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We study the effect of spin-orbit coupling on both the zero-temperature and nonzero-temperature behavior of a
two-dimensional Fermi gas. We include a generic combination of Rashba and Dresselhaus terms into the system
Hamiltonian, which allows us to study both the experimentally relevant equal-Rashba-Dresselhaus (ERD) limit
and the Rashba-only (RO) limit. At zero temperature, we derive the phase diagram as a function of the two-body
binding energy and Zeeman field. In the ERD case, this phase diagram reveals several topologically distinct
uniform superfluid phases, classified according to the nodal structure of the quasiparticle excitation energies.
Furthermore, we use a momentum-dependent SU(2) rotation to transform the system into a generalized helicity
basis, revealing that spin-orbit coupling induces a triplet pairing component of the order parameter. At nonzero
temperature, we study the Berezinskii-Kosterlitz-Thouless (BKT) phase transition by including phase fluctuations
of the order parameter up to second order. We show that the superfluid density becomes anisotropic due to the
presence of spin-orbit coupling (except in the RO case). This leads both to elliptic vortices and antivortices, and to
anisotropic sound velocities. The latter prove to be sensitive to quantum phase transitions between topologically
distinct phases. We show further that at a fixed nonzero Zeeman field, the BKT critical temperature is increased by
the presence of ERD spin-orbit coupling. Subsequently, we demonstrate that the Clogston limit becomes infinite:
Tskr remains nonzero at all finite values of the Zeeman field. We conclude by extending the quantum phase
transition lines to nonzero temperature, using the nodal structure of the quasiparticle spectrum, thus connecting

the BKT critical temperature with the zero-temperature results.

DOI: 10.1103/PhysRevA.92.043618

I. INTRODUCTION

Spin-orbit coupling, the interaction of a particle’s spin with
its motion, is an essential ingredient in many quantum me-
chanical phenomena. In atomic physics, this effect arises from
the interaction between the electron’s magnetic moment and
the magnetic field generated by the electron’s orbital motion,
giving rise to the fine-structure splitting. In condensed matter
physics, spin-orbit coupling leads to intriguing phenomena
such as topological insulators [1], the quantum spin-Hall effect
[2,3], and Weyl fermions [4]. However, in these cases, the
strength of the spin-orbit coupling is intrinsic and, moreover,
the complex structure of the materials used is not always
known, making theoretical modeling an arduous task.

By contrast, ultracold atomic gases offer a versatile system
in which parameters such as the interaction strength, the
spin imbalance, the dimensionality, and the geometry can be
freely adjusted [5], making them ideally suited for quantum
simulation of many-body systems. However, because the
atoms used in ultracold gases are neutral, creating artificial
spin-orbit coupling required the exploration of new techniques.
More specifically, the use of two-photon Raman transitions
was suggested theoretically [6-8] and shortly thereafter
implemented for bosonic gases [9]. Subsequently, spin-orbit
coupling was created in systems of noninteracting fermions
[10,11]. Recently, the interacting spin-orbit-coupled Fermi
gas near a Feshbach resonance has also been realized [12]
and the formation of Feshbach molecules was investigated
theoretically [13]. The type of spin-orbit coupling achieved in
these systems is that of equal Rashba [14] and Dresselhaus [15]
strength (ERD), which up until now is the only form realized
experimentally.
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These seminal experiments have sparked a wide range of
suggestions for new experimental setups. Proposals to create
spin-orbit coupling without the use of Raman dressing (which
suffers from heating problems) include radiofrequency (rf)
dressing with an atom chip [16] and using ladderlike optical
lattices [17]. Furthermore, many proposals have emerged for
the creation of Rashba-only spin-orbit coupling, including the
creation of degenerate dark states using tripod laser coupling
[18,19] and generalizing the Raman scheme used in the
aforementioned experiments [20,21]. For a more complete
overview of the experimental achievements in this rapidly
developing field, we refer to the following excellent review
papers [22-24].

The first theoretical studies of spin-orbit coupling in ultra-
cold gases focused on the three-dimensional (3D) case, with
either Rashba-only (RO) coupling [25-28] or ERD coupling
[29,30]. Recently, the two-dimensional (2D) RO case has also
received wide attention [31-33], as well as the 2D ERD case
[34], in part due to the experimental creation of a 2D interacting
Fermi gas [35-38] and by its relation to topological superfluids
[39,40]. However, in 2D, at nonzero temperature, a phase
transition from a quasicondensate to a nonsuperfluid paired
phase arises due to the Berezinskii-Kosterlitz-Thouless (BKT)
mechanism, which involves the unbinding of vortex-antivortex
pairs [41,42]. To capture the physics of this phenomenon,
it is essential to go beyond the saddle-point (mean-field)
approximation and include fluctuations of the phase of the
order parameter into the description [43—45]. We performed
this calculation for the 2D case with generic spin-orbit
coupling, which was reported in a recent paper [46]. In
this paper, we will discuss the full mathematical details of
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the aforementioned calculation, as well as present additional
results for the zero-temperature case and for the BKT critical
temperature.

The remainder of this paper is divided in two parts: saddle
point and fluctuations. In Sec. II, we develop and discuss
the saddle-point case. We start in Sec. I A by introducing
the system Hamiltonian and setting up the functional-integral
formalism, which we use throughout the paper. A derivation
of the saddle-point thermodynamic potential is shown in
Sec. II B. Subsequently, in Sec. II C, we make a momentum-
dependent transformation to the generalized helicity basis,
which shows the emergence of a triplet component of the order
parameter. In Sec. IID, we define the topologically distinct
uniform superfluid phases of the system, based on the nodal
structure of the quasiparticle excitation spectra. Finally, in
Sec. ITE, we calculate the zero-temperature phase diagram as
a function of the two-body binding energy and Zeeman field.

In Sec. III, we include fluctuations of the phase of the
order parameter around the saddle point. Our main goal is
to study the Berezinskii-Kosterlitz-Thouless (BKT) transition
temperature, for which these fluctuations play a crucial role. In
Sec. III A, we start by introducing the phase into our formalism,
followed by a derivation of the effective action using the
functional-integral adiabatic approximation in Sec. III B. In
Sec. I C, the resulting effective action is then expanded up
to quadratic order in the phase, leading to a phase-fluctuation
part of the action. We conclude our calculation by deriving
an analytic expression for the fluctuation thermodynamic
potential in Sec. III D. Furthermore, we discuss the effect of
spin-orbit coupling on the sound velocities (Sec. II E) and on
the vortex-antivortex structure of the system (Sec. III F). We
then continue to Sec. III G in which we study the influence of
spin-orbit coupling on the BKT critical temperature. Finally,
in Sec. IIIH, we relate the zero-temperature results to the
BKT critical temperature, by discussing the evolution of the
quantum phase transition lines at nonzero temperature. In
Sec. IV, we draw conclusions.

II. FUNCTIONAL-INTEGRAL DESCRIPTION AT THE
SADDLE-POINT LEVEL

In this section, we set up the functional-integral formalism
at the saddle-point level and we discuss the ground states of
the system, as well as the zero-temperature phase diagram.

A. Setting up the formalism

In this work, we use a functional-integral approach to
calculate thermodynamic properties of the system. More
specifically, we write the partition function as a sum over
Grassmann fields v and v, weighted by the exponential of the
action functional S:

Z:/Dlpr,r,sp'ﬂbr,t,s exp[_S(lpr,r,s»Wr,r,.v)]- (D

Here, r = (x,y) and t indicate position and imaginary time,
respectively, while s = {1,]} denotes the spin-state (spin
up and spin down) of the spin—% fermions. The action can
be related to the Hamiltonian density H via a Legendre
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transformation

SWrers:Yrrs)
= / dt / dr|:2 Vrees

Our aim is to study a two-dimensional (2D) Fermi gas, where

the spin-orbit coupling is a generic combination of Rashba and

Dresselhaus terms. The Hamiltonian density of this system can

be divided into three parts: H = Hy + Hs + H;. Note that for

the remainder of this paper we use the units h = 2m = kg = 1.
The first part of H is

Ho = Z 1spr,r,s[( - VE — Ms

8 r,T,s T
Vo +H<wr,f,s,wr,f,s>}
T
@)

)Ss,s/ - hzgz,ss’]l//r,r,s’: 3

corresponding to the single-particle sector. We work in the
grand canonical ensemble, hence the use of the Lagrange
multiplier w,, which is interpreted as a spin-dependent
chemical potential, thus allowing for population imbalance.
Furthermore, s, denotes a Zeeman field perpendicular to
the (x-y) plane. Experimentally, this field corresponds to
the intensity €2 of the Raman transition between different
hyperfine states: h, = —$2/2. Finally, o; represents the ith
Pauli matrix.
The second part of H is

Hs = -2 Z EDr,r,.S'(alsz—y,s.Y’ - )//%v(fx,ss/)lﬂr,z.su 4

corresponding to the spin-orbit terms. Here, we have defined
o = (vr + vp)/2 and y = (vgr — vp)/2, with vg and vp being
the Rashba and Dresselhaus coupling strengths, respectively.
Moreover, IEZ = —i(d/dl) is the momentum operator along the
[ direction.

The third part H; describes the interaction between
fermions. We consider s-wave scattering, thus only taking into
account interaction between fermions in different spin states.
For a general two-body potential V(r — r’), the interaction
term can be written as

HI = /dr,lpr,r,ﬂ/_fr’,t,i V(l‘ - r/)wr/,nw/fr,r,T- (5)

However, in this work, we restrict ourselves to short-range
interactions, which can be described by the contact potential
Vir—r)=gér—r).

Having set up the functional-integral formalism, we are
ready to discuss the saddle-point approximation.

B. Calculating the saddle-point thermodynamic potential

In this section, our goal is to derive the saddle-point
thermodynamic potential from the partition function shown
in Eq. (1). The difficulty in calculating the latter expression
analytically lies in the fourth-order interaction term. A fre-
quently used method to circumvent this problem is to use the
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Hubbard-Stratonovich transformation

exXp <—g/dr &r,Tlpr,Upr,LKbr,?)

_ AA,
= fDA,DA, exp[/dr( — YU A
g

- wr,iwr.TAr>i|a (6)

where we denote r = {r,t}. This transformation decouples
the fourth-order interaction term in Eq. (1) into second-order
terms, at the cost of inserting an additional functional integral
over complex fields Am and A,.. However, these fields
have a physical meaning: they are interpreted as the fermion
pair fields. In Eq. (6), we use the Bogoliubov channel in the
Hubbard-Stratonovich transformation. It is also possible to use
a different channel by using fields which represent the total
density (Hartree channel) or the population imbalance density
(Fock channel). However, for the description of superfluidity,
the Bogoliubov channel is the most natural.

At this point, the fermionic functional integrals in the
partition function can be calculated analytically since the
action has been made quadratic in the fermionic fields. It is not
possible, however, to calculate the bosonic functional integrals
analytically and one has to resort to approximations. Several
“levels” of approximation can be considered, starting with the
crudest one: the saddle-point approximation. In this case, we
assume that the order parameter is constant in time and space
or, equivalently, that only its zero-momentum component
contributes

Aqw, = vV BL*8(qQ)80, 0| Al )

Hence, we assume that fermions pair at opposite momenta,
ignoring the possibility of nonuniform superfluid phases
[47-50]. In Eq. (7), the factor /BL? is added to give |A|
dimensions of energy, where B8 denotes inverse temperature
and L? is the area of the 2D system.

Fourier transforming the action and applying the saddle-
point approximation, the action can be written as

1 _ .
$=3 Db lionl + M0,
B . 2 2_|A|2
# 5 e k- p

ko, s

where w, = (2n + 1)/B is the fermionic Matsubara fre-
quency, k is the fermionic wave vector, and u; is the chemical
potential in spin state s. However, for the remainder of this
paper, we choose u; = p and treat only a system with initial
identical populations. In Eq. (8), the fermion fields are ordered
using the spinor notation

Mon = Wkt Vkon, L Yok —nt Uk —on, | )- &)

In this basis, the division into a quasiparticle-quasihole part and
a spin-up and -down part is visible. The Hamiltonian density
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appearing in Eq. (8) is

fk—h:  —hi(K) 0 (A
—hi(K) &+h, —1A| 0
k =
i 0 —|Al =&k +h,  —hi(k)
|A| 0 —hi(k) —& —h;

(10)

The emergence of the second term in Eq. (8) stems from
the fact that operators have to be Weyl ordered before they
can be mapped onto Grassmann variables. This leads to
additional terms due to the anticommuting nature of the
fermion operators.

In the matrix shown in Eq. (10), & = k> — p is the single-
particle energy relative to the chemical potential, and 2, (K) =
h, (k) + ihy (k) is the spin-orbit field with components &, (k) =
—2yk, and h,(k) = 2ak,. It is noteworthy to mention that
the Hamiltonian density can be written in terms of the Pauli
matrices as

HEK) =17, ® (§k00 — h;0;) — |AlTy ® 0y
+ 2ykyT0 ® 0, — 20k T, ® Oy, (11

where the Pauli matrices o; and t; are associated with the spin
and the particle-hole parts, respectively. Using this notation,
it can be shown that quasiparticle-quasihole symmetry is
preserved because

7, ® oo H(K)T, ® 09 = —H*(—K). (12)

Now, the fermionic functional integral can be calculated,
leading to the partition function

Z =exp %ZTr[ln(— ,BG;LM)]

k,w,

2
—B) (o, +K —p)+ ﬁLz%

k,w,

13)

Finally, performing the Matsubara summation, and replacing
the interaction strength g in terms of the two-body binding
energy Ep via the relation

1 S ﬂ% (14)
g (27)? 2k* + Ep
results in the saddle-point thermodynamic potential
Qp =— (2‘1:)2 (% In [2 + 2 cosh (Be{P(K))]
+ In[2+2cosh (Bl (k) ]} — & — i).
2k* + Eg
15)

In Eq. (15), the momentum-dependent functions

€ (k) = \/Eﬁ +h2+ | (k)2 + 2\/E§h§ + &21h 1 (K)[2
(16)

represent the quasiparticle energies. Note that by using
Eq. (14), we deliberately choose Ep to represent the two-body

043618-3



DEVREESE, TEMPERE, AND SA DE MELO

binding energy in the absence of spin-orbit coupling. In this
way, Ep can be treated as an independent system parameter,
which makes it easier to identify the direct effects of spin-orbit
coupling. For a detailed study of the effect of spin-orbit
coupling on the bound-state energies resulting from interaction
between spin—% fermions, we refer to [13].

Having discussed the saddle-point thermodynamic poten-
tial, we investigate next the generalized helicity basis.

C. Generalized helicity basis

To gain insight into the effects induced by the presence of
spin-orbit coupling, it is instructive to transform the system to
the generalized helicity basis, using a momentum-dependent
SU(2) transformation. In this basis, the Hamiltonian density
in the noninteracting limit [H(K)];a|=0 becomes diagonal. The
transformation matrix is given by

Uk Vk 0 0
—vy Uk 0 0
U= , 17
0 0 Uu_xg vfk ( )
0 0 —V_k Uu_g
with the components of the eigenvectors being equal to
1 h
=51+ s |
2 Vhz +1h K]
(18)

. 1 h,
2L R r P

Here, the phase gy is defined by i, (K) = |k (K)|e'%. Apply-
ing the generalized helicity basis transformation to the full
Hamiltonian density induces new components of the order
parameter

g0 0 Apk  Any®)
0 k) Aypk)  Ayyk)
UrHE&)U =
HOU= a0 a0 —&® 0
A% K) AL LK) 0 —&y(k)
19)

On the diagonal, the energies of the two generalized helicity
bands are given by

En(k) =&k — \/hZ + |h (K%,
Ey(k) =&k +/h2 + |ho (k)%

Furthermore, the order parameter in the generalized helicity
basis is now a tensor with components

(20)

Agpy(k) = — Ar(k),
Agy(k) = As(k),
Ayp(k) = — Agy(K),
Ay (k) =A% (K).

21
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Here, we identify, respectively, the singlet and the triplet
components of the order parameter

~ h
As(k) = ——oo|A
W) = e Al
22)
Krllg = 00

2 2 |A
NCEAR]

However, these two components are not independent, as they
satisfy

|AsK)? + |ArK))> = |A (23)

At this point, it is important to emphasize that our system
only has one order parameter A, which is a complex scalar,
because there is only s-wave interaction in the original spin
basis. It is only in the generalized helicity basis that the order
parameter can be decomposed into a singlet and triplet compo-
nent and that a spinorial structure arises [30]. The importance
of the spinorial structure was also discussed recently in the
context of a repulsive Fermi gas [51]. For nonzero spin-orbit
coupling, this triplet component cannot be fully suppressed by
aZeeman field, as it involves pairing between particles of equal
generalized helicity. Hence, irrespective of the magnitude of
the Zeeman field, the order parameter will always contain a
triplet component.

We thus see that transforming to the generalized helicity
basis has effectively changed the local isotropic s-wave
interaction into a nonlocal anisotropic interaction. The triplet
component of the order parameter is not inherently present in
the system, instead it is induced by the spin-orbit coupling.
For a related discussion on the singlet and triplet components
of the condensate fraction, we refer to [52].

Now that we have presented a detailed discussion of the
generalized helicity basis, we continue by studying the various
uniform superfluid phases of the system.

D. Topologically distinct superfluid phases

The Hamiltonian density of the system has four eigenval-
ues: two quasiparticle energies € (k), shown in Eq. (16), and

two quasihole energies €. (k) = —e{P(k). The structure of
these excitation spectra can be used to distinguish different
uniform superfluid (US) phases. Let us look more closely at
the quasiparticle branches. The (+) branch is always gapped,
whereas the (—) branch can have nodes depending on the
system parameters. In the language of the generalized helicity
basis, we can write the second quasiparticle energy as

€90 = | [Es(K) — eI + AP, (24)

Here, we have introduced the energy associated with the singlet

channel Es(k) = /&2 + |As(K)|2, as well as an effective
magnetic field heg(k) = (h(k),h;) which is a combination
of the spin-orbit and the Zeeman fields. This effective field
can also be written as half the energy difference of the
generalized helicity bands |hegs| = [£y (k) — &4(K)]/2, while
the single-particle energy is equal to the average energy of the
helicity bands &, = [£4 (k) + §;(K)]/2.
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FIG. 1. (Color online) Overview of the topologically distinct
uniform superfluid (US) phases, categorized by the nodal structure
of the lowest quasiparticle energy branch. In (a)—(d), the values of
and |A| are held fixed while 4, is increased. In (e) and (f), the values
of |A| and h, are held fixed while p is decreased. Note that these
phases only occur in the ERD case.

The lowest quasiparticle energy branch €|~ (k) has nodes
whenever the following two conditions are satisfied simul-
taneously: (1) the effective magnetic field h.g (k) and the
singlet energy Es(k) are equal in magnitude, and (2) the
triplet component_At(k) of the order parameter is zero.
In the ERD case, Ar(k) = 0 leads to k, = 0, which together
with Es(k) = |hesr(K)| gives the relation (k§ -+ AP =
h?, yielding the possibility of having nodes at nonzero momen-
tum. By contrast, in the RO case, or any other combination of
Rashba and Dresselhaus terms, no nodes are present at nonzero
momentum.

The different possible phases in the ERD case are shown in
Fig. 1. Let us describe these phases in more detail. When the
Zeeman field is smaller than the order parameter (h, < |A|),
two phases can be discerned: (1) If the chemical potential
w > 0, the system acquires an indirect gap at nonzero |A|, and
(2) if u < 0 a direct gap at k, = 0 occurs. These phases are
labeled i-US-0 and d-US-0, respectively. When the Zeeman
field becomes larger than the order parameter (h, > |Al), the
quasiparticle spectrum acquires a nodal structure, depending
on the value of the chemical potential. If © > \/h2 — |A|?, the
spectrum has two pairs of nodes (US-2 phase). When |u| <
Vh? — | A%, one pair of nodes is removed from the spectrum
at k =0 and only one pair remains (US-1 phase). Finally,
when < —,/h? — |A]%, the final pair of nodes also vanishes
at k = 0 and the system becomes directly gapped (d-US-0
phase). To summarize, the different topological phases can be
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classified as follows:

uw >0 (@-US-0),
h, <|A| —
uw <0 (d-US-0),
(25)
w> JIZ-AF  (US-2),
hy > Al = (lul < /h2 = A2 (US-D),
w < —/h*—1A]>  (d-US-0).

There are several effects induced by the nodal structure
of the quasiparticle energies at low temperatures (7 << Tgkr)-
First and foremost there is a dramatic change in the momentum
distribution of the system. For example, in the i-US-0 phase
the momentum distribution is a smooth function, whereas in
the US-2 phase discontinuities develop. Furthermore, both
the isothermal compressibility and the spin susceptibility are
nonanalytic at the phase boundaries between the different
uniform superfluid phases. This provides clear thermodynamic
signatures of the quantum phase transitions. For more details,
we refer to [34]. Furthermore, in this paper, the emergence of
nodes in the order parameter, when viewed in the generalized
helicity basis, leads to anisotropies in the superfluid density
tensor and sound velocities, as described in Secs. IIIC
and IIT E.

Having identified the topological nature of the uniform
superfluid phases, we continue by discussing the ground-state
phase diagram.

E. Zero-temperature phase diagram

To find out which of the aforementioned superfluid phases
occur, we investigate the zero-temperature phase diagram as
a function of the two-body binding energy Ep and Zeeman
field h,. More specifically, for a given (Eg,h;) point, we
minimize the saddle-point free energy Fy, = Qp + un with
respect to the order parameter |A|, while simultaneously
solving the number equation 9€2,/du = —n in order to
determine the chemical potential w. The resulting values of
|A| and p then determine which phase the system reaches,
according to Eq. (25). In Fig. 2, the resulting (Eg,k;)-phase
diagram is shown for several values of the spin-orbit coupling
strength.

Figure 2(a) shows the case without spin-orbit coupling. In
this case, only the standard gapped superfluid phase (US-0)
occurs, with a crossover between an indirect gap (i-US-0) at
low binding energy and a direct gap (d-US-0) at large binding
energy. At each value of the binding energy, a critical Zeeman
field exists at which a first-order transition occurs from the US-
0 phase to the normal phase. The driving mechanism behind
this transition is the energy splitting between spin-up and -
down fermions caused by the Zeeman field, which suppresses
spin-singlet pairing at opposite momenta. The stronger the
two-body binding energy between fermions, the larger the
Zeeman field must be to break up the fermion pairs. This
first-order phase transition is also visible in Fig. 3(a), where
the order parameter |A| is shown as a function of /4, for several
values of the binding energy. This figure reveals that the order
parameter jumps discontinuously to zero at a critical Zeeman
field which depends on the value of Eg.

Figures 2(b) and 2(c) show the case of ERD spin-orbit
coupling with vr/9Up = vp/Ur = 0.5 and vr/TF = vp/VF =
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FIG. 2. Zero-temperature phase diagram, as a function of the two-
body binding energy Ep and a Zeeman field &, for different values
of the spin-orbit coupling strength. In these figures, we consider
only equal-Rashba-Dresselhaus spin-orbit coupling (v = vg = vp):
(@) v=0,()v/ir =0.5,and (c) v/ = 0.8 (I = vg/2 with v the
Fermi velocity).
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FIG. 3. (Color online) Order parameter as a function of the
Zeeman field k. In the case without spin-orbit coupling, there is a
first-order phase transition at a given critical Zeeman field. In contrast,
when (ERD) spin-orbit coupling is present, |A| only goes to zero in
the limit 4, — oo.
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0.8, respectively (with ir = vg/2 and v the Fermi velocity).
These figures demonstrate the existence of the topological
uniform superfluid phases US-1 and US-2 at zero temperature.
An important difference between the case without spin-orbit
coupling and the ERD case is that in the former the system
always transitions into the normal phase at high Zeeman field,
whereas in the latter the system transitions into the US-1 phase.
The origin of this difference lies in the triplet component of the
order parameter that is induced by the presence of spin-orbit
coupling, as demonstrated in Sec. I C. This triplet component
cannot be suppressed by a Zeeman field, as it involves
pairing between particles of equal generalized helicity. Hence,
irrespective of the magnitude of the Zeeman field, the order
parameter will always contain a triplet component and as
a result will only become zero in the limit 4, — oo. This
behavior is shown explicitly in Fig. 3(b): at low values of the
Zeeman field, the order parameter is approximately constant,
while at high values it becomes suppressed but stays nonzero.
Figures 2 and 3 both coincide perfectly with the results
of [34].

Figures 2(b) and 2(c) both show a triple point, in which the i-
US-0 phase, the US-2 phase, and the US-1 phase meet. For low
binding energy, the system undergoes two phase transitions
with increasing Zeeman field: i-US-0 — US-2 — US-1. At
higher binding energy, the system undergoes only one phase
transition: US-0 — US-1. With increasing binding energy, the
region of the US-2 phase shrinks because the lower bound
increases. This occurs because the gap in the quasiparticle
spectrum of the i-US-0 phase increases with increasing binding
energy, and thus a higher value of the Zeeman field is needed in
order to bridge this gap. Note also that this gap only disappears
at k, = 0 in momentum space. For all other values of k, the
gap is topologically protected by the presence of spin-orbit
coupling. Here, we conclude our discussion of the saddle-point
case and move on to include phase fluctuations around the
saddle point.

III. PHASE FLUCTUATIONS AROUND
THE SADDLE POINT

In this section, we discuss the effects of phase fluctuations
and their impact on the finite-temperature phase diagram,
sound velocities, and vortex-antivortex structure.

A. Introducing the phase

The scope of this work is to study the Berezinskii-
Kosterlitz-Thouless (BKT) transition, in which phase fluc-
tuations of the order parameter play a fundamental role. To
introduce the phase, the complex field of the order parameter
can be rewritten as

Arr = |Ar]ef. (26)

Furthermore, we use the gauge transformation ., —
Vr.ce%/2 to make explicit the dependence of the action on
the phase.

Inserting Eq. (26) into the partition function of Eq. (1) after
applying the Hubbard-Stratonovich transformation defined in
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Eq. (6) yields
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zZ= /D¢r,r,spwr,r,s/DlAr.rﬂ)Hr.r eXp{—/dT/dl’[lo(l',t)JrIs(r,t)+11(r,r)]}, 27
where the different parts of the action (single particle, spin-orbit coupling, and interaction) are given by
o)=Y ¥ vt L 96,01 Ve — L6 + Va6 T v
9 = sY S - o —1 ° - A5 - S
0 Y r,T, 9t r M 2 97 r\Yr,t r ) r\Yr,t 4 r\Yr,t r,T,
- d Q00 (0 P06k
Is(r,r) =2 s|sa\ —+5—— ) —iv| - +5— —s» 28
5(r,7) Zw [”‘(eax +355s ) zy(ay 33y )}w (28)
T T x AI‘,TAF,'L'
II(I‘,‘L’) = wr,r,Tllfr,r,iAr,r + wr,t,¢wr,r,TAr,r - T
[
Here, we used the symbol s ambiguously: s = {1,]} when terms of the 2 x 2 matrices
used as an index and s = £1 when used as a number. Since
phase fluctuations provide the dominant contribution to the on L EO T b —h ) = A
physics in 2D, we ignore from this point on the contribution My = Fion £ 85 Fh ; k . l(e) T ;
of amplitude fluctuations by assuming that the amplitude of —h. (k) F hY Fiw, £ £ h, — &
the order parameter is constant: A, .| = |A|. This still leaves (31)

three functional integrals to be calculated for the partition
function described in Eq. (27).

B. Adiabatic approximation

In principle, the fermionic functional integral in Eq. (27)
can be calculated exactly because the action is quadratic in
the fermionic fields. However, we need first to transform the
action to reciprocal space in order to eliminate the space-time
derivatives. At this point in the calculation, the functional-
integral adiabatic approximation is used [43,44,53]. We
assume that the phase field 6, ; varies slowly in space and
time compared to a similar variation of the fermionic fields
1/_/r,m and ¥ ;5. As a result, for a given configuration of the
phase field, the configuration of fermionic fields can be coarse
grained by averaging over the “fast” degrees of freedom.

Given this approximation, we can Fourier transform the
partition function in Eq. (27) and calculate the fermionic
functional integrals analytically. This procedure leads to

2 = [ Db, expl-Suat6. ) 29)
where the phase-only effective action is given by
1 M, D L?|AJ?
St =—-Te{ln |~ 7 _ PLIAL
2 D M* g
+ B (—iwn + K — )
k,w,
(30)

1 2
Tl f dz / dr]g[vr(er.,)] .

In this expression, § is the inverse temperature, L2 is the area
of the 2D system, k denotes the fermionic wave vector, and
w, = (2n 4 1);r /B is the fermionic Matsubara frequency. The
matrix in Eq. (30) has dimensions 4 x 4 and can be written in

and Dy = +io,|A|.

The kinetic terms in Eq. (31) have been divided into phase-
independent and phase-dependent contributions, where we
defined flf = & + £7. The phase-independent terms are & =

2 6 _ i96kr
k® — 1 and h;. The phase-dependent terms are §” = 5 7 +

1[Vie(6r.)1* and ¢ = —V(6;.¢) - k. The spin-flip terms also
contain a phase-independent contribution corresponding to
the spin-orbit coupling field &, (kK) = =2y ky + 2iak, and
a phase-dependent contribution 49 = _y% % In
Eq. (30), the two final terms emerge by taking into account
the anticommuting nature of fermionic operators. This is done
by Weyl ordering these operators in second quantized form,
before mapping them onto Grassmann variables.

—ix

C. Expansion of the effective action up to quadratic order
in the phase

The exact calculation of the partition function shown in
Eq. (27) requires knowledge of the eigenvalues of the matrix
described in Eq. (30). These eigenvalues are the solution of
a quartic equation, and hence are too cumbersome to be used
in any analytic solution for the effective action. Instead, we
treat the spatial and temporal derivatives of the phase field
as a small perturbation and expand the effective action up to
second order in terms of these derivatives.

Let us first introduce a shorter notation Ay ,, (6,96) for the
4 x 4 matrix in Eq. (30). By adding and subtracting the phase-
independent part of the effective action, we rewrite the trace-
log of this matrix as Tr{ln[Ak 4, (0,0) + Fx(6,06)]}, where

el (k) —hf 0 0
—(h%)" x 0 0
Fy(6,36) = . 32
k(6,90 0 0 &k (h) 62
0 0 (9]
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is the fluctuations part, with &9 (k) = £&% —
notation, the trace-log can be written as

¢J. Using this

Tr{In [Ak 0,(0,0) + Fx(6,00)]}
= Tr{ln [Ak,wn (O,O)]}
+Tr{In [+ Ay, 0,0F@.00)]},  (33)

where the first term on the right-hand side is the saddle-point
contribution, and the second term is due to phase fluctuations.
To preserve the readability of the paper, we refer the details
of the explicit calculation of S to the Appendix. Here, we
just show the final expression for the effective action Ser =
Sep + S, where S, is the saddle-point contribution and

1 3.\’ 3.\’
Sq = Z/dr/dr[A( = ) -I—Xv:pw( 7 ) } (34)
is the fluctuation action with v = {x,y}.

Due to the presence of anisotropic spin-orbit coupling, the
superfluid density tensor has unequal components pxx 7 Pyy,
except in the isotropic Rashba-only case (as well as the
Dresselhaus-only case), where p.x = p,,. Using a simple scale
transformation, the action in Eq. (34) can be written in a form
that is equivalent to the action in the case without spin-orbit
coupling:

1 30e:\° 5
Si= 1 / dr / dr[A(—) + oVl } 35)
2 ot

where the effective superfluid density is now given by ps =
/PxxPyy- The exact expressions for the compressibility .A and
the superfluid density components px,py, are given in the
Appendix.

D. Fluctuation thermodynamic potential

Finally, the fluctuation thermodynamic potential can be
derived from the action given in Eq. (35). When calculating
the functional integral defined in Eq. (29), one has to be
careful not to double count the fields since 6 ,, is a real field,
= 0_q,—w, - Here, q is the bosonic wave vector
and w,, = = dm /B is the bosonic Matsubara frequency. A way
to circumvent this problem is to write the partition function
over half the total q space:

zﬂ=]_[/

q,0m
gy >0

A0y, dO;y .

xexp | = Y (Awp + 0q”)00.0,00 o,
q.Tm

qx >0

Now, the known result of a Gaussian bosonic functional
integral can be applied, which leads to

Zg=expy—= Zln

qm’m

(Ao? + pygq )]} (36)
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After performing the bosonic Matsubara summation, and using
Zy = exp(—p2) we arrive at
L2 oo
Qr=-— [ dgqin(l—e 7). (37)
27'[‘3 0
In 2D, the integral in this expression can be calculated
analytically, yielding

L* A
=-¢(3 —, 38
=By (38)
which corresponds to the additional pressure
3
SP = &AW, (39)
21 ps

created by exciting collective (sound) modes, to be discussed
in the next section.

E. Sound velocities

In the action shown in Eq. (34), the presence of spin-orbit
coupling results in an anisotropic superfluid density tensor
(except in the isotropic RO case). As a result, the sound
velocities of the system become anisotropic. In the case
without spin-orbit coupling, the sound velocity is equal to

ps/ A, where A is the compressibility and ps is the
superfluid density. In the present case, the sound velocities in
the x and y directions are given by

=B o= B (40)
respectively.

The anisotropic sound velocities of the system are shown
in Fig. 4 as a function of the Zeeman field /., at different
temperatures. The binding energy is held fixed at Eg/Ep =
0.05 and we consider ERD spin-orbit coupling with vg/0F =
vp/Ur = 0.8. This means that we follow a vertical line through
the phase diagram in Fig. 2(c). Along this line with increasing
h., the following uniform superfluid phases are encountered:

Eb 0.05 VR Vp= 0.8
oOoOOOOOOOOWWM

fo‘.;lul-ll

=
=

=
=

7chT 0.02
0, T=0.02TUSO-US2 "#e O oy

speed of sound
.

—
=)

o c, T=0.04 USf -Us1 ’0‘0

-, T=0.04 S

O " >
0.0 0.2 0.4 0.6 0.8

h;

FIG. 4. (Color online) Sound velocities as a function of the
Zeeman field &, for a given value of the binding energy Eg/Er =
0.05 and spin-orbit coupling strength vg/Ur = vp/Ur = 0.8. The
sound velocities are shown at three different temperatures: 7'/ T¢ = 0,
T/Tr =0.02, and T/Tr = 0.04. The presence of ERD spin-orbit
coupling induces an anisotropy in the sound velocities. Moreover,
they are sensitive to the quantum phase transition between the US-2
and US-1 phases [46]. Notice that the vertical axis does not start at
Zero.
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i-US-0, US-2, and US-1. The transition points between these
phases are indicated on the abscissa of Fig. 4. In this figure,
we see that the sound velocities are sensitive to the presence
of the quantum phase transition between the US-2 and US-1
phases: at this transition point, both sound velocities show a
distinct cusp. On the other hand, the sound velocities do not
show such behavior at the transition point between i-US-0 and
US-2.

The reason for this difference in sensitivity is that at the
US-2-to-US-1 transition, two nodal Dirac quasiparticles with
opposite topological charges annihilate at zero momentum,
i.e., in the long-wavelength limit. Because sound waves are
low-energy and long-wavelength excitations, they tend to
be sensitive to this transition at k = 0. The i-US-0-to-US-2
transition, however, can be understood (when approached from
the US-2 side) as the annihilation of two Dirac quasiparticles
with opposite topological charges at nonzero momentum.
Therefore, the sound velocities are much less sensitive to this
quantum phase transition.

As expected, the sharpness of the cusps in the sound
velocities tends to soften when temperature is increased. Note
also that in the limit of 2, — 0, both sound velocities converge
to the known limit ¢, = ¢, = vp/«/z of the case without
spin-orbit coupling. This shows that in the ERD case, the effect
of spin-orbit coupling can be gauged away in the absence of
the Zeeman field #,. Now that the sound-wave excitations
have been discussed, we proceed by analyzing the topological
excitations.

F. Vortex-antivortex structure

The anisotropy of the superfluid density also has repercus-
sions on the vortex and antivortex structure of the system.
The vortex solutions are found by extremizing the fluctuation
action (35) in the static case (r = 0). This leads to Laplace’s
equation V2(6,) = 0, which has singular, vortexlike solutions
that are given by 6. (x,y) = * arctan(y/x). However, since the
original fluctuation-action is given in Eq. (34), we still need to
transform the solution in order to reflect the rescaling that was
performed in order to transform Eq. (34) into (35). This leads

to the solution
6+(x,y) = % arctan ( /@X) 41)
Pyy X

for a vortex (4) [antivortex (—)] located at (x =0, y = 0).
This shows that the vortices (V) and antivortices (A) present
in the system become elliptical, rather than circular, in the
presence of ERD spin-orbit coupling. For the isotropic Rashba-
only case, vortices remain circular.

The general solution for a vortex-antivortex (VA) pair is
found by taking the sum of two vortex solutions with opposite

winding number, leading to
265
Ova(x,y) = arctan <~2L), 42)
a y

whereX = x/p,y = yp,anda = a/p,withp = (,oxx/,oyy)l/“.
The parameter a indicates half the distance between the cores
of a vortex and an antivortex located at (x = —a, y = 0) and
(x = a, y = 0), respectively. Plots of the solution given by
Eq. (42) are shown in Fig. 5(a) for the RO case and in 5(b)
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FIG. 5. (Color online) Vortex-antivortex structure for a 2D Fermi
gas in (a) the Rashba-only case and (b) the equal Rashba-Dresselhaus
case. In the presence of ERD spin-orbit coupling, the vortices and
antivortices become elliptic. In the isotropic Rashba-only case, the
vortex structure remains circular. The parameters used are h,/Er =
0.2, Eg/Er = 0.01, T = Tgkr, wWith v /T = 1 in (a) and v /0 =
vp/Ur = 1 in (b) [46].

for the ERD case. The parameters used in this figure are
Eg/Er = 0.01 and h,/Er = 0.2. We chose these parameters
to enhance visualization, as the ratio of p,, /.. is larger for
smaller binding energy.

The emergence of elliptic vortices and the structure of
the VA pairs in a 2D Fermi superfluid constitute important
signatures for the experimentally relevant ERD case. These
signatures could be detected during a time-of-flight expansion
of the trapped system, or via Bragg spectroscopy, which is also
sensitive to the direction of rotation of the supercurrents [43].

Having discussed the emergence of vortex-antivortex pairs,
we investigate next the BKT transition temperature, where
vortex-antivortex unbinding occurs.

G. Berezinskii-Kosterlitz-Thouless critical temperature

In this section, we turn to the analysis of the Berezinskii-
Kosterlitz-Thouless critical temperature (7gkr). In order to
determine this transition temperature, three equations need
to be solved self-consistently: (1) the order-parameter equa-
tion, determined by the condition 0Q2,/d|A| =0, (2) the
number equation —0€2,/0u =n, and (3) the generalized
Kosterlitz-Thouless condition [54] TgkT = % ps(TgkT), Where
Ps = /PxxPyy- The first two equations define the saddle-point
(mean-field) “transition” temperature Tyr, at which the system
changes from its normal phase with |A| = 0 to its paired phase
with |A| # 0. However, the transition to a true superfluid
phase (quasicondensate) occurs at Tkt < Tympr, Which is
greatly affected by phase fluctuations. Determining this critical
temperature requires the simultaneous solution of all three
aforementioned equations.

Here, we note that although the equation Tkt = %pS(TBKT)
was derived originally in the framework of the phase-only XY
model, it is still justified to use it in the present case with
spin-orbit coupling. The reason being that the form of the
phase-only action with spin-orbit coupling (34) can be rescaled
to the phase-only action without spin-orbit coupling (35).
All the effects of spin-orbit coupling are then contained in
the effective superfluid density ps = ,/pxxpyy- Because the
resulting action is still of the same form as the action for the XY
model, the systems with and without spin-orbit coupling fall
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FIG. 6. (Color online) Berezinskii-Kosterlitz-Thouless critical

temperature, for both the equal-Rashba-Dresselhaus (ERD) case and
the Rashba-only (RO) case, shown in the left- and right-hand columns,
respectively. We have plotted Tkt as a function of the three main
system parameters: the spin-orbit coupling strength (a) and (b), the
two-body binding energy (c) and (d), and the Zeeman field (e) and (f).
All points shown indicate the BKT critical temperature, except for
the two encircled points in (a) and (b), which indicate the mean-field
critical temperature Ty.

within the same universality class, when the phase transition is
continuous. As such, a simple renormalization group analysis
leads to the relation Tkt = %pS(TBKT), where pg is the
effective superfluid density, defined above.

InFig. 6, the BKT temperature is shown as a function of the
three main system parameters: the spin-orbit coupling strength
in (a) and (b), the binding energy in (c¢) and (d), and the Zeeman
field in (e) and (f). Both the equal-Rashba-Dresselhaus (ERD)
case and the Rashba-only (RO) case are shown, in the left and
right columns, respectively. The parameters vg,vp, Eg,h, are
the main energy scales of the system, and as such their relative
magnitude will significantly affect Tgkr, as is discussed in
detail in the following.

We begin by looking at the effect of the spin-orbit coupling
strength on the critical temperature. In Figs. 6(a) and 6(b),
Tk is shown as a function of the spin-orbit coupling strength
in the ERD case (vg = vp = v) and the RO case, respectively,
for several values of the Zeeman field /.. Let us first consider
the case without Zeeman field (blue filled circles). In this
situation, the spin-orbit strength has no influence on the critical
temperature in the ERD case. By contrast, in the RO case,
the critical temperature is lowered with increasing spin-orbit
coupling. The origin of this difference lies in the nature of the
spin-orbit coupling itself. In both the ERD and the RO cases,
the spin-orbit Hamiltonian can be seen as introducing a gauge
field, which leads to orbital motion of the fermions. This makes
pairing with opposite momenta harder (orbital frustration),
thus suppressing superfluidity. However, in the ERD case,
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this gauge field can be removed by a gauge transformation,
provided that 2, = 0.

Subsequently, we consider the case of nonzero Zeeman
field. In the absence of spin-orbit coupling, it is known that
Zeeman fields suppress singlet pairing and thus superfluidity.
As shown in Figs. 6(a) and 6(b), the introduction of spin-orbit
coupling increases the critical temperature compared to the
case vg = vp = 0. The reason for this is that a triplet pairing
component is introduced by the presence of spin-orbit cou-
pling, as was demonstrated in Sec. II C where the generalized
helicity basis was discussed. This triplet component cannot be
suppressed by the Zeeman field.

In the ERD case, Tkt rises monotonically and converges
to its limiting value without spin-orbit coupling and Zeeman
field in the limit v — oo. This occurs because in the limit
v — 00, h, becomes negligible and the effect of ERD spin-
orbit coupling can be gauged away. In the RO case, however,
the situation is more complex. For &, = 0, the maximum lies
at vg = 0. For low values of &,, Tkt rises for small values
of vg, reaches a maximum, and then decreases for increasing
values of vg. For high values of &,, Tkt is a monotonically
increasing function of vg that never exceeds the limiting value
of TBKT at g — ©oQ.

In Figs. 6(a) and 6(b), we have encircled two points. These
points indicate that the nature of the critical temperature is
different there. All other points indicate Tgkr, meaning that
the generalized Kosterlitz-Thouless condition Tgxt — 7ps/2 is
positive for T > Tkt and negative for T < Tggr. However,
at these special locations, the situation is different: Tggt —
mps/2 is still negative for temperatures below this point, but
at higher temperatures, the order parameter amplitude |A] is
zero, meaning that the mean-field temperature Ty has been
reached.

In Figs. 6(c) and 6(d), the Berezinskii-Kosterlitz-Thouless
critical temperature is shown as a function of the binding
energy Ep, for different values of the Zeeman field 4., for
the ERD and the RO cases, respectively. In both figures,
the cases with spin-orbit coupling are indicated by symbols,
whereas the cases without spin-orbit coupling are indicated
by dashed lines. Notice that Tkt increases monotonically
with increasing binding energy, regardless of the value of the
spin-orbit coupling strength. This is as expected since a larger
binding energy leads to more strongly bound fermion pairs,
thus strengthening superfluidity. In the asymptotic limit of
infinite binding energy, Tkt converges to its limiting value:
Tskr/Tr = 0.125, regardless of the strength of the Zeeman
field or spin-orbit coupling. This limiting value can be derived
from the generalized Kosterlitz-Thouless condition: Tgxr =
7 ps/2. The superfluid density can at most reach half the total
density, where the latter in 2D and in units A = 2m = kg = 1
is given by 1/2m. This then leads to Tgxr < 1/8. However,
when the pairs become bosonic in nature with pair size &pai
much smaller than the interparticle spacing kp ! logarithmic
corrections due to boson-boson interactions may actually
reduce Tgkt, asymptotically [55,56].

We deliberately chose not to include these logarithmic
corrections to the BKT critical temperature in the present
treatment. Including these corrections involves a more com-
plicated calculation, which lies beyond the scope of this paper.
It is important, however, to make sure that we do not reach the

043618-10



QUANTUM PHASE TRANSITIONS AND BEREZINSKII- ...

regime where logarithmic corrections are relevant. To this end,
we have calculated the pair size for the case without spin-orbit
coupling [Eq. (19) in [57]] and compared it with the average
interparticle distance, given by k;l. In our paper, the latter
quantity equals 1 because of our choice of units. In our case,
without spin-orbit coupling, for h,/Er = {0.01,0.21,0.41}
and Ep/ Ep varying between 0.03 and 0.35, the pair size varies
between 3.32 and 0.84. Thus, at these values of the binding
energy, the regime where &p.i; < k;l has not been reached,
validating our approach.

In the ERD case, we see again that without a Zeeman
field, the situations with and without spin-orbit coupling (blue
filled circles and blue dashed line, respectively) are exactly
equal. When /&, becomes nonzero, however, the effect of
spin-orbit coupling on the critical temperature is clear, as
Tskr is significantly increased. The effect is greater where
h, is larger. Notice also that while Tgkr is a smooth curve
in the presence of spin-orbit coupling, a jump occurs in the
case without spin-orbit coupling, due to a first-order phase
transition.

The RO case, shown in Fig. 6(d), is qualitatively similar
to the ERD case. The main difference is that in the ERD
case, at fixed A, spin-orbit coupling increases Tkt for all
values of the binding energy compared to the case without spin-
orbit coupling. By contrast, in the RO case, this increase with
respect to zero spin-orbit coupling occurs only at low binding
energy, while at large binding energy Tgkr decreases, because
of the aforementioned orbital frustration. The binding energy at
which Tgkr crosses the critical temperature without spin-orbit
coupling becomes larger with increasing Zeeman field.

Finally, we study the critical temperature as a function of
the Zeeman field %,, shown in Figs. 6(e) and 6(f). The main
point of these two figures is the fact that the Clogston limit (i.e.,
the critical Zeeman field at which the order parameter becomes
zero) [58] becomes infinite: the BKT critical temperature only
becomes zero in the limit 4, — oo. This finding is consistent
with the zero-temperature behavior, as discussed in Sec. IIE.
There, it was shown that the US-1 phase survives all finite
values of the Zeeman field. Because our fluctuation theory
only describes the 2D system at nonzero temperature, it is
comforting that the 7 — 0 limit is recovered. In the following
section, we connect the zero-temperature phase diagram and its
quantum phase transition lines to the Berezinskii-Kosterlitz-
Thouless critical temperature.

H. Summarizing 3D phase diagram

In Fig. 7, we show the finite-temperature three-dimensional
phase diagram as a function of the two-body binding energy
and Zeeman field. This figure connects the zero-temperature
phase diagram to the Berezinskii-Kosterlitz-Thouless critical
temperature, in the ERD case. The zero-temperature phase
diagram is plotted in the (Eg,h;) plane. This phase diagram
contains three uniform superfluid phases: i-US-0 (red circles),
US-2 (blue diamonds), and US-1 (green six-point stars). The
BKT critical temperature as a function of E and 4, is given by
the red translucent surface. This surface only reaches 7 = 0
in the limit 4, — oo (for all values of Eg), as mentioned in
the previous section.
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FIG. 7. (Color online) Three-dimensional phase diagram, as a
function of the two-body binding energy Epg, Zeeman field /.,
and temperature 7', for vg /U = vp/Ur = 0.5. This phase diagram
connects the zero-temperature phase diagram to the Berezinskii-
Kosterlitz-Thouless critical temperature (red translucent surface). The
zero-temperature phase diagram contains three uniform superfluid
phases: i-US-0 (red circles), US-2 (blue diamonds), and US-1 (green
six-point stars). Finally, we have plotted the boundaries between the
different US phases at nonzero temperature: i-US-0 — US-2 (blue
surface) and US-2 — US-1 (green surface).

Finally, we have extended the quantum phase transition
lines to nonzero temperature. The “transition” between i-US-0
and US-2 is given by the blue surface, and is defined as
the finite-temperature locus where the quasiparticle nodes
of the US-2 phase merge at nonzero momentum, leading
to the i-US-0 phase. We find that this “transition” has a
small temperature dependence: between 7 = 0 and Tgkr this
transition line is displaced by an amount on the order of
0.1h,. Similarly, the transition between US-2 and US-I1 is
given by the green surface, which has a negligible dependence
on temperature.

To the best of our knowledge, no accurate theory exists
to calculate the behavior of these lines at nonzero tempera-
ture. Here, we obtain these lines based on the quasiparticle
description at finite temperatures. This can be regarded as
an extrapolation between the zero-temperature results and the
Berezinskii-Kosterlitz-Thouless temperature, both of which
are known to be qualitatively accurate. Therefore, in the
absence of a full theory, it is difficult to claim that these
transition lines are truly thermodynamic phase boundaries
between topologically distinct phases, rather than crossover
lines ending at topological phase transition lines at 7' = 0.
We call them transition lines because finite-temperature
topological invariants can be defined on either side of these
lines, provided that a quasiparticle component is still present.

IV. SUMMARY AND CONCLUSIONS

In this work, we have investigated the effects of spin-
orbit coupling on both the zero-temperature and nonzero-
temperature behavior of a 2D Fermi gas with attractive
interactions. We used a generic combination of Rashba and
Dresselhaus terms, which allowed us to study both the equal-
Rashba-Dresselhaus (ERD) and the Rashba-only (RO) limits.

In the first part of the paper, we focused on results at
the saddle-point level. Starting from the partition function,
we derived the thermodynamic potential within the saddle-
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point approximation. By minimizing this thermodynamic
quantity, the zero-temperature phase diagram was obtained,
as a function of the two-body binding energy and Zeeman
field. In the ERD case, we identified several topologically
distinct uniform superfluid (US) phases, classified according
to the nodal structure of the quasiparticle energy bands.
We distinguished between the uniform superfluid phase with
zero, one, or two pairs of nodes (US-0, US-1, and US-2
phases). We found that at any nonzero value of the spin-orbit
coupling strength, the system is always in a US phase. More
specifically, the US-1 phase survives at any large finite value
of the Zeeman field. We identified this behavior by making
a momentum-dependent transformation to the helicity basis,
which diagonalizes the noninteracting Hamiltonian. In this
basis, we showed that the order parameter acquires a triplet
pairing component, which cannot be suppressed by a Zeeman
field.

In the second part of the paper, we focused on fluctuations
around the saddle point. By expanding the action up to second
order in the phase, the total thermodynamic potential was writ-
ten as a saddle-point and a fluctuation contribution. The latter
contribution was rescaled to the corresponding action without
spin-orbit coupling. We found that the superfluid density
becomes anisotropic, due to the presence of spin-orbit coupling
(except in the isotropic RO limit). We showed further that
the anisotropic sound velocities are sensitive to the quantum
phase transition between the US-2 and US-1 phases, and that
vortices and antivortices become elliptical instead of circular.
Subsequently, we studied the Berezinskii-Kosterlitz-Thouless
critical temperature (7ggr), by simultaneously minimizing
the free energy, solving the number equation and satisfying
the generalized Kosterlitz-Thouless condition. Our three main
findings were as follows. (1) Without the presence of a Zeeman
field, ERD spin-orbit coupling can be removed by a gauge

J
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transformation, hence, Tgkr remains unchanged compared to
the case without spin-orbit coupling. In the RO case, however,
increasing the Rashba coupling strength in the absence of a
Zeeman field decreases the critical temperature because this
introduces orbital frustration for the pairing fermions. (2) In
the ERD case, at fixed nonzero Zeeman field, Tgxt increases
relative to the case without spin-orbit coupling for all values
of the binding energy. This is due to the emergence of a triplet
component of the order parameter, induced by the presence
of spin-orbit coupling. However, Tgkr never becomes larger
than the case of vanishing Zeeman and spin-orbit coupling
fields because of residual orbital effects. (3) The Clogston
limit becomes infinite when spin-orbit coupling is present, in
both the ERD and the RO cases.

Finally, we constructed a 3D phase diagram, as a function
of the two-body binding energy, Zeeman field, and tem-
perature. We have extended the quantum phase transition
lines to nonzero temperature, using the nodal structure of
the quasiparticle excitation spectrum. The resulting phase
diagram connects the zero-temperature result to the BKT
critical temperature, summarizing this paper.
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APPENDIX: EXPANDING THE ACTION UP TO QUADRATIC ORDER IN THE PHASE

In this section, we present the quadratic expansion of the effective action in more detail. As a first step, the second term in

Eq. (33) is expanded as
Tr{In[l + A}, (0,0)F(6,06)1}

~ Tr[Ag L, (0.00F(0,00)] — STr[AL ] (0,00Fk(0.00)AL ), (0,0)Fk(6,30)], (A1)

leading to linear and quadratic terms in the expansion, which are treated separately. To calculate both these terms, we require the
inverse of the matrix Ay 4, (0,0). Using symmetry relations, this inverse matrix can be written as a function of only six elements

Al,l(kva)n)
A 0.0 = ! A% (K, — w,)
Ko Do) | AT 5(K)
Ak, w,)

In this expression, the diagonal elements are equal to

A (K@) Ay 3(k) A sk w,)
Ara(kw,) —AT4K,w,) Az 4(k) (A2)
_AT.4(k’wn) _AT.I(k’wn) A’lk,z(k,a)n)

A3 4(k) Ak, —wp)  —A5 (K w,)

A1 1(R,w,) = (—iw, + & + h ) (—iw, — & + hy)(—iw, — & — hy) — (—iw, + & + h)h K — [AP(—iw, — & — hy),
Az a(K,w,) = (—iw, + & — h)(—iw, — & + hy)(—iw, — & — hy) — (—iw, + & — h)h L K)|* — |AP(—iw, — & + Iy).

(A3)

Furthermore, the nondiagonal elements can be divided into those that depend both on the momentum k and the fermionic

Matsubara frequency w;;:

Ara(K,w,) = — B RIh LK — [APRLK) + b K (=i, — & + hy)(—iw, — & — hy),
Ara(k,w,) = AP + [h 1 KPIA] = [Al(—iw, + & + h)(—iw, — & + k), (A4)
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and those that only depend on the momentum k:

A13(K) = = 207 (K| A5k + b)),
Az4(K) =21 (K)|A|(5k — h2). (A5)

Finally, the determinant of the matrix Ay ,,(0,0) is denoted by
D(k,w,) = [—iw, + ;P W][—iw, + € ®)[—iw, — ;P @W)][—iw, — €, K)]. (A6)

Here, eﬁf)(k) denotes the quasiparticle energies. Through the rest of this derivation, we make use of the following symmetry
properties of D(k,w,):

Dk,w,) = D*(k,w,) = Dk, — w,) = D(—K,w,). (A7)

We introduce the matrix By ,, (0,00) = Al; iu” (0,0)Fx(8,00) and then we write the linear term as

1 1 P P
B, ©.00] = 575 [ dr [ dr X pg o) + Asatonlel 80 — 001, (A8)
where we used the definition si(k) = :I:EO — ;lf, with 59 = ,Ea(;% + All[Vr(Gr,,)]2 and ;lf = —V.(6:;) - k. This expression can
be simplified by using boundary conditions in calculating the integrals over space and imaginary time. More specifically, we have
a6
/ dr—= =0. (A9)
aT

Furthermore, in (A8), we have used the fact that Aﬁi(k,wn) = A;;(k, — w,) with i = {1,2}. By applying these properties, the
linear expansion term can be simplified to

1 ~
Tr[Bk., (0.06)] = B / dt / dr > > " Tk Vebr ), (A10)
k o,

where we have introduced

~ 1
JK,w,) = m[Al,l(kvwn) + Az sk, w,)]. (A11)

Now, we take a look at the second contribution in the expansion (A1), which becomes

1 1 1
__ — _ 111G (h) (eh)
3 B (0,000, (0.00)] = =57 f dr / dr §kj§w Dol Mo + 1000 + 1P o). (A12)

We have divided the integrand in Eq. (A12) in three main terms, in order to keep track of this extensive expression. The terms in
19K, w,) do not depend on spin-orbit coupling and are proportional to [ei(k)]z, [¢? (k)] or aﬁ &)&? (k):

19(k,w,) =[AT | (k,w,) + A3 ,(k,w,) + 241 2(K,0,) AT, (k, — w,) [{[e. K] + [¢7 (K)]*}
+ 2[1A1 3K + [A22(K)* + 2[A1 a(k,0,) 167 (K)e? (k). (A13)

Furthermore, the terms in 7"’(k,w,) are proportional to (k% )%, [(h%)*1?, or |hf |2, with hf = —y% - iaag%:

1Mk, 0,) =2[A] ,(k,0,) — A1 30AS LK) ][R T + 2{[A] (k)] — AT 3(K) Az 4(R)}R)
+ 4A 1 (Kwn) Ao (Kw,) + [Ara(K,w,) P11 . (A14)
Finally, the terms in /") (k,w),) are proportional to the product sft (k)hﬂ_ or 8ft(k)(h(j_)*:
I“PK,w,) =2[e5.(K) + & 1)1(R)) [A11(Kon) A1 oK) + A 3(K) A1 a(K,0,) — A1 2(K,0,) Az 2 (K,0,) — Ay a(k,0,) A3 4(K)]
+ 2[ef (k) + & W) [— A 5 (K, — ) Az (K@)
— Ara(k,0,) A2 4(K) — Ay 1 (K,w,) AT ok, — w,) + AT 3(K) A4k, w,)]. (A15)

At this point, we retain only terms up to quadratic order in the phase field. Moreover, we use the fact that the Matsubara sum
runs from —oo to oo to group terms together. Expression (A13) then becomes

~ 0.\ =~ 30\ 36, 060 30\
(&) _ r,T r,T 2 r,T r,T r,T 2
1 (k,wn)—A(k,wn)( P ) +B(k,wn)[< o > ky+2 x kaky"‘( R ) ky], (A16)
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where the following coefficients were defined:

T, 1 2 2 2 2 * 2
Ak,w,) = 5[ — AT 1(k,@,) + A1 3K))P = AF 5 (K,0,) + [A2a(K)]? — 241 2(K,w,) AT 5 (K, — @) + 247 4(k, )],

- (A17)
Bk,w,) =2[A] | (K,w,) + [A13K)]> + A3 5 (K,w,) + [A24(K))> + 241 (K, 0,) AT (K, — @) + 247 4(k,0,)].
Similarly, expression (A14) can be written as
~ 0.\ ~ 0r, 060r,  ~ 30 .\
Ik, 0,) = Ck,o)| —= ) + DK, wp)—= —= + EK,w) [ —= ) , (A18)
ox dx dy ay

with the following coefficients:
Clk,w,) =402 — A, (k.w,) + A1 3K A5 4(K) + Ap 1 (K, Az 2(K,w,) + A a(k,o,) ],
Dk.w,) = — 4iay{A,(kw,) — [A] (ko) — Ar3(K)AS ,(K) + AT ;(K)A24(K)}, (A19)
Ek,w,) =4y [ AT ,(k,w,) — A13(K) A3, (K) + Ay (K0, Az 2(K,0,) + A1 a(K,w,)?]-

In (A19), we have made use of the fact that all terms proportional to k. k, vanish because these are odd under a parity transformation
of the integral over momentum k. Using the same reasoning, we can see that the momentum integral over D(K,w,) is equal to
zero. Finally, we look at expression (A15), which can be written as

90,
0x

06r ; 06, ¢
dx dy

~ 302\
+H(k,wn>( ’ ) , (A20)

2
) + Gk, »,) ay

1€k w,) = f(k,w,,)(

with the following coefficients:
Flk,) = — 4iak T (ko,),
G(k,w,) =4y kT y(k,w,) — iok, Ty (K,0,)], (A21)
Hk,0,) =47k, Ty (k,0,),
where I, (k,w,) is defined by
Cokw,) = A1k o)A K o,) — A1 3(K)AL (K, 0,) — AT (K, — 0,)A22(K,0,) — A 4(K,@,)Az4(K)
— A1k, w))AT y(K, — w,) + AT 3(K) AL a(K,0,) + A 2(K, @) Az 2(K,0p) + Ap a(K,0,) A5 4(K)
and I'y (K, w,) is defined by
y(k,o,) = A 1(K o)A (Kw,) — A1 3(K) AL a(K,@,) + AT 5 (K, — 0,) A2 (K, 0,) + Ay 4(K,0,) Az 4(K)
+ ALk AT H(K, — @) — AT 3(K) AL a(k,@,) + A1 2(K,0,) Az 2(K,0,) + At a(K,@,)AS 4(K).

Using elementary algebra, we can show that the former two coefficients can be written as ', (K, w,,) o ky f (kf,k?) and I'y (K, w,) o
kyf (kﬁ,ki), where f is a real function depending only on the square of the momentum components. Applying this form to

expression (A21), we see that expression g(k,w,,) is proportional to k.k, and that its momentum integral is zero. Putting
everything together, the total action can be written in a compact generic form

1 30N> (30 90\ (o pu)[06/0x
Sp==|d dr| Al — — = ’”‘ - . A22
=3/ r[ (ar) +(ax ay><pyx pyy)(ae/ay) (A22)
Here, we defined the coefficient

1 ~
A=——> Ak,w,), A23
Y% lg (k,o,) (A23)
which plays the role of the compressibility of the superfluid, and
1 ~ I ~ ~
Prx =251 > [B+ Bk.wk? + Ck.w,) + Fk,o,) — T (k.0,)].

k,wy,

1 ~ ~ ~
Py =Pwx = 7515 Z [2B(k,w,)kcky + D(k,w,) + G(K,w,)], (A24)

k,w,

1 ~ ~ ~ ~
Py =281 > B+ Bk} + Ek.w,) + Hk.o,) — T (ko).

k.o,
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which play the role of the superfluid density tensor components p;;. As mentioned previously, both the momentum integral over
D(k w,) and g(k w,) are zero. Furthermore, because all terms in B(k w,) are proportional to k2 or k2 this part of the integral
also vanishes due to the factor k. k,. Hence, we have that p,, = p,, = 0, making the superﬁuld dens1ty tensor p;; diagonal. In
the limit of spin-orbit coupling tending to zero, the action (A22) reduces to the known form [43].
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