)ds ,
a3(t) = b3(t)e−i

∫ t

0 A(s)ds , a4(t) = b4, a5(t) = b5(t), a6(t) =
b6(t) [39]. Besides, we consider the dynamics at the high-
frequency regime, where both the interaction and tunneling
rate are much smaller than the frequency of the driving, i.e.,
{�,U} 	 ω [37]. In the high-frequency regime the system (4)
can be approached by [27]

iḃ1 = Ub1 −
√

2�J0(A/ω)b2e
iφ′ −

√
2�J0(A/ω)b3e

−iφ′
,

iḃ2 = −
√

2�J0(A/ω)b1e
−iφ′ −

√
2�J0(A/ω)b4e

iφ′

−�b3e
iφ′ − �J0(A/ω)b5e

−iφ′
,

iḃ3 = −�b2e
−iφ′ − �J0(A/ω)b5e

iφ′ −
√

2�J0(A/ω)b6e
−iφ′

−
√

2�J0(A/ω)b1e
iφ′

, (5)

iḃ4 = Ub4 −
√

2�J0(A/ω)b2e
−iφ′ −

√
2�b5e

iφ′
,

iḃ5 = −
√

2�b4e
−iφ′ − �J0(A/ω)b3e

−iφ′ −
√

2�b6e
iφ′

−�J0(A/ω)b2e
iφ′

,

iḃ6 = −
√

2�b5e
−iφ′ −

√
2�J0(A/ω)b3e

iφ′ + Ub6,

where A is the maximum amplitude of the A(t) field and
J0(A/ω) is the Bessel function of the first kind and zero order.

In order to get some insight into the dynamics of the system,
let us consider the case when A/ω rate equals one of the roots
of the Bessel function, i.e., A = A0 such that J0(A0/ω) = 0.
In this case, the system (5) reduces to

iḃ1 = Ub1,

iḃ2 = −�b3e
iφ′

,

iḃ3 = −�b2e
−iφ′

, (6)

iḃ4 = Ub4 −
√

2�b5e
iφ′

,

iḃ5 = −
√

2�b4e
−iφ′ −

√
2�b6e

iφ′
,

iḃ6 = −
√

2�b5e
−iφ′ + Ub6.

The system (6) can be written as iḃ = H0 b, where the
elements of the vector b are the bn functions. The matrix
H0 can be interpreted as an effective Hamiltonian. By using
a Floquet ansatz of the form b(t) = r exp(−i Et), we obtain
a stationary algebraic eigenvalue problem, where E is the
multivalued eigenvalue. After solving this problem we obtain
six eigenvalues, i.e., E0 = U−√

U 2+16�2

2 , E1 = −�, E2 = U ,

E3 = U , E4 = �, and E5 = U+√
U 2+16�2

2 . These expressions,
which are plotted vs the U parameter in Fig. 4(a), correspond
to the quasienergy bands in the high-frequency regime. In
particular, in the limiting case U = 0, we obtain E0 = −2�,
E1 = −�, E2 = 0, E3 = 0, E4 = �, and E5 = 2�, where
the E0 and E1 values correspond to the first and second
quasienergy bands of the system (defined above), respectively.
For our subsequent analysis, we focus on the resonant coupling
between these two quasienergy bands.

The resonance point takes place at the intersection of the
two bands and it is separated by a large gap from other
quasienergy bands. Thus, the relevant physics of this system
can be mainly attributed to the dynamics associated with these
two bands.

As pointed out, for these two quasienergy bands, we can
identify a resonance point, i.e., the point where E0 and E1 cross
each other. This point corresponds to the values U = Uc = 3�

and E = Ec = −�. [The resonance point is marked by a star
in Fig. 4(a)].

Since the most important feature of these bands is their
resonance point, to further analyze the system we impose
the value U = Uc = 3�. Under this consideration the two
states, associated with the first and second quasienergy bands,

E0 and E1, read as r(0) = (0,0,0, e2iφ′
√

10
, 2eiφ′

√
5

, 1√
10

) and r(1) =
(0, eiφ′

√
2
, 1√

2
,0,0,0), respectively. So, at the resonance point the

initial wave function |ψ〉, defined in Eq. (3), can be written in
the high-frequency regime as

|ψ0
j 〉 = r

(j )
1 |2,0,0〉 + r

(j )
2 |1,1,0〉 + r

(j )
3 |1,0,1〉 + r

(j )
4 |0,2,0〉

+ r
(j )
5 |0,1,1〉 + r

(j )
6 |0,0,2〉. (7)

In Eq. (7) the coefficients r
(j )
k are the elements of the vectors

r(j ) with j = 0,1 and k = 1, . . . ,6. These coefficients do not
explicitly depend on the external driving, because the A/ω

ratio has been tailored to set to zero the J0 Bessel function.
Moreover, the current of bosonic particles defined by Eq. (2)
turns out to be zero exactly at the resonance point, because
the matrix H, derived from Eq. (6), consists of disconnected
submatrices along the diagonal.

Now our main objective is to study the behavior of the
current of the bosonic particles in the vicinity of this resonance
point by using perturbation theory.

A. Perturbation theory of degenerated states:
calculation of the current

Let us consider an amplitude of the form A = A0 + �,
where J0(A0/ω) = 0 and � is a small amplitude shift from
the root value A0. Since the current of particles vanishes only
at the J0 root values, we expect a finite value of the particle
current for a small amplitude shift �. It is also important
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to mention that in the vicinity of the A0 amplitude, the sign
of the J0 Bessel function is governed by the � shift, i.e.,
J0(A) = −sign(�)|J0(A)|.

The system (5) can be written as iḃ = H b, where the matrix
H is an effective Hamiltonian. This effective Hamiltonian
can be written as H = H0 + H′, where H0 corresponds to
the effective Hamiltonian of the unperturbed system, given by
Eq. (6), and H′ = H′(A) is the perturbation term. The presence
of a perturbation in the system introduces a gap between the
first and the second bands, so an avoiding crossing appears.
Since we are only interested in the bosonic particle dynamics
in the vicinity of this avoiding crossing between the first and
second bands, the effect of other quasienergy bands can be
simply neglected. Notice that the effect of other quasienergy
bands on the first and second bands are negligible due to the
presence of a large bandgap. Therefore we are only concerned
with the reduced system described by the states in Eq. (7).

Using the standard perturbation theory for degener-
ated eigenstates [40] we construct a matrix W with el-
ements wi,j = 〈ψ0

i |H′|ψ0
j 〉. In the first-order correction,

the eigenvalues of the reduced system are Ẽj = −� +
(−1)j 3

√
2
5� cos(3φ′/2)J0(A) with j = 0,1. Notice that these

two energy bands depend not only on the absolute value of
J0(A′) but also on its sign. With respect to the eigenvectors,
at zero perturbation order they read as |ψ̃j 〉 = αj |ψ0

0 〉 +
βj |ψ0

1 〉, where (αj ,βj ) with j = 0,1 are the components of
the corresponding eigenvectors of W [40]. The currents of
bosonic particles associated with each of the bands can be
estimated at zero-order perturbation theory by the expression
Jj = 〈ψ̃j |Ĵ |ψ̃j 〉 where the current operator Ĵ is defined by
Eq. (2) and j = 0,1. Thus an analytic estimation of the currents
reads as

Jj = αjβ
∗
j

〈
ψ0

1

∣∣Ĵ ∣∣ψ0
0

〉 + α∗
j βj

〈
ψ0

0

∣∣Ĵ ∣∣ψ0
1

〉
, (8)

with j = 0,1.
Substituting the values of |ψ0

j 〉 from Eq. (7) into Eq. (8)
yields

Jj = (−1)j�

√
2

5
sin

[
3φ′

2

]
sgn[cos(φ′/2)J0(A′)], (9)

with j = 0,1. This simply analytic result shows opposite signs
of the current for the first and second bands in the vicinity of
the amplitude A0. In fact, in the vicinity of the degeneracy one
can always, in good approximation, bring down the analysis
of a multiple-band system to a two-band system, when a large
band gap, with other bands, is present. In this scenario, one
can show for a 2 × 2 Hermitian matrix of the corresponding
effective Hamiltonian that the wave functions are symmetric
and antisymmetric (see e.g., [28]) and that the observables of
the current appear in opposite signs. This implies that for a
fixed Peierls phase φ = Lφ′ = 3φ′ the current of particles can
be reversed depending on the � sign. In other words, Eq. (9)
shows that by controlling the amplitude A′ of the external
driving we can coherently reverse the current of particles in
a ring lattice system. This nontrivial behavior is a very basic
function expected to be present in atom circuits to perform
operations for future quantum devices.

With respect to the generality of our analysis, it is important
to remark that Eq. (9) follows from a reduced system, as
mentioned above, so this result is independent of the Hilbert-
space size. This means that similar resonance points occur for
large number of particles and lattice sites, as we show below. In
fact, in the high-frequency regime, we expect that the equation
systems describing a larger number of particles and/or lattice
sites will also depend on the J0 Bessel function, as we have
shown in the system (5). Therefore, perturbation terms and ef-
fective Hamiltonians of these larger systems are also expected
to depend on the J0 Bessel function. In particular, the first
and second bands of these systems are also expected to have
resonance points. So, the eigenvalues and eigenfunctions will
also depend on the J0 Bessel function in these larger systems.
This in turn means that particle currents associated with the
crossing of the first and second quasienergy bands will behave
similarly to that calculated in Eq. (9). Especially, we can expect
reversion of the current of particles for larger systems.

B. Lattice: numerical results

Here our interest is to show that, for systems with a larger
number of particles and sites, the current of particles associated
with first and second quasienergy bands indeed follows
the qualitative behavior of the averaged system previously
described. For example, in Fig. 5 we show the quasienergy
spectrum as a function of U/� for two cases, namely three
particles in a four-lattice ring and five particles in a four-site
lattice ring. We observe, as expected, that for a given U/�

value, the first and second quasienergy bands cross each other.
Interestingly, in the cases analyzed in Fig. 5 we observe that in
the vicinity of the crossing, the current of particles associated
with the first quasienergy band exhibit values with opposite
signs. This behavior is in line with our theoretical analysis
leading to Eq. (9). It is important to remark that for a given
U/� value, if we extend the range of analysis of the A

amplitude, we can observe a second crossing [see Fig. 4(b)],
associated with the second root of the J0 Bessel function,
which exhibits similar properties as the first one.

Our discussion, so far, has been based on the Floquet spec-
trum with strong emphasis in the quasienergy band associated
with the ground state of the original unperturbed system. In
fact, our ultimate goal is to reverse the current of the ground
state of the undriven system. This is possible if the resonance
point, described in the previous section, is reached. For this
purpose, in the absence of the external driving, i.e., A = 0,
the ground state is initially prepared at the critical interaction
amplitude Uc/�. Afterwards, the amplitude A is turned up
slowly making it possible to populate the quasienergy band.
For convenience, we consider the amplitude A to change
linearly in time, i.e., A = αt , where α is the speed of change.
In doing so, one can navigate through the energy spectrum, a
process that can be controlled by properly changing the value
of the speed α [41]. This adiabatic following applies whenever
the ramping speed is much smaller than the gap between the
energy bands [42]. Besides, the relation α/ω 	 1 should be
satisfied. Thus, following the quasienergy band the system
passes through the resonance point and the current is reversed.

If the system is initially detuned from the critical value
Uc/� the degeneracy is lifted and a gap appears. If the energy
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FIG. 5. (Color online) (Left panel) Three particles and three sites. (Right panel) Five particles and four sites. (First row) Quasienergy value
vs interaction U/� for A/ω = 2.4048. (Second row) Quasienergy value vs amplitude of the driving A/ω. (Left panel) U/� = 1.105. The
symbol of diamond corresponds to the ground state depicted in Fig. 2(a); (right panel) U/� = 1.13. Stars depict the resonance point. (Third
row) Current of the first quasienergy states vs amplitude of the driving A/ω. φ′ = π/5. Dashed line indicates the zero current value.

splitting is very small, a jump from the first band to the second
band occurs with a probability given by the Landau-Zener
formula [43].

Figure 6 shows the current behavior after ramping A for
various values of the interaction strength U/�. The ramping
is carried out from A = 0 to A = Amax with speed α = 0.1.
In a general scenario, after finishing the ramping process, the
current ends up positive. Only in the near vicinity of U/� =
Uc/�, the current becomes negative, as shown in Fig. 6(a).

This shows that reversing the current with ac fields is
achievable by tuning the interaction and the amplitude of the

driving, setting a mechanism for the manipulation of persistent
current of particles.

The fact that interaction between particles reverses the flux
of particles, makes this mechanism sensitive to the number of
particles. Figure 6 shows the dependence of Uc/� as a function
on the number of particles for three, four, and six lattice sites.
Uc/� dependence on the number of particles could eventually
be used as a tool to estimate the number of particles that move
across the lattice. Moreover, the dependence on the number of
particles is interesting itself, since superfluid behavior could
be modified when particles leave the matter wave.
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FIG. 6. (Color online) Current versus time where A = αt . Ramping speed is α = 0.1. (b) Critical interaction Uc/� as a function of the
number of particles N for rings with distinct lattice sites: squares, three sites; circles, four sites; up-triangles, six sites. φ′ = π/5.

IV. CONCLUSIONS

We have studied the behavior of currents of bosons moving
in a ring lattice in the presence of an ac impurity. We have
shown in a high-frequency regime that currents can be reversed
by tuning the interaction between the particles. At some
critical value of the interaction the ground state with a flux
of particles moving in one direction resonantly interacts with
an excited state of particles moving in the opposite direction.
We first considered the simplest case of two particles and three
lattice sites. In particular, we showed analytically the reversal
behavior of the current for two bosons in three lattice sites and
later extended their study numerically for more particles with
three, four, and six lattice sites.

We also show the dependence of the critical interaction
strength as a function of particles and lattice sites. This new
mechanism can be used to coherently control these persistent
currents in closed-loop atom circuits of future quantum
devices. A particularly interesting implementation with

potential application of the present mechanism is in the read-
out of quantum correlations between particles in ring lattices
[44–46]. Moreover, the response of the system to an ac driving
on a single site could also be of interest to recent experiments
where the effects of introducing a barrier into the motion of
matter waves in ring lattices have been investigated [3]. We
have also pointed out the possibility of testing the dynamics
of two particles in three lattice sites on a two-dimensional
photonic lattice.
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I. Bloch, Nature (London) 415, 39 (2002).

[10] O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006).
[11] D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003); J. Dalibard,

F. Gerbier, G. Juzeliunas, and P. Öhberg, Rev. Mod. Phys. 83,
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