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Multiphoton interband excitations of quantum gases in driven optical lattices
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We report on the observation of multiphoton interband absorption processes for quantum gases in shaken light
crystals. Periodic inertial forcing, induced by a spatial motion of the lattice potential, drives multiphoton interband
excitations of up to the ninth order. The occurrence of such excitation features is systematically investigated with
respect to the potential depth and the driving amplitude. Ab initio calculations of resonance positions as well as
numerical evaluation of their strengths exhibit good agreement with experimental data. In addition our findings
could make it possible to reach novel phases of quantum matter by tailoring appropriate driving schemes.

DOI: 10.1103/PhysRevA.92.043621 PACS number(s): 03.75.Lm, 37.10.Jk, 67.85.Hj, 79.20.Ws

I. INTRODUCTION

Periodic driving of quantum systems allows for the targeted
engineering of exotic properties. In recent years, this approach
has been very successfully utilized in various fields of physics.
While time-periodic forcing of solid-state materials yields
access to, e.g., topological band structures [1–4] and high-Tc

superconductors [5–8], it is also applied to trapped ions [9],
photonic crystals [10], and for ultracold atomic ensembles
[11,12]. Quantum gases in optical lattices are particularly
well suited as they are almost perfectly isolated from their
environment and allow for unprecedented control in a time-
dependent fashion. So far, experimental studies have focused
on the creation of tunable artificial gauge potentials and
large effective magnetic fluxes in optical lattices [13–22],
which allow for the observation of exotic phenomena such
as geometrical frustration [13], chiral Meissner currents [20],
Ising magnetism [17,18,23], and topological band structures
[21,22]. Further driving schemes have been proposed that aim
for the realization of non-Abelian gauge fields [24,25].

According to the Floquet theorem, the evolution of time-
periodic systems can be described in terms of a time-periodic
unitary operator and a time-independent effective Hamiltonian
[26–29]. The underlying principle of all driving schemes is
that the properties of the driven system are determined by the
effective Hamiltonian, which might exhibit interesting novel
features. This so-called Floquet engineering typically assumes
that excited Bloch bands can be neglected. However, quantum
gases in periodically driven optical lattices exhibit close
analogies with laser-irradiated solid-state materials in which
nonlinear processes play a crucial role at large field strengths
[30–32]. Indeed, similar to an oscillating light field, external
periodic forcing of optical lattice systems is expected to induce
significant multiphoton excitations between energy bands [33].
Thus, a deeper understanding of such excitation processes is
essential for tailoring appropriate driving schemes.

Beyond its relevance to Floquet engineering, periodic
forcing of optical lattices allows for the investigation of
multiphoton absorption (MPA) processes in well-controlled
model systems, in which the band structure and the interaction
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strength are fully tunable. The behavior of such nonlinear
excitations in interacting systems opens far-reaching lines of
investigation.

In this paper we present a systematic study of multi-
photon excitations of ultracold bosonic quantum gases in
driven optical lattices. Periodic inertial forcing of the atomic
ensemble that is induced by a rapid shaking of the rigid
lattice potential results in interband excitations due to MPA
of low-energy driving photons. The emergence of resonance
features corresponding to MPA between different Bloch bands
is investigated with respect to the lattice depth and the driving
field intensity in a one-dimensional optical lattice. We extend
our experimental studies to a two-dimensional triangular
lattice in the regime of negative effective tunneling. The
positions of the observed resonances as well as their relative
strengths are in good agreement with theoretical simulations.

II. EXPERIMENTAL SETUP

Here, multiphoton interband excitations are investigated in
an ensemble of ultracold bosonic 87Rb atoms that is confined
in a red-detuned one-dimensional optical lattice. As depicted
in Fig. 1(a), the lattice consists of a pair of running-wave laser
beams of wavelength λL = 830 nm that are arranged at an
angle of 117.1◦ with respect to each other in the xy plane.
The resulting standing light wave Vlat(x) = V0 cos(2πx/a)/2
has a lattice spacing of a = 486.5 nm. Its potential depth V0

is conveniently expressed in units of the recoil energy Erec =
�

2k2
L/(2M), denoting the kinetic energy that is transferred to

an atom of mass M by absorbing a lattice photon with wave
number kL = 2π/λL, where � is the reduced Planck constant.
In the following, the band structure of the lattice is denoted
by εα(q), with band index α = 0,1,2, . . . and quasimomentum
wave number q ∈ (−π/a,π/a] in the x direction. The lowest
bands are dominated by tunneling between neighboring
lattice minima with tunneling parameters J0 > 0 and J1 < 0,
respectively, so that ε0(q) ≈ −2J0 cos(aq) and ε1(q) ≈ ε̄1 −
2J1 cos(aq), with ε̄1 being the band-center energy.

III. PERIODIC DRIVING

Periodic driving of the system is induced by a sinusoidal
frequency modulation δν(t) = ν0 sin(�t) of one of the two
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FIG. 1. (Color online) (a) Setup of the driven 1D lattice with both
beams being linearly polarized along the z axis. (b) Illustration of two-
photon transitions into the first excited band at the minima at q = 0
for J eff

0 > 0 (black) and q = π/a for J eff
0 < 0 (gray). (c) Multiphoton

transition energies (white lines) to the first excited band according
to Eq. (6) for K = 3.82 (see inset). Gray shaded areas depict the
maximum possible range of MPA. (d) Typical time-of-flight images
of the driven 1D lattice for positive tunneling (top panel), negative
tunneling (middle panel), and a heated, incoherent sample (bottom
panel).

laser beams. This modulation gives rise to a periodic motion
of the potential along the lattice axis. In the comoving frame,
the atoms experience an inertial force F(t) = F0 cos(�t) êx

with an amplitude of F0 = M�ν0a. Apart from trap and inter-
actions, the neutral particles are described by the Hamiltonian

Ĥ(t) = p̂2

2M
+ Vlat(x) + xF0 cos(�t). (1)

The driving term in Eq. (1) breaks the translational symmetry
of the lattice, which can be restored by the gauge transforma-
tion described in Appendix A [34,35]. In the new reference
frame of the lattice the resulting Hamiltonian can be written
as

Ĥ′(t) = [p̂ − A(t)]2

2M
+ Vlat(x), (2)

where the effect of the periodic driving is incorporated into
a time-dependent vector potential A(t) given via the relation
F(t) = −∂A(t)/∂t . In the basis of static Bloch states |α q〉,
this yields a tight-binding Hamiltonian

Ĥ′
q(t) =

∑
α

{
εα[q − A(t)/�]|α q〉〈α q|

+ aF0 cos(�t)
∑
α′

ηα,α′ |α′q〉〈α q|
}
. (3)

Here, A(t) ≡ Ax(t) and ηα,α′ are dimensionless dipole matrix
elements coupling bands α and α′ defined in Appendix A.

For driving frequencies that are large compared to the
widths of the bands, the impact of periodic forcing can
be understood as a combination of two effects, as detailed

in Appendix B. The first effect is a modification of each
single band, described by the time-averaged single-particle
dispersion relation

εeff
α (q) = 1

T

∫ T

0
dt εα[q − A(t)/�] (4)

= ε̄α − 2JαJ0(K) cos(aq). (5)

This yields the effective modification of nearest-neighbor
tunneling matrix elements J eff

α = JαJ0(K), where J0 is
the zeroth-order Bessel function of the first kind and
K = aF0/(��) denotes a dimensionless driving amplitude.
The second effect, resulting from the second term in Eq. (3),
can be understood as the resonant coupling of the so-modified
bands.

Experimentally, the driving amplitude K is linearly in-
creased to its final value within 50 ms after the atomic ensemble
is prepared in the lowest-energy band of the optical lattice.
Driving is maintained at the final amplitude for another 20 ms.
Subsequently, all trapping potentials are rapidly switched off,
and atoms fall freely under the influence of gravity for 40 ms
time-of-flight before a resonant absorption image is taken.

For the lattice depths used throughout the presented exper-
iments the atomic ensemble remains in the weakly interacting
superfluid regime. Thus, the inversion of the effective band
structure due to the sign change of J eff

α for sufficiently large
forcing amplitudes [see Fig. 1(b)] can be identified by the
position of the coherent quasimomentum peaks in time-of-
flight absorption images, as shown in the upper two panels in
Fig. 1(d).

IV. INTERBAND MULTIPHOTON TRANSITIONS

As explained in the previous section, beyond the tunneling
renormalization, the periodic forcing of frequency � also
induces finite matrix elements for coherent interband coupling
processes that conserve quasimomentum but allow for energy
changes of integer multiples of the “photon” energy �� [36].
Hence, an nth-order multiphoton transition is expected to occur
when the resonance condition

n × �� =
{

�Eeff
α (q = 0) for J eff

0 > 0,

�Eeff
α (q = ±π/a) for J eff

0 < 0,
(6)

with �Eeff
α (q) = εeff

α (q) − εeff
0 (q), is fulfilled. Condition (6) is

plotted in Fig. 1(c) for α = 1 and n = 1, . . . ,10 (white lines)
as a function of the lattice depth for a driving amplitude of
K = 3.82 where J eff

α = −0.4Jα (see inset).
These interband transitions, induced by the periodic

driving, significantly reduce the maximum optical density
extracted from the time-of-flight images, as can be observed
in the bottom panel of Fig. 1(d) [36]. Such a decrease in
the visibility in the absorption images can be ascribed to
two distinct processes. First, further MPA might populate
higher-lying bands that are no longer trapped in the optical
lattice and thus result in a decrease of the optical density due to
atomic losses. Second, interacting Bose-Einstein condensates
in excited bands rapidly decay due to scattering processes,
thereby reducing the degree of coherence in the system [37,38].

A spectroscopic study of these multiphoton transitions is
shown in Fig. 2, where excitation spectra are obtained for
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FIG. 2. (Color online) Systematic investigation of multiphoton
spectra in the driven 1D lattice. (a) The effective tunneling matrix
element J eff acquires different values at the four measured driving
amplitudes K , scaling with the Bessel function J0(K). (b) Excitation
spectra for the four driving amplitudes depicted in (a) with the
maximum optical density encoded in brightness. Solid black lines,
numbered on the right-hand side, indicate the calculated positions of
MPA to the first excited energy band according to Eq. (6).

various lattice depths at four different driving amplitudes. The
resulting effective tunneling parameters J eff

α [see Fig. 2(a)]
yield different transition energies according to Eq. (6) that are
plotted as solid black lines together with the excitation spectra
in Fig. 2(b). These ab initio calculations of transition energies
exhibit excellent agreement with the experimental data. With
increasing driving amplitude, higher-order excitations appear
in the spectrum, and the width of the resonances increases.
While no excitations are present in the system above the
third-order resonance for K = 1.7, up to the ninth order
multiphoton transition can be identified at a driving amplitude
of K = 7.0, where the lower orders of MPA transitions already
overlap significantly. One can also observe that resonance
features become weaker for increasing lattice depth; this is a
consequence of the fact that the coupling matrix elements ηα,α′

become smaller for deeper lattices. Each of the four individual
data sets has been normalized, yielding comparable results for
all investigated driving amplitudes. Even for K = 2.4, where
the effective tunneling amplitude vanishes, the signal-to-noise
ratio is sufficient to clearly identify resonance features despite
a significantly reduced level of coherence.

In order to gain a deeper understanding of the emergence of
interband MPA processes, the observed excitations are further
explored with respect to the driving amplitude in Fig. 3.
The excitation spectra depicted in Fig. 3(a) are obtained at
a fixed one-dimensional (1D) lattice depth of V0 = 9.5 Erec

while the driving amplitude K is gradually increased. Here,
we observe that for increasing final coupling strengths, the
widths of the observed resonance features increase. Small
additional features of the excitation spectrum in the region
of large driving amplitudes K and frequency � that cannot
be explained by the expected resonance positions indicate the
occurrence of multiphoton excitations to even higher-energy
bands.
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FIG. 3. (Color online) Emergence of multiphoton interband tran-
sitions for increasing driving amplitude. (a) Multiphoton excitation
spectrum obtained at a fixed 1D lattice depth of 9.5Erec for increasing
driving amplitudes. The positions and maximum possible widths of
the depicted nth-order transitions are indicated above the spectrum.
Data at K ≈ 4.0 (second row from top) have not been measured
and are interpolated. (b) Numerical simulation of the observed
multiphoton interband excitation spectra. Plotted is the minimum
occupation N0 of the lowest band observed during 20 ms of driving
at the final value of K . Avoided crossings and excitations to higher-
energy bands are clearly visible. In (c) the resolution of the simulation
data shown in (b) has been reduced to match the resolution of the
experimental data. To take into account the linear ramping to the
final driving amplitude K , excitations present for smaller values of
K are kept in the spectra for larger K . The resulting spectrum clearly
matches the experimental data depicted in (a).

A numerical simulation of the interband excitation spec-
tra, described in more detail in Appendix D, is depicted
in Fig. 3(b). Starting from an ensemble of states with
quasimomenta distributed sharply around the minimum of
the effective dispersion relation at the respective maximum
value of K , the time evolution under the time-dependent
Hamiltonian given in Eq. (2) has been integrated over 20 ms.
Excitations to higher bands are quantified by the minimum
fraction of occupation N0 of the lowest band during the time
evolution. The obtained spectra exhibit good agreement with
the experimental data in Fig. 3(a), reproducing the observed
multiphoton transitions to the first excited band with n = 3 to
7 as well as additional resonance features that are associated
with multiphoton excitations to higher-lying bands at larger
driving frequencies. Here, the finite width of the momentum
distribution (resulting from thermal fluctuations, interaction-
induced quantum fluctuations, and the trap potential) plays
a central role since it is required to explain the observed
resonances of even photon number between the two lowest
bands (see Appendix C). Avoided-crossing-type structures,

043621-3



M. WEINBERG et al. PHYSICAL REVIEW A 92, 043621 (2015)

indicating the resonant hybridization of the first excited band
with higher-lying ones, can be identified in the simulated
resonance features at the n = 3,4, and 5 transitions.

To facilitate the comparison of the rich spectrum obtained
from numerical simulations and the experimental data, we
have reduced the resolution of the numerical data to the
experimental resolution in Fig. 3(c). To emulate the linear
ramping of the driving amplitude to its respective final value,
each row n of this plot includes the combined product of
all rows corresponding to smaller values of K according to
min[N0(Kn)]′ = ∏n

i=1 min[N0(Ki)]. With this, an excitation
present during any point of the ramp remains in the system
at any larger value of the driving amplitude K . The resulting
spectrum clearly reproduces the features of the experimental
data shown in Fig. 3(a) such that the observed broadening
of the multiphoton resonances can be ascribed to the linear
ramping procedure of the driving amplitude K .

V. INTERBAND EXCITATIONS IN THE
TRIANGULAR LATTICE

For the investigation of interband MPA processes in more
complex lattice structures we extend our studies to a driven
two-dimensional triangular lattice. As depicted in Fig. 4(a) the
lattice is composed of three running-wave laser beams of equal
intensity intersecting in the xy plane with linear out-of-plane
polarizations [36]. Here, inertial forcing is induced by a
sinusoidal frequency modulation of two of the three laser
beams, resulting in a periodic elliptical forcing of the rigid
lattice potential. This allows adjusting the amplitude and sign
of two effective tunneling directions, denoted J eff

α,v and J eff
α,d

in Fig. 4(a), independently. The tunneling renormalization
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FIG. 4. (Color online) Driving in the triangular lattice. (a) Il-
lustration of the experimental setup, lattice structure, and elliptical
forcing. (b) Tunneling renormalization of the diagonal lattice bonds,
which depends on the horizontal and vertical frequency modulation
amplitudes νx/y . The isotropic renormalization condition of νy =√

3νx is plotted as a dashed line [36]. (c) Excitation spectrum for a
fixed isotropic driving amplitude of K = 3.82, indicated by the solid
dot in (b). Expected positions and widths for multiphoton transitions
are plotted as solid black lines, similar to Fig. 2. MPA resonances of
up to the fifth order can be clearly identified.

of J eff
α,d is shown in Fig. 4(b) to depend on the horizontal

and vertical frequency modulation components νx and νy ,
which determine the ratio of the major and minor axes of
the elliptical forcing F(t) [36]. For the investigation of MPA
in the driven triangular lattice, we focus on an isotropic
forcing parameter of K = 3.82 along all lattice bonds. This
corresponds to a negative effective tunneling of maximal
amplitude (J eff

α,v = J eff
α,d = −0.4Jα), which is central for the

study of frustrated magnetism [13].
MPA resonances of up to the fourth order can be clearly

identified in the excitation spectrum shown in Fig. 4(c) with
excellent agreement with the calculated transition energies to
the first excited Bloch band (solid black lines). In addition,
faint remnants of a fifth-order transition are visible below
lattice depths of 4.5Erec. The maximum coherence of the
atomic ensemble is reached only at a narrow parameter region
between the fourth- and the fifth-order transitions, while the
maximum optical density remains small for smaller driving
frequencies where heating due to the resonant creation of
collective intraband excitations might occur [29]. Such a
significant limitation of the accessible parameter space for
coherent manipulation of atomic ensembles is a crucial aspect
for the experimental realization of periodic driving schemes
in two- or higher-dimensional lattice systems that rely on the
applicability of time-averaged effective models. In addition,
avoiding possible MPA processes is even more demanding
for driving schemes employing more than a single driving
frequency [39].

VI. CONCLUSION

To conclude, multiphoton interband excitations have been
investigated systematically with ultracold quantum gases in
optical lattices. Thereby, multiphoton transitions to the first
excited energy band of up to the ninth order could be
observed in a driven one-dimensional lattice as well as in a
two-dimensional triangular lattice. The resonance positions are
found to be in excellent agreement with ab initio calculations
of the time-averaged effective single-particle band structure.
Also, the strength of the resonances and their dependence on
the driving amplitude show good agreement with numerical
simulations.

Our findings provide essential insights concerning the
applicability of strong-driving schemes for the experimental
realization of exotic quantum phases in the rapidly growing
field of Floquet engineering. Moreover, a comprehensive
understanding of driven mesoscopic matter waves is a crucial
prerequisite for the coherent control and addressability of
intriguing quantum states. For instance, in analogy to coherent
light-matter interactions, external periodic driving with pre-
cisely adjusted pulse shapes could allow for the generation
of catlike states between different Bloch bands in optical
lattices [40]. In addition, the particularly strong inertial forcing
enables the emulation of extremely strong field conditions in
condensed-matter systems that are hardly accessible with real
solids [33]. A further strength of quantum gases relies on the
precise control over the interactions in the system. It is essential
for the investigation of the complex interplay between periodic
driving and interactions, which has very recently triggered
several theoretical studies [41–45].
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APPENDIX A: THE DRIVEN LATTICE SYSTEM

In the following we provide a theory of multiphoton
interband transitions in the driven 1D lattice and will identify
the basic processes that lead to multi-“photon” interband
transitions in a driven optical lattice and their rates.

In the lattice frame of reference a sinusoidal shaking of
the lattice gives rise to a time-periodic homogeneous inertial
force, resembling ac voltage. Thus, a particle of mass M in a
shaking cosine lattice is described by Eq. (1) of the main text:

Ĥ(t) = − �
2

2M
∂2
x − V0

2
cos(2πx/a) + xF0 cos(�t), (A1)

with V0 being lattice depth, a being a lattice constant, and F0

being the amplitude of the force.
It is convenient to describe the driven lattice in terms of

the maximally localized Wannier states |�α〉 of the undriven
Hamiltonian (F0 = 0). The integer � labels the lattice minima
x� = �a, and the index α = 0,1,2, . . . denotes the Bloch
bands spanned by the corresponding Wannier states, with
the energy increasing with α. The Wannier wave functions
wα(x − �a) = 〈x|�α〉 are real, exponentially localized on a
length increasing with α, symmetric (antisymmetric) for even
(odd) bands, wα(−x) = (−)αwα(x), and shall be normalized,∫

dx |wα(x)|2 = 1.
In Wannier representation, noninteracting particles in the

driven lattice are described by the tight-binding Hamiltonian

Ĥ(t)=
∑
�α

[
εα|α�〉〈α�| − Jα(|α(� + 2)〉〈α�| + H.c.)

+ K̃cos(�t)

(
�|α�〉〈α�|+

∑
α′

ηα′α|α′�〉〈α�|
)]

. (A2)

The Hamiltonian is characterized by the amplitude of the
potential modulations K̃ = F0a, the band-center energies

ε̄α =
∫

dx wα(x)

[
− �

2

2M
∂2
x − V0

2
cos(2πx/a)

]
wα(x),

(A3)

the nearest-neighbor tunneling parameters

Jα =−
∫

dx wα(x − a)

[
− �

2

2M
∂2
x − V0

2
cos(2πx/a)

]
wα(x),

(A4)

and the dimensionless dipole matrix elements

ηα′α = 1

a

∫
dx wα′(x)xwα(x) (A5)

describing interband coupling. As a consequence of the parity
of the Wannier functions, ηα′α is nonzero only if (α′ − α) is
odd. Moreover the sign of the tunneling parameter Jα alternates

with the band index Jα/|Jα| = (−)α . It is an approximation to
neglect tunneling beyond nearest-neighbor sites and not to
take into account time-periodic band-coupling terms between
Wannier states on different lattice sites. However, for the two
low-lying bands those terms are rather small. The neglected
terms might still be relevant for the description of higher-lying
bands, however. Including the neglected terms in the analysis
presented below would be straightforward but is not done here
for the sake of a simple presentation capturing the basic picture.
However, these terms are included in our numerical simulation
of interband transitions described in Appendix D.

The driving term breaks the translational symmetry of the
lattice. However, the symmetry can be restored by performing
a gauge transformation

Ĥ′(t) = Û †(t)Ĥ(t)Û (t) − i�Û †(t) ˙̂U (t), (A6)

with the unitary operator given by

Û (t) = exp

(
i
∑
�α

χ�(t)|α�〉〈α�|
)

(A7)

and

χ�(t) = − K̃�

�

∫ t

0
dt ′ cos(�t ′) = −�K sin(�t), (A8)

where K = K̃/(��). This unitary transformation integrates
out the oscillatory shift in quasimomentum by

�q(t) = −K

a
sin(�t) (A9)

induced by the periodic force. The new Hamiltonian reads

Ĥ′(t) =
∑
�α

[
ε̄α|α�〉〈α�| − Jα(eiθ(t)|α(� + 1)〉〈α�| + H.c.)

+ K̃ cos(�t)
∑
α′

ηα′α|α′�〉〈α�|
]
, (A10)

with time-periodic Peierls phase θ (t) = χ�(t) − χ�+1(t) =
−a�q(t) = K sin(�t).

Let us, for simplicity, assume a system of N lattice sites
under periodic boundary conditions and express the Hamilto-
nian in terms of Bloch states |αq〉, with the quasimomentum
quantum number q taking N discrete values k = 2πμ/(Na),
with integer μ in the interval (−π

a
, π

a
]. Using 〈α′�|αq〉 =

δα′αN−1/2 exp(i�aq), one finds

Ĥ′(t) =
∑

q

Ĥ′
q(t), (A11)

with

Ĥ′
q(t) =

∑
α

{
εα[q − A(t)/�]|αq〉〈αq|

+ K̃ cos(�t)
∑
α′

ηα′α|α′q〉〈αq|
}
, (A12)

corresponding to Eq. (3) in the main text. Here,

A(t) = −��q(t) (A13)
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plays the role of a vector potential, and

εα(q) = ε̄α − 2Jα cos(qa) (A14)

denotes the single-particle dispersion relation for band α.
As a consequence of the discrete translational invariance,

the Hamiltonian Ĥ′(t) conserves quasimomentum q. That
means that interband transitions will occur between Bloch
states |αq〉 and |α′q〉 of the same quasimomentum q. This
reduces the problem to independent subspaces that are charac-
terized by q and spanned by states labeled by the band index
α.

APPENDIX B: FLOQUET PICTURE

Let us investigate the problem within the extended Floquet
Hilbert space. The time-dependent Schrödinger equation

i�dt |ψ(t)〉 = Ĥ′(t)|ψ(t)〉 (B1)

possesses a set of generalized stationary states of the form

|ψν(t)〉 = |uν(t)〉e− i
�

tεν (B2)

called Floquet states. They are characterized by the time-
periodic Floquet mode |uν(t)〉 = |uν(t + T )〉 and by the
quasienergy εν , where the driving period T is defined by
T = 2π/�. The Floquet states, which are labeled by some
quantum number ν, form a complete basis of the state space
at any time t . Therefore, we can expand the time evolution of
a state |ψ(t)〉 in terms of the Floquet states like

|ψ(t)〉 =
∑

ν

cν |ψν(t)〉 =
∑

ν

cν |uν(t)〉e− i
�

tεν , (B3)

with time-independent coefficients cn = 〈ψν(t0)|ψ(t0)〉.
Unlike the Floquet states, the quasienergies and the Floquet

modes are not defined uniquely. For each Floquet state a whole
family of Floquet modes and quasienergies,

ενm = εν + m��, |uνm(t)〉 = |uν(t)〉eim�t , (B4)

labeled by the integer m, can be defined such that

|ψν(t)〉 = |uνm(t)〉e− i
�

tενm (B5)

for all m. However, Floquet modes and quasienergies of
different m still constitute independent solutions of the
eigenvalue problem

Q̄|uνm〉〉 = ενm|uνm〉〉 (B6)

of the quasienergy operator

Q̂(t) = Ĥ′(t) − i�dt . (B7)

This eigenvalue problem is defined in the extended Floquet
Hilbert space, being the product space of the state space with
the space of time-periodic functions. In this space the scalar
product is given by

〈〈u|v〉〉 = 1

T

∫ T

0
dt 〈u(t)|v(t)〉. (B8)

When considering a periodically time-dependent state |u(t)〉 =
|u(t + T )〉 as an element of the extended Hilbert space, we
write it as a double-ket |u〉〉. Likewise, an operator is marked

by an overbar, like Q̄, if it is considered to act in the extended
Hilbert space.

For the driven lattice a useful set of basis states spanning
the extended Hilbert space is given by

|αqm〉〉 : |αqm(t)〉 = |αq〉eim�t (B9)

and labeled by the band index α, the quasimomentum q, and
the Fourier index m. These states are the Floquet modes of
the undriven problem with K̃ = 0. With respect to these basis
states the quasienergy operator possesses the matrix elements

〈〈α′q ′m′|Q̄|αqm〉〉 = 〈α′q ′|(Ĥ′
m′−m + δm′m��)|αq〉, (B10)

where

Ĥ′
m = 1

T

∫ T

0
dt e−im�tĤ′(t) (B11)

denotes the Fourier transform of the Hamiltonian such that
Ĥ′(t) = ∑

m eim�tĤ′
m. The quasienergy operator assumes a

block structure with respect to the index m, which plays the
role of a relative photon number. The diagonal blocks describe
subspaces of different “photon” number and are shifted relative
to each other in energy by integer multiples of the photon
energy ��. The diagonal blocks are coupled by off-diagonal
blocks characterized by Ĥ′

m
=0 describing m-photon processes.
Let us evaluate the matrix elements explicitly. One finds

Ĥ′
m =

∑
qα

εαm(q)|αq〉〈αq| + 1

2
K̃δ|m|,1ηα′α|α′q〉〈αq|,

(B12)
where

εαm(q) = 1

T

∫ T

0
dt εα(q − A(t)/�)

= ε̄αδm,0 − JαJm(K)[e−iaq + (−)meiaq], (B13)

with Jm denoting a Bessel function of order m. The diagonal
blocks are given by

〈〈α′q ′m|Q̄|αqm〉〉 = δq ′qδα′α
[
εeff
α (q) + m��

]
, (B14)

where we have introduced the effective dispersion relation

εeff
α (q) = εα0(q) = ε̄α − 2JαJ0(K) cos(aq). (B15)

The off-diagonal blocks read

〈〈α′q ′m′|Q̄|αqm〉〉
= δq ′q

[
δα′αεα(m′−m)(q) + 1

2 K̃δ|m′−m|,1ηα′α
]
. (B16)

The first term describes multiphoton processes with arbitrary
|m′ − m| that do not change the band index α. The second
term describes single-photon transitions with |m′ − m| = 1
between two bands α and α′ with odd (α′ − α). Thus, the
quasienergy operator does not directly possess matrix elements
that describe multiphoton interband transitions. Such pro-
cesses emerge, however, from higher-order virtual processes
in the extended Floquet Hilbert space, as we will discuss in
Appendix C.

APPENDIX C: MULTIPHOTON INTERBAND COUPLING

The basis states |αqm〉〉 correspond to eigenstates |αq〉 of
the undriven Hamiltonian. An m-photon interband coupling
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FIG. 5. (Color online) Resonance condition for an n-photon tran-
sition between the bands α = 0 and α = 1 in the extended Floquet
Hilbert space. The energy levels correspond to the unperturbed
quasienergies εeff

α (q) + m��. The states |αqm〉〉 are labeled by the
band index α, the quasimomentum wave number q, and the relative
“photon” number m.

process from state |αq〉 to state |α′k〉 is expected to occur
when the resonance condition

�Eeff
α′α(q) = εeff

α′ (q) − εeff
α (q) = n�� + δ (C1)

with integer n and sufficiently small detuning δ is fulfilled. In
the extended Floquet Hilbert space this resonance condition
corresponds to a quasidegeneracy of the unperturbed states
|αqm〉〉 and |α′q(m − n)〉〉 with respect to the diagonal blocks.
The energy cost of the transition is compensated by the
destruction of n photons. This is illustrated in Fig. 5 for the
case of α = 0 and α′ = 1, which is relevant for the experiment.
Resonant n-photon interband excitations are expected when
the (effective) coupling matrix element between both states
becomes comparable to the detuning δ. If both states are
not coupled directly by a matrix element appearing in the
off-diagonal blocks, they might be coupled via an effective
matrix element resulting from higher-order processes via
energetically distant “virtual” intermediate states |α′′qm′′〉〉.

Let us estimate the relevant coupling matrix element for an
n-photon process from the lowest into the first excited band
at quasimomentum q, i.e., between states |0q〉 and |1q〉. For
this purpose, we have to evaluate the coupling matrix element
between states |0q0〉〉 and |1q − n〉〉 in the extended Floquet
Hilbert space. For a single-photon process with n = 1 we find
a direct coupling matrix element

C1 = 〈〈1q − 1|Q̄|0q0〉〉 = η10

2
K̃, (C2)

as illustrated in Fig. 6.
For a two-photon process with n = 2, we do not find a direct

coupling matrix element. However, both states can be coupled
via two second-order processes, |0q0〉〉 → |0q − 1〉〉 → |1q −
2〉〉 and |0q0〉〉 → |1q − 1〉〉 → |1q − 2〉〉, as shown in Fig. 7.
Using the standard expression of degenerate perturbation

FIG. 6. (Color online) Single-photon transition.

theory, the effective coupling matrix element is given by

C2 = 〈〈1q − 2|Q̄(2)
eff |0q0〉〉

= 1

2
K̃η10

(
ε0,−1(q)

��
− ε1,−1(q)

��

)
, (C3)

neglecting δ in the energy denominator (this level of approxi-
mation is equivalent to a high-frequency approximation [29]).
The order of magnitude of this term can be estimated by
noting that for small arguments the Bessel function behaves
like Jm(x) ∼ x|m|, such that for m 
= 0

εαm(q) ∼
(

K̃

��

)|m|
Jα. (C4)

Including also the momentum dependence of εαm(q), which
for odd m is just given by a factor of sin(aq), we find that the
matrix element of the two-photon process is of the order of

C2 ∼ sin(aq)

(
K̃

��

)2

J1,2. (C5)

Typical paths contributing to three-photon interband tran-
sitions in leading order are depicted in Fig. 8. They also
involve intermediate states of higher-lying bands and give rise
to effective tunneling matrix elements

C3 = 〈〈1q − 3|Q̄(3)
eff |0q0〉〉 ∼

(
K̃

��

)2

K̃. (C6)

FIG. 7. (Color online) Two-photon transition.
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FIG. 8. (Color online) Three-photon transition.

Generally, the coupling matrix elements describing an n-
photon interband transition obey

Cn ∼
(

K̃

��

)n−1

K̃ for odd n (C7)

and

Cn ∼ sin(aq)

(
K̃

��

)n

Jα for even n. (C8)

The factor of sin(aq) results from the fact that for even n

one matrix element εαm(q) with odd m always contributes in
leading order. [Also higher-order coupling paths for even n

contain at least one factor εαm(q) ∝ sin(aq) with odd m].
We can see that transitions involving an even num-

ber of photons are suppressed by an additional factor of
sin(aq)Jα/(��) with respect to transitions with odd photon
numbers. In particular for the experimentally relevant quasi-
momenta q = 0 and q = π/a resonances with even n are
suppressed completely. This is a consequence of the fact
that only bands with Wannier functions of different parity
are coupled directly by the periodic force on the level of our
approximation. The transitions with even photon numbers n

are observed experimentally because of the broadening of the
quasimomentum distribution due to temperature, interactions,
and the finite system extent.

APPENDIX D: SIMULATION OF THE TIME EVOLUTION

In order to integrate the time evolution of the shaken
lattice, let us start directly from the Hamiltonian in real-
space representation (A1). As before, we perform a gauge
transformation to restore the translational symmetry of the
lattice

Ĥ′(t) = Û (t)†Ĥ(t)Û (t) − i�Û †(t) ˙̂U (t), (D1)

with

Û (t) = exp

(
− i

�

∫ t

0
dt ′F0x cos(�t)

)
= exp[i�q(t)x],

(D2)

giving

Ĥ′(t) = 1

2M
[−i�∂x − A(t)]2 − V0

2
cos(2πx/a), (D3)

where A(t) again plays the role of the vector potential.
Assuming a system of length L with periodic boundary
conditions, we can express the Hamiltonian in terms of
momentum eigenstates |p〉 with wave functions

〈x|p〉 = 1√
L

exp(ipx). (D4)

For that purpose it is convenient to decompose the momentum
wave number as

p = q + βQ, (D5)

with −π
a

< q � π
a

, β being an integer, and Q ≡ 2π/a. Intro-
ducing the localization energy Eloc = �

2π2/(2Ma2), which
describes the kinetic-energy cost of localizing a particle on a
lattice constant a, as the natural unit of energy, we find matrix
elements

〈q ′ + β ′Q|Ĥ′(t)|q + βQ〉 = δq ′,q hβ ′β(q,t)Eloc, (D6)

with

hβ ′β(q,t) = δβ ′β
a2

π2
[q + βQ − A(t)/�]2

+ 1

4
(δβ ′,β+1 + δβ ′,β−1)

V0

Eloc
. (D7)

One can see that the wave number q is conserved, so that the
dynamics occurs in the space spanned by the integer quantum
number β. By diagonalizing the dimensionless Hamiltonian
hβ ′,β(q,t) for A(t) = 0, we obtain the band structure of the
undriven lattice. The fact that the diagonal matrix elements hββ

increase like 4β2, while the off-diagonal terms are constant,
hβ±1,β = V0/(4Eloc), shows that Bloch states with energy
much larger than the lattice depth resemble plane waves.

For our simulation we initialize the system in a Bloch state
of the lowest band with quasimomentum q and integrate the
time-dependent Schrödinger equation of the dimensionless
time-dependent Hamiltonian hβ ′β(q,t) for the given forcing
strength K over a time span corresponding to 20 ms. We take
into account 61 plane waves; increasing this number further
does not alter the results. We report the minimum occupation
of the lowest band encountered during the time evolution.

2 43 5 6
Driving frequency Ω/2π (kHz)

D
rv

. a
m

pl
itu

de
 K

2

3

4

1

1

m
in

( N
0 )

0

FIG. 9. (Color online) Minimum occupation of the lowest band
during 20 ms of time evolution vs driving frequency � and driving
strength K . At t = 0 the system is prepared in the Bloch state
corresponding to the minimum of the effective dispersion relation
of the lowest band, that is, with quasimomentum q = 0 (q = π/a) for
K lower (larger) than 2.4.
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FIG. 10. (Color online) Same as Fig. 9, but with the initial state
shifted away from the minimum by (a) �q = 0.1π and (b) �q =
0.2π .

This number provides a measure for the amount of interband
excitation expected on the given time scale.

We choose q to be the minimum of the effective dispersion
relation of the lowest band, that is, q = 0 (q = π/a) for K less
(greater) than 2.4. With respect to the driving frequency and
strength, the minimum occupation of the lowest band is plotted
in Fig. 9. While this plot already resembles the experimentally
measured data in some respects, it hardly shows resonances
corresponding to even photon numbers n. This suppression
of even resonances is expected from the theory presented in
Appendix C.

The even resonances observed in the experiment can
be explained by the finite width of the quasimomentum
distribution, induced by the finite extent of the trapped system,
finite temperature, and interactions. In order to take into
account that the quasimomentum distribution possesses a finite
width w, we simulate the time evolution also starting from
initial states that are shifted away from the minimum of the
effective dispersion relation by �q. As examples, data for
�q = 0.1π/a and �q = 0.2π/a are shown in Figs. 10(a)
and 10(b), respectively. Here, even resonances are clearly
visible. The plot shown in Fig. 3(b) is a superposition of
resonance data obtained for different values of �q (varied in
steps of 0.025π/a), with Gaussian weights ∝ exp(−�q2/w2).

The width of the momentum distribution was set to w =
0.1π/a. While this value cannot be determined experimentally
with sufficient accuracy since the time-of-flight pictures shown
in Fig. 1(d) are taken before the far-field limit is reached [46],
Fig. 1(d) still provides an upper bound for w, which is of the
order of 0.1π/a. An estimate for the lower bound of w is
obtained from the Thomas-Fermi radius and is of the order
of 0.02π/a [36]. Since thermal and quantum fluctuations
will cause further broadening, the value w = 0.1π/a is a
reasonable assumption.

(b)

(a)

0

1

2 2018161412108640
Driving time (ms)

|  
ф

i|Ψ
(t

)   |2

0

1
0

1

(c) 2 2018161412108640

2 2018161412108640

|  
ф

i|Ψ
(t

)  |2
|  

ф
i|Ψ

(t
)   |2

α = 0

α = 3
α = 2
α = 1

FIG. 11. (Color online) Occupation of the lowest bands during
the time evolution. Plotted is the overlap squared of the time evolved
state ψ(t) with eigenstates φj for (a) K = 3.0 and � = 2π×4.65 kHz,
(b) K = 3.0 and � = 2π×5.00 kHz, and (c) K = 2.5 and � =
2π×2.90 kHz. The bands for α = 0 to 3 are depicted with increasing
brightness (see legend). Bands above α = 3 exhibit no significant
occupation and are omitted from the plots.

In Fig. 9 we can see that the three-photon resonance (near
5 kHz) from the ground band α = 0 into the first excited band
(α = 1) is split into two resonances. This is a signature of
the fact that the first excited band is coupled resonantly to
even higher lying bands, so that an avoided crossing is formed
in the quasienergy spectrum. The doubled resonance reflects
this avoided crossing and explains the large broadening of
the three-photon resonance visible in the experimental data
[Fig. 3(a), main text]. In order to identify the bands involved in
the three-photon transition, let us have a look at the simulated
time evolution. In Fig. 11 we plot the occupations of the
lowest bands over time for different parameters K and � for
an initial state with q = π/a. At the driving strength K = 3
[see Fig. 11(a,b)], the left- and right-hand sides of the double
resonance are captured roughly by � = 2π×4.65 kHz and
� = 2π×5.0 kHz, respectively. We can see that the system
performs Rabi-type oscillations between the ground band and
a hybridized state with strong contributions from the three
bands with α = 1, 2, and 3. We can compare these results with
a plot of the time evolution near the five-photon resonance
(K = 2.5, � = 2π×2.9 kHz) shown in Fig. 11(c), where only
the first excited band becomes populated significantly since
for this resonance an avoided crossings occurs only for larger
K (Fig. 9).
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[13] J. Struck, C. Ölschläger, R. L. L. Targat, P. Soltan-Panahi,
A. Eckardt, M. Lewenstein, P. Windpassinger, and K. Sengstock,
Science 333, 996 (2011).

[14] M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y. A.
Chen, and I. Bloch, Phys. Rev. Lett. 107, 255301 (2011).
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