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We study Bose-Einstein condensation (BEC) in three-dimensional two-component bosonic gases, character-
izing the universal behaviors of the critical modes arising at the BEC transitions. For this purpose, we use
field-theoretical (FT) renormalization-group (RG) methods and perform mean-field and numerical calculations.
The FT RG analysis is based on the Landau-Ginzburg-Wilson �4 theory with two complex scalar fields which
has the same symmetry as the bosonic system. In particular, for identical bosons with exchange Z2 symmetry,
coupled by effective density-density interactions, the global symmetry is Z2,e ⊗ U(1) ⊗ U(1). At the BEC
transition, it may break into Z2,e ⊗ Z2 ⊗ Z2 when both components condense simultaneously, or to U(1) ⊗ Z2

when only one component condenses. This implies different universality classes for the corresponding critical
behaviors. Numerical simulations of the two-component Bose-Hubbard model in the hard-core limit support
the RG prediction: when both components condense simultaneously, the critical behavior is controlled by a
decoupled XY fixed point, with unusual slowly decaying scaling corrections arising from the onsite interspecies
interaction.
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I. INTRODUCTION

Experiments with cold atoms [1–3] have provided the
opportunity to investigate Bose-Einstein condensation (BEC)
in dilute interacting atomic gases. In the BEC, a macroscopic
number of bosonic atoms, the so-called condensate, occupy the
lowest-energy quantum state at a finite temperature. The phase
of the condensate wave function provides the order parameter
at the transition. BEC transitions are generically expected
to belong to the three-dimensional (3D) XY universality
class, which is characterized by the spontaneous breaking
of an Abelian U(1) symmetry. The same universal critical
behavior is observed in the superfluid transition in 4He [4,5], in
transitions characterized by density or spin waves (as it occurs
in some liquid crystals), in magnetic systems with easy-plane
anisotropy, etc. [6]. The XY behavior at the 3D BEC transition
has been supported by experimental measurements of the
diverging correlation length in a cold-atom bosonic gas [7].
Cold-atom experiments have been extended to mixtures of
homonuclear and heteronuclear bosonic gases [8–26], which
also show BEC phenomena. Several theoretical studies have
discussed various aspects of the behavior of mixtures of
bosonics gases (see, e.g., Refs. [27–47]), such as their behavior
in low dimensions, the magneticlike behavior observed in the
n = 1 Mott phases, etc.

Here, we investigate another aspect, their critical behavior
at the finite-temperature 3D normal-to-superfluid transition,
using renormalization-group (RG) theory and numerical meth-
ods. More specifically, we consider a system of two identical
boson gases with density-density interactions. Equivalently,
we may interpret this system as made up by a single two-
component boson gas. An example is provided by the lattice
two-component Bose-Hubbard (2BH) model

H = −t
∑

s

∑
〈x y〉

(b†sxbs y + H.c.) − μ
∑
sx

nsx

+ 1

2
V

∑
sx

nsx(nsx − 1) + U
∑

x

n1xn2x, (1)

where 〈x y〉 indicates the nearest-neighbor sites of a cubic
lattice, the subscript s labels the two species, and nsx ≡
b
†
sxbsx is the density operator. The Hamiltonian is symmetric

under U(1) transformations acting independently on the two
species and under the Z2,e transformation exchanging the two
bosons. The two-component boson gas shows a quite complex
phase diagram in the space of the model parameters, i.e.,
the temperature T , the chemical potential μ, and the onsite
couplings U and V . Without loss of generality, we set the
hopping parameter t = 1 so that all energies are expressed in
units of t . All lengths instead are expressed in terms of the
lattice spacing.

We investigate the critical behavior of systems such as the
2BH model by field-theoretical (FT) RG methods, mean-field
and numerical approaches. We show that transitions in these
two-component systems may be associated with different
spontaneous breakings of the global symmetry

Z2,e ⊗ U(1) ⊗ U(1). (2)

This symmetry may break to Z2,e ⊗ Z2 ⊗ Z2 when both
components condense simultaneously, or to U(1) ⊗ Z2 when
only one component condenses, with two different universality
classes for the corresponding critical behaviors.

When both components condense simultaneously, the RG
analysis shows that the critical behavior is controlled by a
decoupled 3D XY fixed point (FP). Thus, the transition belongs
to the 3D XY universality class associated with the symmetry
breaking U(1)→ Z2. However, the irrelevant density-density
interaction between the two components gives rise to scaling
corrections that decay very slowly, as ξ −0.022 where ξ is
the diverging length scale at the transition. Such scaling
corrections are not present in standard transitions belonging
to the XY universality class, such as at the BEC transition
of a single bosonic species [48–51]. In that case, scaling
corrections decrease significantly faster, as ξ −0.78. The RG
analysis leads to a different behavior when only one component
condenses. In this case, the critical behavior is expected to
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belong to the same universality class as that of the continuous
transitions in chiral models with O(2) ⊗ O(2) symmetry [52].
We also present a RG analysis of the behavior of mixtures of
nonidentical bosons with density-density interactions. In this
case, the phase diagram is characterized by the presence of
bicritical or tetracritical points where various transition lines
meet.

The paper is organized as follows. In Sec. II, we present the
RG analysis of the Landau-Ginzburg-Wilson (LGW) theory,
which is expected to describe the continuous transitions in two-
component bosonic systems with density-density interactions.
In Sec. III, we discuss the phase diagram of the 2BH model (1)
in the mean-field approximation. Section IV is devoted to a
numerical study of the 2BH model in the hard-core V → ∞
limit. At the transition, both components condense. We show
that the results can be explained by a 3D XY critical behavior
with slowly decaying scaling corrections, as predicted by the
RG analysis. Finally, in Sec. V we draw our conclusions.

II. FIELD-THEORETICAL RENORMALIZATION-
GROUP ANALYSIS

We wish now to classify the finite-temperature transitions
that occur in the phase diagram of systems consisting of two
identical boson species with density-density interactions. For
this purpose, we study the RG flow of the effective LGW �4

theory associated with the critical modes [6,53–55]. Within
the FT RG approach, one first identifies the order parameter.
Then, one considers the �4 Hamiltonian with the most general
fourth-order potential in the order parameter that has the same
symmetry properties as the original system. The possible
critical behaviors are determined by the stable FPs of the
RG flow. Each of them corresponds to a different universality
class, associated with the symmetry breaking that occurs in
the parameter region in which the FP is located. The stable
FPs determine the universal scaling properties, such as the
critical exponents, the scaling functions, etc. Note that only
systems which are in the attraction domain of the stable
FPs undergo continuous transitions. Systems corresponding
to LGW theories with parameters that are outside the FP
attraction domains, or that belong to the instability region,
are predicted to undergo first-order transitions.

At a BEC transition, the condensate behaves like the
magnetization in magnetic systems, i.e., 〈bsx〉 ∼ (Tc − T )β

as Tc is approached from below. Critical modes develop a
diverging length scale ξ ∼ |T − Tc|−ν , while the two-point
function at the critical point decays algebraically as [6,54]
G(x) ∼ |x|−1−η. The exponents β, ν, and η are universal (they
only depend on the universality class) and are related by the
scaling relation β = ν(1 + η)/2.

A. LGW theory for two-component boson gases

In the case of a mixture of bosonic gases, we associate a
complex field ϕs(x), s = 1,2, with each bosonic species. Since
we consider finite-temperature transitions of 3D quantum
systems, we must consider a three-dimensional LGW model.
As mentioned in the Introduction, the relevant symmetry of
the systems we consider, such as the 2BH model (1), is

Z2,e ⊗ U(1) ⊗ U(1). The Hamiltonian is therefore

HLGW =
∫

d3x

[∑
s,μ

|∂μϕs(x)|2 + r
∑

s

|ϕs(x)|2

+g
∑

s

|ϕs(x)|4 + 2u |ϕ1(x)|2|ϕ2(x)|2
]
, (3)

where the potential is the most general one under symmetry (2).
The Hamiltonian is bounded from below for g > 0 and
g + u > 0. The quartic couplings g and u are related to the
intraspecies V and interspecies U onsite couplings of the 2BH
model (1). In particular, u must vanish when U vanishes, leav-
ing two decoupled LGW theories, one for each bosonic gas.

General information on the phase diagram of model (3) can
be inferred by a straightforward mean-field analysis, e.g., by
determining the minima of the potential

V (ϕ) = r
∑

s

|ϕs |2 + g
∑

s

|ϕs |4 + 2u|ϕ1|2|ϕ2|2. (4)

For r > 0 the potential is minimized by ϕs = 0, while for r < 0
the minimum depends on the sign of w ≡ g − u. If w > 0,
the minimum occurs when both field components condense,
i.e., for 〈ϕ1〉 = 〈ϕ2〉 	= 0. This implies the symmetry-breaking
pattern

Z2,e ⊗ U(1) ⊗ U(1) → Z2,e ⊗ Z2 ⊗ Z2, (5)

i.e., each U(1) group breaks into Z2. Instead for w < 0, we
have 〈ϕ1〉 	= 0 and 〈ϕ2〉 = 0, or vice versa. Thus, the exchange
symmetry and only one of the two U(1) groups are broken, so
that

Z2,e ⊗ U(1) ⊗ U(1) → U(1) ⊗ Z2. (6)

On the boundary line w = 0, the LGW theory (3) is equivalent
to the O(4) vector model.

B. RG flow and critical behaviors

The LGW theory (3) is a particular case of the so-called
MN model [6,53]∫

d3x

⎡⎣∑
ai

(∂μφai)
2 + rφ2

ai +
∑
ijab

(v1 + v2δij )φ2
aiφ

2
bj

⎤⎦, (7)

where φai is an M × N matrix, i.e., a = 1, . . . ,N and i =
1, . . . ,M . Indeed, Hamiltonian (3) reduces to (7) for M =
N = 2, if we set φ1i = Re ϕi , φ2i = Im ϕi , and

g = v1 + v2, u = v1, w ≡ g − u = v2. (8)

The RG flow of the MN models has been studied by various
FT methods [6,53,56]. A sketch of the RG flow in the case
M = N = 2 is shown Fig. 1. There are several FPs in the
plane of the renormalized quartic couplings v1 and v2 [56]:
(i) the trivial Gaussian FP for v1 = v2 = 0 which is unstable
against both quartic perturbations present in Hamiltonian (7);
(ii) the O(4)-symmetric FP for v2 = 0 and v1 > 0 which is
unstable with respect to the quartic term proportional to v2 in
Eq. (7); (iii) a stable decoupled XY FP with v1 = 0 and v2 > 0,
with attraction domain in the region v2 > 0; (iv) a stable FP
for v2 < 0 with attraction domain in the region v2 < 0.
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FIG. 1. (Color online) Sketch of the RG flow of the MN

model (7) for M = N = 2. The relevant stable FPs are the decoupled
XY FP (dXY), corresponding to FP (iii) in the list reported in the
text, and FP M , corresponding to FP (iv).

It is also possible to map the LGW theory (3) onto the
chiral LGW theory with O(N ) ⊗ O(M) symmetry defined
by [52,57,58]∫

d3x

⎧⎨⎩∑
ai

[(∂μφai)
2 + rφ2

ai] + (u0 − v0)
∑
aij

φ2
aiφ

2
aj

+ v0

∑
abij

φaiφbiφajφbj

⎫⎬⎭, (9)

where φai is an M × N matrix. The two models are equivalent
for M = N = 2, if we identify fields and couplings as follows:

φ11 = 1√
2

(Re ϕ1 − Im ϕ2),

φ12 = 1√
2

(Im ϕ1 − Re ϕ2),

(10)
φ21 = 1√

2
(Im ϕ1 + Re ϕ2),

φ22 = 1√
2

(Re ϕ1 + Im ϕ2),

and g = u0 − v0/2, u = u0 + v0/2. Note that the couplings
of the chiral and of the MN model are related by v0 =
−v2 and u0 = v1 + v2/2, so that the FP (iv) mentioned
above corresponds to the chiral FP that has been extensively
discussed in Refs. [52,57–59].

According to the correspondence (8), the equivalent
model (3) presents two stable FPs with attraction domains
separated by the line w = g − u = 0, along which the unstable
O(4)-symmetric FP is located. The corresponding RG flows
are sketched in Fig. 2.

If w > 0, the finite-temperature transition is characterized
by the simultaneous condensation of both species. The stable
FP which determines the critical behavior is located along the
line u = 0, thus representing two decoupled U(1)-symmetric
models. This implies that it belongs to the 3D XY universality
class, whose critical exponents are [5] νXY = 0.6717(1) and
ηXY = 0.0381(2). However, scaling corrections decay much
slower than in the U(1)-symmetric theory with a single
complex field, where the leading irrelevant perturbation has
RG dimension yg ≡ −ωXY = −0.785(20) [5,6]. This is related
to the RG dimension at the decoupled XY FP of the interaction

u

g
G

O(4)

Asy

dXY

FIG. 2. (Color online) Sketch of the RG flow of the LGW theory
for a mixture of two identical bosonic gases. The relevant stable FPs
are the decoupled XY FP (dXY), which controls the RG flux for
g − u > 0 (in this case the exchange symmetry is conserved), and a
second FP (Asy), relevant for g − u < 0 (the exchange symmetry is
broken).

operator between the two complex order parameters. Since
the RG dimension of the energy operator

∫
d3x φ2 is 1/νXY,

the RG dimension of the interspecies interaction operator∫
d3x |ϕ1|2|ϕ2|2 is

yu = 2/νXY − 3 = −0.0225(4). (11)

Since yu < 0, this result implies that the perturbation is
irrelevant at the decoupled XY FP. However, since ωu ≡ −yu is
very small, the scaling corrections behaving as ξ−ωu = ξ−0.0225

decay very slowly.
If the coupling w is negative, only one bosonic component

is expected to condense. In this case, the transition is
characterized by the symmetry breaking (6). Therefore, if
the BEC transition is continuous, the critical behavior must
belong to another universality class, different from the XY one.
The corresponding FP has been extensively studied within the
equivalent O(2) ⊗ O(2) LGW theory [52,57,58]. Estimates of
the corresponding critical exponents are as follows: (i) ν =
0.57(3) and η = 0.09(1) from the resummation of the six-loop
expansion within the massive zero-momentum scheme [57];
(ii) ν = 0.65(6) and η = 0.09(4) from five-loop calculations
within the minimal subtraction renormalization scheme [58].
These theoretical results are also supported by experiments
(see e.g., Ref. [6], and references therein [59]). Therefore, the
stable FP of the LGW theory (3) with attraction domain in
the region w < 0 is characterized by the critical exponents
ν ≈ 0.6 and η ≈ 0.1. Of course, models which are outside
the attraction domain of the FP are expected to undergo a
first-order phase transition.

We finally mention that the critical exponents of the unsta-
ble O(4)-symmetric FP along the separatrix w = 0 are [60,61]
ν = 0.750(2) and η = 0.0360(3). This FP is unstable because
the spin-4 perturbation present when w 	= 0 has positive RG
dimension yw = 0.125(5) at the O(4) FP [60,62]. Thus, an
O(4) critical behavior can only be observed by performing a
proper tuning of the parameters of the model.

In the following sections, we study model (1) in the hard-
core V → +∞ limit. Since the intraspecies on-site repulsion
V is naively related to the quartic coupling g, we expect g to
be large in this limit, so that w ≡ g − u > 0. Therefore, the
BEC transition should be characterized by the simultaneous
condensation of both components, and controlled by the
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decoupled FP, with a low-temperature phase in which both
components condense. Scaling corrections, due to the onsite
density-density interaction between the two components,
decay very slowly. We also expect such corrections to be
larger when the interspecies onsite interaction is attractive,
i.e., for U < 0, while they should be small in the opposite case
U > 0. This is also suggested by the fact that the hard-core
2BH model becomes equivalent to the one-component model
in the limit U → +∞. Therefore, for U → +∞ we expect
a standard XY transition without slowly decaying O(ξ−ωu)
scaling corrections.

C. Multicritical behavior for two unequal bosonic gases

We now discuss a system of two unequal bosonic species,
such as that described by the more general BH model

H = −
∑

s

ts
∑
〈xy〉

(b†sxbs y + H.c.) −
∑

s

μs

∑
x

nsx

+
∑

s

1

2
Vs

∑
x

nsx(nsx − 1) + U
∑

x

n1xn2x . (12)

In this case, we expect a more complex phase diagram,
showing various phases with transition lines along which
only one bosonic component condenses, and multicritical
points (MCPs), where the critical behavior arises from
the competition of the two distinct U(1) orderings. More
specifically, a MCP should be observed at the intersection
of the normal-to-superfluid transition lines where one of the
components condenses.

The LGW theory describing the competition of the two
different U(1) orderings of the model (12) is obtained by
constructing the most general �4 theory of two complex
fields ϕs(x), with an independent U(1) symmetry for each
component, without exchange symmetry. It reads as

HLGW =
∫

d3x

[∑
s,μ

|∂μϕs |2 +
∑

s

rs |ϕs |2

+
∑

s

gs |ϕs |4 + 2u |ϕ1|2|ϕ2|2
]
, (13)

where now we have two quadratic parameters r1 and r2

and three quartic parameters g1, g2, and u. The multicritical
behavior arising from the competition of the two distinct U(1)
orderings is determined by the RG flow when both quadratic
parameters r1 and r2 are simultaneously tuned to their critical
values, keeping the quartic parameters g1, g2, and u fixed.

The phase diagram of the most general theory, in which the
associated symmetries are O(n1) and O(n2), has already been
investigated within the mean-field approximation [62–64].
Different phase diagrams have been identified, with three or
four transition lines meeting at a MCP. They are characterized
by the presence or the absence of a mixed phase, in which
both fields condense. In Fig. 3, we show the phase diagrams
corresponding to the case of two coupled U(1)-symmetric
theories, in the T -S plane where S represents a second
relevant parameter (for instance, the difference of the chemical
potentials of the two species) that must be tuned to obtain the
multicritical behavior. In the LGW theory, the two behaviors

T

S

XY XY

ϕ1 = 0
ϕ2 = 0

ϕ1 = 0
ϕ2 = 0

disordered phase

ϕ1 = 0
ϕ2 = 0

T

S

fl
o
p

li
n
e

XY XY

ϕ1 = 0
ϕ2 = 0

ϕ1 = 0
ϕ2 = 0

disordered phase

FIG. 3. Different phase diagrams for two interacting bosonic
gases. Thin lines indicate continuous transitions, while the thick line
represents first-order transitions. RG analyses predict that only in the
tetracritical case (left panel) a continuous multicritical behavior is
possible at the intersection of the transition lines.

are determined by the sign of � ≡ g1g2 − u2. If � > 0, four
critical lines meet at the MCP (tetracritical behavior), as in the
left panel of Fig. 3, while, if � < 0, two critical lines and one
first-order line (bicritical behavior) are present (see the right
panel of Fig. 3).

The sign of � also controls the nature of the behavior at the
MCP. The FT analysis [62,65] of the LGW theory (13) shows
that for � > 0 (tetracritical phase diagram), which is the case
relevant for hard-core bosons, the critical behavior at the MCP
is controlled by the decoupled XY FP.

III. MEAN-FIELD PHASE DIAGRAM OF THE 2BH MODEL

The phase diagram of the 2BH model (1) can be studied in
the mean-field approximation, using

b†sxbs y = [(b†sx − φ∗
s ) + φ∗

s ][(bs y − φs) + φs]

≈ φsb
†
sx + φ∗

s bs y − |φs |2, (14)

where φs = 〈bsx〉 are two complex space-independent vari-
ables, that play the role of order parameters at the BEC transi-
tions. Approximation (14) allows us to rewrite Hamiltonian (1)
as a sum of decoupled one-site Hamiltonians

H [φs] = −2DJ
∑

s

(φsb
†
s + φ∗

s bs − |φs |2)

−μ
∑

s

ns + V

2

∑
s

ns(ns − 1) + Un1n2. (15)

The spectrum of the theory is invariant under the redefinition
bs → Usbs , where Us are two arbitrary phases. Therefore,
there is no loss of generality if the two parameters φs are
assumed to be real. They are determined by minimizing the
single-site free energy with respect to φs .

In the hard-core limit, since ns = 0, 1, the mean-field
Hamiltonian (15) is defined on a Hilbert space of dimension 4.
In the soft-core case, we may have any occupation number,
so that the Hilbert space has infinite dimension. In practice,
we only consider states such that ns � nmax, checking that
typical occupation numbers are significantly lower than nmax

and verifying that the results are stable with respect to changes
of the cutoff nmax.

In Fig. 4, we report |φ1|2 = |φ2|2 for the hard-core model at
T = 0 as a function of U and μ. The parameter space is divided
into four regions: a central one (superfluid domain) in which
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FIG. 4. (Color online) Zero-temperature U -μ phase diagram of
the 2BH model in the hard-core V → ∞ limit.

|φi |2 	= 0, and three regions in which |φi |2 = 0 with different
values of the total occupation number n = n1 + n2. There is a
vacuum region in which n = 0 and two Mott incompressible
phases with n = 1 and 2. The n = 1 Mott phase presents
several interesting features related to the isospin degrees of
freedom per site, which may be described by effective low-
energy spin Hamiltonians [29–31,35]. The superfluid domain
for μ < 0, separating the n = 0 and 2 Mott phases, extends in a
strip around the line U = 2μ that gets narrower as μ decreases
(the n = 2 Mott phase cannot include the line U = 2μ where
the onsite interactions would cancel for n1 = n2 = 1). This
mean-field phase diagram appears quite similar to that of the
one-dimensional (1D) Hubbard model which can be exactly
solved (see, e.g., Refs. [44,66]) (we recall that the 1D hard-core
2BH model can be exactly mapped onto the 1D fermion
Hubbard model).

The mean-field calculations can be extended to finite
temperatures by minimizing the free-energy density

f (φ,β) = − 1

β
lnZ(φ,β), Z(φ,β) =

∑
i

e−βEi , (16)

with respect to the variational parameters φs . Here, Ei are
the energy levels of the single-site Hamiltonian. The finite-
temperature phase boundaries are obtained by looking for the
smallest value of β ≡ 1/T for which, at any given U and μ,
φs assume nonzero values.

The phase diagrams in the hard-core limit are shown in
Fig. 5 for some values of the chemical potential μ. In all cases,
the low-temperature superfluid phases are characterized by the
simultaneous condensation of both components. In particular,
for μ = 0, the case we will investigate numerically, there is
a low-temperature superfluid phase for U > −6, while the
system is always in the normal phase for U < −6.

In Fig. 6, we show the phase diagram for a finite value
of the intraspecies coupling, V = 10, and for μ = 0. In this
case, we have two different low-temperature phases: when
V > U both components condense as in the hard-core limit,
while for V < U only one component condenses, breaking
the exchange symmetry. These different condensed phases
are separated by a first-order transition line at U = V .

T

U

μ = −6
μ = 0
μ = 15

0

0.5

1

1.5

2

2.5

3

3.5

-20 -10 0 10 20 30

FIG. 5. (Color online) Phase diagram of the hard-core 2BH
model for μ = −6, 0, 15 in the U -T plane. In particular, we show
the normal-to-superfluid transition lines.

These results are completely consistent with the predictions
obtained by analyzing the corresponding LGW theory (3) (see
Sec. II A).

IV. NUMERICAL STUDY OF TWO-COMPONENT
HARD-CORE BOSONS

We now check some of the theoretical predictions of
the previous sections. We present a numerical analysis of
the critical behavior of the hard-core 2BH model (1). As
discussed in Sec. II A, we expect a critical behavior in the
3D XY universality class with a simultaneous condensation
of both components. Correspondingly, we have [5] ν =
0.6717(1), η = 0.0381(2). However, the asymptotic behavior
is approached with slowly decaying scaling corrections, which
behave as ξ−ωu with ωu = 0.0225(4). These corrections are
expected to give rise to significant effects when the interspecies
onsite interaction is attractive, i.e., for U < 0, while they may
be negligible in the repulsive case. In the following, we provide
numerical evidence for this scenario.

T

U/V

φ1 = 0 = φ2φ1 = φ2 = 0

φ1 = 0 = φ2

μ = 0

V = 10

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2

FIG. 6. (Color online) Phase diagram of the 2BH model for V =
10 and μ = 0 in the U -T plane. The transitions along the line U/V =
1 separating the two low-temperature phases are of first order.
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A. Monte Carlo simulations and observables

We perform quantum Monte Carlo (QMC) simulations of
the hard-core 2BH model at zero chemical potential μ = 0, on
cubic L3 lattices with periodic boundary conditions, for L up
to 64. We use the directed operator-loop algorithm [67–69],
which is a particular algorithm using the stochastic series
expansion (SSE) method [70]. In the simulations we determine
the helicity modulus and the second-moment correlation
length. The helicity modulus ϒ is the response of the system
to a twist of the boundary conditions. It can be obtained from
the linear winding number wi along the ith direction,

ϒ =
〈
w2

i

〉
L

, wi = N+
i − N−

i

L
, (17)

where N+
i and N−

i are the number of nondiagonal operators
which move the particles, respectively, in the positive and
negative ith direction. The second-moment correlation length
ξ can be conveniently defined from the lattice Fourier trans-
form G̃( p) of the two-point correlation function G(x − y) =
〈b†x b y〉, as

ξ 2 ≡ 1

4 sin2(π/L)

G̃(0) − G̃( p)

G̃( p)
, (18)

where p = (2π/L,0,0).
To determine the critical behavior, we perform a finite-size

scaling (FSS) analysis of the RG-invariant quantities Rϒ =
ϒL and Rξ = ξ/L (we generically denote them as R). Close
to the transition point β ≡ 1/T = βc, they behave as

R(β,L) = fR(τL1/ν) + L−ω1gR(τL1/ν) + O(L−ω2 ,L−2ω1 ),
(19)

where fR(x) is universal apart from a rescaling of its argument,
τ ≡ 1 − β/βc, ν is the correlation-length exponent, ωi (0 <

ω1 < ω2 < . . .) are the exponents controlling the scaling
corrections to the asymptotic behavior, which are associated
with the irrelevant perturbations at the stable FP.

The scaling equation (19) implies that data for different
values of L, in particular L1 = L and L2 = 2L, cross at a
given βcr(R; L1,L2), which approaches βc for L → ∞. More
precisely,

βcr(R; L,2L) = βc + O(L−1/ν−ω1 ). (20)

Moreover, the value of R for β = βcr approaches the universal
critical value R∗ = fR(0), i.e.,

R(βcr,L) = R∗ +
∑
n=1

b1nL
−nω1 +

∑
n=1

b2nL
−nω2 + . . . .

(21)

B. QMC results for U = 0

To begin with, we consider the hard-core 2BH model
for U = 0, representing two decoupled and identical single-
component hard-core BH models. The results will then be
compared with those obtained for U 	= 0.

In this case, we have a robust theoretical prediction for
its critical behavior at the BEC transition: it belongs to the 3D
XY universality class, described by a standard U(1)-symmetric
�4 theory with one complex order parameter [6,48,49]. The
leading scaling corrections decay with exponent ω1 = ωXY =

L−(1/νxy+ωxy)

U = 0
βcr(RΥ)
βcr(Rξ)

0.492

0.493

0.494

0.495

0.496

0 0.003 0.006 0.009

L−ωxy

U = 0

RΥ(βcr)
Rξ(βcr)

0.6

0.42

0.46

0.5

0.54

0.58

0 0.05 0.1 0.15 0.2

FIG. 7. (Color online) Top: crossing points βcr(Rϒ ; L,2L) and
βcr(Rξ ; L,2L) for U = 0 and μ = 0. They are plotted versus
L−1/νXY−ωXY = L−2.27, which is the expected behavior of the leading
scaling corrections. The dashed lines correspond to linear fits of the
data for the largest available lattices. Bottom: estimates of Rϒ and
Rξ at the crossing points, versus L−ωXY = L−0.785. The dashed lines
correspond to linear fits to R∗ + cL−ωXY with R∗ fixed to its 3D XY
value [R∗

ϒ = 0.516(1) and R∗
ξ = 0.5924(4)], which is reported along

the ordinate axis (crosses).

0.785(20), and the asymptotic critical values of Rϒ and
Rξ are R∗

ϒ = 0.516(1) and R∗
ξ = 0.5924(4), respectively [5].

Numerical evidence of this critical behavior has already been
reported in Refs. [48,49].

We determine the crossing points [71] βcr(R; L,2L) for
L up to 32. Results are shown in the top panel of Fig. 7.
The behavior for L → ∞ is consistent with the expected
O(L−1/νXY−ωXY ) scaling corrections. Linear fits of the data for
L � 20 give βc = 0.496035(10) [72], which is in agreement
with, and slightly improves, earlier estimates [48]. The values
of Rϒ and Rξ at the crossing points are reported in the lower
panel of Fig. 7. They show the expected asymptotic behavior
R(βcr,L) = R∗ + cL−ωXY . Moreover, the extrapolated values
are consistent with the best available estimates for the 3D
XY universality class. For example, linear fits of the data
for L � 20 give R∗

ϒ = 0.516(4), which is in agreement with
the best available estimate [5] R∗

ϒ = 0.516(1) of the 3D XY
universality class.
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C. QMC results for U �= 0

We now present results for the hard-core 2BH model for
U 	= 0. In this case, we should consider the slowly decaying
scaling corrections of order L−ωu predicted in Sec. II A, which
are expected to give rise to significant systematic deviations, at
least for negative U . Since ωu = −0.0225, these deviations are
hardly detectable numerically. Indeed, in our range of values
of L, 8 � L � 64, L−ωu varies only by 5%, hence it is very
difficult to distinguish it from a constant term. In practice,
unless data are extremely precise, any FSS analysis is unable
to determine the leading scaling function fR(τL1/ν) appearing
in Eq. (19). The extrapolation of the data to L → ∞ would
identify the asymptotic behavior with that given by

f̃R(τL1/ν) = fR(τL1/ν) + AgR(τL1/ν), (22)

where the slowing decaying factor L−ωu is effectively replaced
with some kind of average A ≡ [L−ωu]av in the considered
range of values of L. This observation suggests that the
analysis based on the large-L extrapolation of the crossing
points should be able to determine correctly βc and ν. On
the other hand, the extrapolation of the data for Rϒ and Rξ

at the critical point would give f̃R(0), which differs from the
correct asymptotic estimate. In other words, we cannot rely on
the values of the RG-invariant quantities at the critical point
to identify the universality class. In this discussion, we have
assumed that there is only a single slowly decaying correction
term, i.e., L−ωu , which is, however, not the case. RG also
predicts the presence of correction terms proportional to L−nωu

for any integer n [cf. Eq. (21)], which makes the analysis of the
corrections even more difficult. Finally, note that corrections
of order L−ωXY , the leading ones in the single-species model,
are also expected.

We first consider the attractive hard-core model with U =
−5 and μ = 0. Figure 8 reports the estimates of Rϒ as a
function of β, which clearly show crossing points between
β = 0.714 and 0.715.

These numerical data definitely favor a continuous transi-
tion. In FSS analysis, first-order and continuous transitions are
generally distinguished by the slope of the data at the crossing
point, which is related to the correlation-length exponent

RΥ

β

U = −5

RΥ

β

U = −5

L−1/νxy

0.52

0.56

0.6

0.64

0.7125 0.713 0.7135 0.714 0.7145 0.715

0.52

0.56

0.6

0.64

0.7125 0.713 0.7135 0.714 0.7145 0.715

βcr(RΥ)
0.7136

0.714

0.7144

0 0.02 0.04

FIG. 8. (Color online) QMC estimates of Rϒ for U = −5 and
μ = 0. The inset shows the crossing points βcr(Rϒ ; L,2L) versus
L−1/νXY .

ν [73–75]. At a first-order transition we expect ν = 1/d = 1/3,
while ν > 1/d at continuous transitions. The analysis of the
data gives estimates of ν that are significantly larger than
1
3 , allowing us to exclude a first-order transition. They are
compatible with ν ≈ 0.67, the value appropriate for the 3D
XY universality class [fits of the data around the crossing
point to R(β,L) = R∗ + c(β − βc)L1/ν give ν = 0.63(4)].

The crossing points βcr(Rϒ ; L,2L) up to L = 32 are shown
in the inset. We stress that their determination requires no prior
knowledge of the nature of the transition, and it is therefore
completely unbiased. They clearly appear to converge to
a critical value βc. The precision of the data does not
allow us to distinguish the expected O(L−1/νXY−ωu ) approach
to the asymptotic value, as predicted by theory, from the
O(L−1/νXY−ωXY ) approach at U = 0. Nevertheless, we obtain a
reasonably precise estimate βc = 0.7144(1), where the error
also accommodates the difference of the extrapolations using
the two Ansätze. Analogous results, although less precise, are
obtained from the Rξ data.

The values of Rϒ and Rξ at the crossing points are shown in
Fig. 9. They show an apparently linear behavior when plotted
against L−ωXY , as in the U = 0 case. However, an extrapolation
using the Ansatz R∗ + cL−ωXY , which appears consistent with
the data, gives critical values for R∗

ϒ and R∗
ξ which are

definitely different from those of the 3D XY universality class.
For example, we obtain R∗

ϒ = 0.563(2) and R∗
ξ = 0.625(5)

with an acceptable χ2/DOF (DOF is the number of degrees
of freedom of the fit), which differ significantly from the XY
estimates R∗

ϒ = 0.516(1) and R∗
ξ = 0.5924(4).

However, this discrepancy should be expected because of
the presence of the slowly decaying O(L−ωu) corrections with
ωu = 0.0225(4) predicted by the RG analysis of Sec. II. For
instance, the data in Fig. 9 can also be nicely fitted to

R(βcr) = R∗ + aL−ωu + bL−ωXY , (23)

L−ωxy

U = −5, RΥ(βcr)
Rξ(βcr)

U = −3, RΥ(βcr)

0.48

0.52

0.56

0.6

0 0.05 0.1 0.15

FIG. 9. (Color online) Rϒ and Rξ at the crossing points obtained
using data for lattices of sizes L and 2L. Here μ = 0, U = −5, and
U = −3. The straight dashed lines show linear fits to R#(βcr,L) =
R∗

# + cL−ωXY with R∗
# and c as free parameters; the full lines show fits

to R#(βcr,L) = R∗
# + cuL

−ωu + cL−ωXY , in which R∗
# is fixed to the

3D XY critical value and cu and c are free parameters. The crosses on
the vertical axis mark the best estimates of R∗ for the 3D universality
class.
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with R∗ fixed to its XY value, as shown in Fig. 9. Note that the
Ansatz (23) keeps the leading corrections arising from each
irrelevant quartic RG perturbation at the decoupled XY fixed
point (see Sec. II B). It should be stressed that such fits are
only presented to make plausible that the transition is in the XY
universality class, even though a naive fit of the data provides a
different value for R∗. Indeed, RG predicts corrections of order
L−nωu for any integer n, which are as relevant as the leading
one in our range of values of L. Therefore, this analysis only
shows that the MC data are consistent with the RG analysis that
predicts XY behavior with slowly decaying corrections. Note
that in the range of L for which the MC data are available, the
constant and the L−ωu term are practically indistinguishable.
Disentangling the correction term from the leading constant is
extremely hard, requiring accurate computations for very large
lattice sizes. As a consequence, a fit of the MC data to Eq. (23),
taking R∗ as a free parameter, is unable to provide a significant
estimate of R∗ [R∗ and a in fit (23) can be changed without
affecting the quality of the fit since the fit only determines an
appropriate linear combination]. This analysis should convince
the reader that the predictions of the RG analysis are able to
explain the apparently anomalous behavior of the numerical
data.

To further check the above-reported results, we repeat the
FSS analysis at fixed β = 0.7144, varying the onsite coupling
U which now takes the role that β had in the previous
analysis. An analogous FSS analysis of data up to L = 48
gives Uc = −4.9999(3), which is perfectly consistent with the
FSS analysis at fixed U . Moreover, the values of Rϒ and Rξ at
the crossing points in the variable U are hardly distinguishable
from those appearing in Fig. 9 at the corresponding values
of L.

We have also performed a FSS analysis of data for U = −3,
up to L = 40, obtaining βc = 0.5390(2). The data of Rϒ at
the crossing points βcr(Rϒ ; L,2L) are also shown in Fig. 9.
As for U = −5, they appear to behave linearly with respect to
L−ωXY , and again they extrapolate to a value that is significantly
larger than R∗

ϒ ≈ 0.516. Such a deviation is smaller than that
obtained for U = −5, confirming that the discrepancies cannot
be interpreted as due to the presence of a new universality class.
In that case, indeed, one would obtain the same extrapolated
value for both values of U . Instead, the results are consistent
with our RG predictions: the discrepancies increase with |U |,
which is exactly what should be expected if they are related
to the slowly decaying corrections due to the interspecies
interaction.

We finally mention that, as already anticipated in Sec. II A,
the scaling corrections induced by the density-density onsite
interaction are small when the interspecies interaction is
repulsive, that is for U > 0. We have considered two values
of U , U = 1 and 10, and lattices up to L = 40. In both cases,
we obtain results for R∗

ϒ and R∗
ξ that are in agreement with the

XY values. Apparently, the slowly decaying corrections are
negligible, being at most of the size of the statistical errors.
Note that these corrections vanish for U = 0 (the two models
are decoupled) and also for U → +∞ (the model is equivalent
to the hard-core BH model for a single boson, hence, it has a
standard XY transition without the L−ωu scaling corrections).
Apparently, they keep on being small for all intermediate
values of U .

Tc

U

Fixed U QMC
Fixed T QMC

0

0.5

1

1.5

2

-6 0 6 12 18 24

FIG. 10. (Color online) Transition line of the hard-core 2BH
model for μ = 0, as obtained by the FSS analysis of QMC data. We
plot Tc ≡ 1/βc versus U . Most estimates are obtained in simulations
at fixed U in which T is varied. Close to U = −6, where the transition
line is almost parallel to the T axis, we performed simulations at fixed
temperature, determining the critical coupling Uc.

D. Phase diagram of the hard-core 2BH model at μ = 0

We determine the U dependence of the normal-to-
superfluid transition line by repeating the FSS analysis for
other values of U . This is done with less accuracy, using data
up to L = 24. The results are shown in Fig. 10. The phase
diagram is quite similar to that obtained in the mean-field
approximation. In particular, the low-temperature superfluid
phase disappears for U � −6, very close to the mean-field
result U = −6. Indeed, as shown by the zero-temperature
mean-field phase diagram shown in Figs. 4 and 5, U = −6 is
the location of the quantum transition between the superfluid
and n = 2 Mott phase.

Finally, we discuss the behavior of the particle densities
ns ≡ 〈nsx〉 at the BEC transition. The leading term at the BEC
transition is the nonuniversal analytic background contribu-
tion, while the universal power terms related to the critical
behavior are subleading. Indeed, standard RG arguments

nsc

U

Mean Field
QMC

0

0.2

0.4

0.6

0.8

1

-6 0 6 12 18 24

FIG. 11. (Color online) The single-species particle density ns ≡
〈nsx〉 along the critical line, as obtained by QMC and mean-field
calculations.
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predict the asymptotic behavior

ns ≈ fa(τ ) + L−ynfs(τL1/ν) (24)

when varying the reduced temperature τ = 1 − β/βc keeping
the model parameters fixed. In Eq. (24), fa is a nonuniversal
analytic function; yn is the RG dimension of the particle density
operator nsx , which is given by yn = 3 − 1/ν = 1.5112(2) at
the decoupled XY FP; fs is a universal function apart from a
factor and a rescaling of its argument. Therefore, the critical
densities at Tc are expected to approach a nonuniversal constant
in the large-L limit. In Fig. 11, we show the large-L extrap-
olations of the particle-density data at Tc versus the onsite
coupling U . The comparison with the mean-field computations
of Sec. III shows that the mean-field approximation of the
particle density is quite accurate.

V. CONCLUSIONS

We investigate BEC in 3D two-component bosonic systems.
In particular, we consider two interacting identical bosonic
gases, described by the 2BH model (1), which may be
interpreted as a lattice two-component bosonic system. We
study the phase diagram and the critical behavior by RG,
mean-field, and numerical methods.

Our RG analysis is based on a LGW theory with two
complex scalar fields (associated with the two bosonic
components), which has the same symmetry as that of the
bosonic system. In the case of two identical components
with density-density interactions, the relevant global symmetry
is Z2,e ⊗ U(1) ⊗ U(1). The mean-field analysis predicts two
different types of low-temperature phases. Depending on
the values of the onsite interspecies U and intraspecies V

couplings, one may have (i) a phase in which the exchange
symmetry is conserved and both components condense or
(ii) a phase in which only one component condenses, thus
breaking the Z2,e exchange symmetry.

In case (i), which is generically expected for V � U , the
transition belongs to the 3D XY universality class. More
precisely, the critical behavior is controlled by a decoupled XY
FP, implying an asymptotic decoupling of the critical modes
associated with the bosonic components. The density-density
interaction between these two components turns out to be
an irrelevant perturbation at this FP. It does not affect the
asymptotic behavior, but gives rise to slowly decaying scaling
corrections, which behave as ξ−ωu , where ξ is the diverging
length scale at transition and ωu = 3 − 2/νXY = 0.0225(4).
Of course, these slowly decaying effects are absent at the
transition of a single bosonic species [48–51], where the lead-
ing scaling corrections decay as ξ−ωXY with ωXY ≈ 0.78. The
presence of slowly decaying corrections makes an accurate
check of the asymptotic 3D XY critical behavior quite hard,
essentially because one needs to get very close to the critical
point to make them negligible. These predictions are supported
by a FSS analysis of QMC data for the 2BH model (1) in the
hard-core limit, i.e., for V → ∞.

The FT RG analysis predicts that the nature of the transition
should significantly change in the soft-core regime, i.e., when
V � U . In this case, only one component is expected to
condense. The corresponding symmetry breaking is therefore
different, hence, it leads to a different universality class in the

case of continuous transitions. We identify this universality
class with that of the chiral transition in frustrated two-
component spin models with noncollinear order [52,57,58],
which has ν ≈ 0.6 as correlation-length exponent.

Our RG study also predicts the possibility of a critical
behavior with an extended O(4) symmetry. However, such
symmetry enlargement can only be observed by tuning a
further parameter beside the temperature. It should be stressed
that the different critical behaviors can only be observed if the
system is in the attraction domain of one of the FPs. If this is
not the case, the transition would be of first order.

We also extend our analysis to the more general case in
which the two bosonic components are not identical. The phase
diagrams are expected to be more complex, as shown in Fig. 3.
In particular, they may or may not show a low-temperature
mixed phase characterized by the condensation of both com-
ponents. According to mean-field and RG results, if the mixed
phase is present, the phase diagram presents a tetracritical point
where four transition lines meet, and the multicritical behavior
is controlled by the decoupled XY FP. When the mixed phase is
absent and the low-temperature phases are characterized by the
BEC of only one component, the competition of the two U(1)
orderings does not lead to a multicritical behavior, since no
stable FPs are found in the corresponding parameter region. As
a consequence, the behavior at the intersection of the transition
lines is expected to show thermodynamic discontinuities as at
first-order transitions.

The RG analysis of BEC transitions in mixtures of
bosonic gases can be straightforwardly extended to the two-
dimensional (2D) case. In two dimensions, bosonic systems
do not undergo BEC. The low-temperature phase for a
single-species system is characterized by quasi-long-range
order. Correlations decay algebraically at large distances,
without the emergence of a nonvanishing order parameter.
The transitions to this low-temperature phase are generally
of the Berezinskii-Kosterlitz-Thouless (BKT) type [76–78],
characterized by an exponential increase of the correlation
length. The phase diagram of mixtures of 2D bosonic systems
may show BKT transitions analogous to those observed in the
case of a single bosonic species, and transitions related to the
breaking of the Z2,e exchange symmetry. A similar situation
arises in 2D frustrated two-component spin models (see, e.g.,
Ref. [79], and references therein). RG scaling arguments
analogous to those used for the 3D case allow us to infer that
the critical behavior of identical interacting hard-core bosonic
components is again controlled by a decoupled BKT FP. Since
the energy operator is marginal at the BKT transition, i.e.,
ye = 0, the RG dimension of the density-density interspecies
coupling is given by yu = 2ye − d = −2 (d = 2 in this
case). Therefore, energy-energy or density-density interactions
between the bosonic species are irrelevant also in two dimen-
sions. Unlike the 3D case, the corresponding contributions
decrease quite rapidly when approaching the critical point, as
they are of order ξ−2. Therefore, we expect 2D systems of
identical hard-core bosonic molecules to undergo continuous
transitions characterized by a decoupled BKT behavior with
multiplicative and subleading logarithmic corrections [80,81],
as in the case of a single bosonic species [82].

We finally note that cold-atom experiments are usually
performed in inhomogeneous conditions, due to the presence
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of space-dependent trapping forces which effectively confine
the atomic gas within a limited space region [1–3]. The
trapping potential is effectively coupled to the particle density.
It can be taken into account by adding a space-dependent trap
term such as

Htrap =
∑

x

Vt (x)nsx, (25)

to the BH Hamiltonian (1), where Vt is the space-dependent
potential associated with the external force. For example, we
may consider Vt (r) = (r/�t )2, where r ≡ |x| is the distance
from the center x = 0 of the trap, which describes a harmonic
rotationally invariant trap. Experimental data for inhomoge-
neous trapped cold-atom systems are usually analyzed using
the local density approximation (see, e.g., Ref. [3]). However,
this approach fails to describe the emergence of large-scale
correlations [44,49].

The inhomogeneity arising from the trapping potential
introduces an additional length scale �t into the problem, which
drastically changes the general features of the behavior at a
phase transition. For example, the correlation functions of the
critical modes do not develop a diverging length scale in a finite
trap. Nevertheless, when the trap size �t becomes large, we
may still observe a critical regime around the transition point,
with universal scaling behaviors with respect to the trap size
�t (see, e.g., Ref. [42]). In the large trap-size limit the critical
behavior can be described by a trap-size scaling (TSS) theory
controlled by the universality class of the phase transition of
the homogenous system [83]. TSS has some analogies with the
standard FSS for homogeneous systems which we exploited in
our numerical study (see Sec. IV). The main difference is that,
at the critical point, the correlation length ξ around the center
of the trap shows a nontrivial power-law dependence on the
trap size �t , i.e., ξ ∼ �θ

t where θ is the universal trap exponent.

TSS has been numerically checked at the BEC transition of a
single 3D bosonic gas [48,49]. Analogous TSS arguments can
be applied to the BEC transitions of two-component bosonic
gases. In particular, the trap exponent in the case of the
harmonic space dependence of Vt turns out to be [83]

θ = 2ν

1 + 2ν
, (26)

where ν is the correlation-length exponent of the transition,
thus, θ = 0.57327(4) at the decoupled XY fixed point control-
ling the simultaneous condensation of both components, and
θ ≈ 0.5 when only one component condenses.

Our study is relevant to experiments in which a mixture
of two bosonic atomic vapors is cooled down so that at least
one of the components undergoes a BEC transition and in
which the number of particles of the two species is separately
conserved. Recent years have seen the development of many
such experiments, with the two bosonic species being two
hyperfine levels of a single isotope [8–16,18], two isotopes
of the same element [24–26], or heteronuclear mixtures of
different elements [19–23]. Notably, some mixtures were
also successfully loaded on optical lattices [15,22,23]. The
availability of a wide range of atomic species and the presence
of Fano-Feshbach resonances allow experimentalists to tune
the intraspecies and interspecies interactions between the two
components. Additional control can be achieved by acting on
the depth of the optical lattice. The high degree of tunability
of these systems may make the direct observation of the
transitions we predict within the reach of experiments.
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