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Fluctuating hydrodynamics for a discrete Gross-Pitaevskii equation: Mapping onto the
Kardar-Parisi-Zhang universality class
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We show that several aspects of the low-temperature hydrodynamics of a discrete Gross-Pitaevskii equation
(GPE) can be understood by mapping it to a nonlinear version of fluctuating hydrodynamics. This is achieved
by first writing the GPE in a hydrodynamic form of a continuity and a Euler equation. Respecting conservation
laws, dissipation and noise due to the system’s chaos are added, thus giving us a nonlinear stochastic field
theory in general and the Kardar-Parisi-Zhang (KPZ) equation in our particular case. This mapping to KPZ is
benchmarked against exact Hamiltonian numerics on discrete GPE by investigating the nonzero temperature
dynamical structure factor and its scaling form and exponent. Given the ubiquity of the Gross-Pitaevskii equation
(also known as the nonlinear Schrödinger equation), ranging from nonlinear optics to cold gases, we expect this
remarkable mapping to the KPZ equation to be of paramount importance and far reaching consequences.
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I. INTRODUCTION

Low-dimensional classical and quantum systems are often
very counterintuitive and exhibit properties different from their
higher dimensional counterparts [1,2]. One such example is the
width of the line shape of the phonon peaks in the dynamical
structure factor. Contrary to the expected k2 behavior in higher
dimensions [3], the power is anomalous in low dimensions. It
is well known that linearized hydrodynamics, which predicts
a diffusive broadening, fails in one dimension (1D). This
immediately creates a need for a nonlinear hydrodynamics
that could describe low-dimensional systems. Such a theory
beyond the conventional Luttinger liquid would describe the
superdiffusive broadening in low-dimensional systems.

A system that provides a remarkable platform for prob-
ing low-dimensional fluids is the system of a 1D weakly
interacting Bose gas at nonzero temperature [4]. Using a
variant of Bragg spectroscopy [5,6] one could probe the
dynamical structure factor of the Bose gas, thereby unraveling
the nonlinear phenomenon in low-dimensional fluids.

It is to be noted that in the Lieb-Liniger model, i.e., gas of
bosons in one dimension with contact interaction (of which
the GPE is a semiclassical approximation), the dynamical
structure factor at zero temperature has a width that scales
with k2. This is, in fact, a general feature at zero temperature
for one-dimensional systems with nonlinear dispersion [1].
However, here we study the finite-temperature regime where
one would expect an anomalous exponent in low dimensions
(k3/2). The problem of describing within a single theoretical
framework both the finite-temperature phenomena and the
zero-temperature results [1] remains to be an open unsolved
question.

The underlying theory that describes [7] this cold atomic
system, namely, the Gross-Pitaevskii equation (GPE) or the
nonlinear Schrödinger (NLS) equation is ubiquitous in areas
such as optics, cold gases, and mathematical physics. Although
the strictly continuum GPE is integrable, the experimental
realizations break integrability in one or more ways, such as,

the presence of a lattice or trapping potential, energy loss, and
escape of unwanted evaporation of particles. Here, we focus
on the discrete (lattice [8]) version of GPE which is the generic
nonintegrable case. Such a discrete GPE has been realized in
experiments on waveguide lattices [9].

The ubiquity of such a class of equations and cutting
edge technologies available to probe statistical properties of
such systems enhances an urgent need for writing down a
stochastic nonlinear theory that makes transparent the role
of various components that result in a complex nonlinear-
driven-dissipative phenomenology. Establishing this strong
connection between GPE and stochastic nonlinear differential
equations (which turns out to be a two-component KPZ
equation in our case) helps in using the tools available in
the literature to make far-reaching predictions about statistical
mechanics of systems such as a 1D Bose gas or optical
waveguides. In the converse, one could also use such systems
as an experimental test bed for KPZ phenomena, providing
much needed additional experimental realizations [10–12] of
KPZ physics.

In this article, we analyze the low-temperature hydrody-
namics of GPE, which is known to be a valid description for
systems such as 1D weakly interacting Bose gas or optical
waveguides. We present a discrete GPE that governs the
dynamics of such complex fields (which are atomic fields in the
case of cold atoms or optical fields in waveguides). We write
continuity-like and Euler-like equations for the macroscopic
density and velocity fields and derive the nonlinear fluctuating
hydrodynamics. The coefficients of the resulting nonlinear
fluctuating theory are expressed in terms of underlying param-
eters of the system (such as coupling strength and background
density). We then present results for the dynamical structure
factor S(k,ω) (i.e., Fourier transform of correlation function
of fields obeying nonlinear fluctuating hydrodynamic theory),
namely, its scaling function and the underlying anomalous
exponent. This effective nonlinear hydrodynamic theory is
finally benchmarked against exact Hamiltonian numerics. Our
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results also support a recent remarkable conjecture that the
long-wavelength dynamics of a classical 1D fluid at finite
temperature is in the Kardar-Parisi-Zhang (KPZ) universality
class [13]. In addition to confirmation of the 3/2 exponent, we
have taken a big step forward in showing agreement with the
Prahofer-Spohn scaling function [14]. Therefore, the notori-
ously difficult problem of computing the dynamical structure
factor (density-density correlations) can now be connected to
correlation functions of familiar stochastic equations.

II. NONLINEAR FLUCTUATING HYDRODYNAMICS
AND GPE

The semiclassical Hamiltonian describing a strictly one-
dimensional gas of bosons of mass m and contact interaction
strength g is given by

H =
∫

dx

[ |∂xψ |2
2m

+ g

2
|ψ |4

]
, (1)

which in conjugation with Poisson brackets {ψ∗(x),ψ(y)} =
iδ(x − y) gives the time-dependent GPE,

i∂tψ = − 1

2m
∂2
xψ + g|ψ |2ψ. (2)

This is a continuum integrable model. However, physical
realizations are not in this ideal limit. The generic case is
nonintegrable due to several possibilities, such as the presence
of a lattice rather than continuum (breaking translational
invariance), interactions being nonzero range, existence of
external potential, and dissipation. Here, we will assume
that we are not in the ideal integrable limit. In other words,
integrability is destroyed and this nonlinear classical system
is chaotic at nonzero temperature. The specific integrability
breaking we consider is the discrete GPE (NLS) on a 1D lattice
[Eq. (12)] but our results are generic. From the perspective of
optical applications, g is called a Kerr nonlinearity and |ψ |2 is
the intensity of light field.

We examine the hydrodynamics of the equilibrium steady
state that this chaotic system approaches at long times. We
are interested in hydrodynamic scaling of the density-density
correlation S(x,t) = 〈|ψ(x,t)|2|ψ(0,0)|2〉 − 〈|ψ(0,0)|2〉2 with
〈·〉 denoting the average over the statistical steady state.
ψ(x,t) = √

ρ(x,t)eiθ(x,t) defines the density ρ(x,t) and phase
θ . The velocity is v(x,t) = 1

m

∂θ(x,t)
∂x

. We work at low enough
temperature that the rate at which phase slips occur at
equilibrium is negligible. Hence, velocity is a conserved
quantity, as is density. The continuity and Euler equations
are

∂tρ + ∂x(ρv) = 0 , ∂tv + ∂x

(
v2

2
+ g

m
ρ

)
= 0 . (3)

The equilibrium state has average density ρ0 = 〈|ψ(x)|2〉 and
we consider the case of zero average velocity.

In the regime we are considering, the equation for S(x,t)
above refers to small deviations from the average density.
Hence if we linearize Eq. (3), taking ρ → ρ0 + � and v → 0 +
v, we obtain ∂t �u + ∂x[A�u] = 0 with �u = (�v), A = ( 0 ρ0

g

m
0 ).

This gives us the right and left moving sound modes with
speed c = √

gρ0/m. In other words, it is the dynamics of a

linearized Luttinger liquid whose dynamical structure factor
S(k,ω) consists only of a pair of δ function peaks at ω = ±c|k|,
corresponding to undamped phonons. We need to add to
this the scattering between phonons due to nonlinearities. In
linear fluctuating hydrodynamics one adds damping and noise,
which broadens the sound peaks in S(k,ω), giving them a line
width that scales “diffusively” as 	(k) ∼ k2. This works fine
in dimension d � 3 [15], but fails in 1D [16]. An example
showing this anomaly involves simulations of Fermi-Pasta-
Ulam (FPU) chains which report superdiffusive broadening
of the sound peaks [2,17–20]. To capture such behavior, it
has been proposed recently to use a nonlinear extension of
fluctuating hydrodynamics [21]. We will follow this strategy
to obtain the hydrodynamic scaling of S(k,ω), which we then
compare to exact Hamiltonian numerics. The prescription of
nonlinear fluctuating hydrodynamics [21] consists of adding
diffusion and noise matrices in Eq. (3) giving

∂t �u + ∂x

⎡
⎣A�u + 1

2

2∑
α,β=1

�Hα,βuαuβ − ∂x(D�u) + B�ξ
⎤
⎦ = 0,

(4)

where D and B are diffusion and noise matrices. Above,
the Hessian matrix H

γ

α,β = ∂uα
∂uβ

jγ along with �j = (�v, 1
2v2)

captures the nonlinear terms in the underlying GPE. Here, �ξ is
a Gaussian white noise with mean 0 and covariance given by
〈ξα(x,t)ξα′(x ′,t ′)〉 = δαα′δ(x − x ′)δ(t − t ′).

Dropping quadratic terms would correspond to linear
fluctuating hydrodynamics which yields diffusive sound peaks.
For our application we are interested in the stationary, mean
zero process governed by Eq. (4), again denoted by �(x,t) and
v(x,t). The equal time, static correlations are expected to have
short-range correlations. Hence, we define the susceptibilities
as follows:

c1 =
∫

dx
[〈�(x,0)�(0,0)〉 − ρ 2

0

]
,

(5)

c2 =
∫

dx〈v(x,0)v(0,0)〉,

where cross terms vanish because �(x,t) and v(x,t) have
different parity. The fluctuation dissipation relation is given
by DC + CD = BB† [C is a diagonal matrix containing Eq.
(5)]. In addition, space-time stationarity enforces in general the
relation AC = CAT, which implies the relation c2 = c2

ρ2
0
c1 for

GPE. In Eq. (3) the linear terms dominate and to obtain better
insight into the solution one has to transform to normal modes
which have a definite propagation velocity (speed of sound).
We therefore introduce a linear transformation in component
space, by setting (φ−

φ+) = R(�v) such that R satisfies RAR−1 =
diag(−c,c) . In addition we require that the φ susceptibilities
are normalized to unity, which means R diag(c1,

c2

ρ2
0
c1)RT = 1 .

Up to an overall sign, R is uniquely determined and given by
R = 1

c
√

2c1
(−c ρ0

c ρ0
). Then the equation for the normal modes

(i.e, the left and right chiral sectors, also known as eigenmodes)
reads

∂tφσ + ∂x[σcφσ + 〈 �φ,Gσ �φ〉 − ∂x(Drotφ)σ + (Brotξ )σ ] = 0,

(6)
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where σ = ± refers to right and left modes and “rot” indicates
the matrices rotated by R matrix, Drot = RDR and Brot = RB.
The coupling matrix is given by

G− = c

2ρ0

√
c1

2

(
3 1
1 −1

)
, G+ = c

2ρ0

√
c1

2

(−1 1
1 3

)
.

(7)
Since Eq. (6) is nonlinear, it is still difficult to compute the
covariance 〈φσ (x,t)φσ ′(0,0)〉 for the mean zero, stationary
process. One central observation is that in leading order the two
peaks in S(x,t) separate linearly in time. Hence, in Eq. (6) for
φσ , the terms φσφ−σ and (φ−σ )2 turn out to be irrelevant [20]
compared to (φσ )2. Albeit they may effectively renormalize
nonuniversal coefficients (in front of all terms), they do
not impact the universal properties. Therefore, preserving
universality we can decouple Eq. (6) into two components
giving stochastic Burgers equation (KPZ in “height function”
hσ where φσ = ∂xhσ ) and, for this, the exact scaling function
is available [14] and tabulated [22],

〈φσ (x,t)φσ (0,0)〉 = (λt)−2/3fKPZ((λt)−2/3(x − σct)) (8)

valid for large x,t . λ is a nonuniversal coefficient, which
here is explicitly calculated to be λ = 2

√
2|Gσ

σσ | = 3c
ρ0

√
c1.

The value of λ derived above will get renormalized [20]
due to the discarded nonlinearities as explained above. Note
that λ does not depend on Drot or Brot. This says that
while some dissipation and noise are needed to maintain
stationarity, the asymptotic form of correlation is dominated
by Gσ

σσ . In several molecular dynamics-type simulations,
one computes the correlation S(x,t) [23] (where x is the
space coordinate) directly. But more conventionally, as also
relevant in this paper, we study the structure function, which
is defined as the space-time Fourier transform of S(x,t).
We define Ŝ(k,t) = ∫ ∞

−∞ e−ikxS(x,t)dx. As argued before,
the asymptotic scaling form is expected to be of the form
Ŝ(k,t) = 1

2 (eikct + e−ikct )c1f̂KPZ(k(λ|t |)2/3). The two sound
peaks are symmetric reflections of each other. Considering
only the right mover and setting ωk = ck, we get

Ŝ(k,ω + ωk) =
∫

dteiωt 1

2
c1f̂KPZ(k(λ|t |)2/3)

=
∫

dtei(ω/λ|k|3/2)t (λ|k|3/2)−1 1

2
c1f̂KPZ(|t |2/3).

(9)

By defining h(ω) = ∫
dteiωt f̂KPZ(|t |2/3) we arrive at

Ŝ(k,ω + ωk) = 1
2c1(λ|k|3/2)−1h(ω/λ|k|3/2) . (10)

If the maximum of Ŝ is normalized to 1, then the prefactor in
Eq. (10) is set to 1 and h is replaced by h/h(0).

The hypothesis about the decoupling of chiral fields is a
subtle issue. The φσ (x,t) fields fluctuate without any spatial
decay. In fact, only the correlations are peaked near ±ct .
However, the decoupling of the components can be seen
directly on the level of mode coupling in the one-loop
approximation. As supported by numerical solutions [23], it
is safe to use the diagonal approximation 〈φσ (x,t)φσ ′(0,0)〉 =
δσσ ′fσ (x,t). In the one-loop approximation, one has (ν is the

phenomenologically added dissipation)

∂tfσ (x,t) = ( − σc∂x + 1
2ν∂2

x

)
fσ (x,t)

+
∫ t

0
ds

∫
dyfσ (x − y,s)∂2

yM(y,s), (11)

with the memory kernel given by M(x,t) =
2
∑

σσ ′=±(Gσ
σσ ′)2fσ (x,t)fσ ′(x,t). The terms with σ �= σ ′

have a very small overlap. But diagonal terms proportional to
(Gσ

σσ )2 do contribute to the long time behavior. By explicit
computation we can check that the self-interaction term
dominates the mutual one. Equation (11) can be studied
numerically by an iteration scheme. The asymptotic shape
of the sound peak and the true scaling function fKPZ have
a relative error of about 4% [23]. It is of utmost importance
to have such a deterministic expression [Eq. (11)] for the
correlators of 1D Bose gas that captures physics beyond a
Luttinger liquid. All the above needs to be benchmarked
against brute-force Hamiltonian numerics of the underlying
GPE Hamiltonian.

III. HAMILTONIAN NUMERICS OF DISCRETE GPE

We now go to the discrete version of above time-dependent
GPE [Eq. (2)] that now governs the dynamics of a complex-
valued ψ(n,t), with integer n = 1, . . . ,N and periodic bound-
ary conditions. Discretization is achieved by substituting
x → na where a is the lattice spacing and Na is the system
size L. The discrete version of time-dependent GPE reads

i
d

dt
ψ(n,t) = Finv

[
k2
q

2m
ψ̃(kq,t)

]
+ g|ψ(n,t)|2ψ(n,t), (12)

where kq = 2π
Na

q for integer q = ( − N
2 + 1), . . . ,N

2 and
Finv denotes our inverse-Fourier transform, Finv{G(kq)} =
1
a

1
N

∑N
n=1 G(kq)e− 2πi

N
nq (slightly unconventional due to the

explicit presence of lattice spacing a). The local energy and
the local number density, |ψ(n)|2, are conserved. According
to standard classifications, Eq. (12) is listed as nonintegrable
[8]. Hence one would expect that H and N = a

∑N
n=1 |ψ(n)|2

are the only conserved fields and that the set of equilibrium
states is of the form Z−1e−β(H−μN), β > 0, μ ∈ R, in the limit
of large N . Therefore, the above discretization scheme for the
integrable continuum GPE breaks the underlying integrability.
In fact, we find that in order to make connection to fluctuating
hydrodynamics and subsequently KPZ, we require broken
integrability and the resulting chaos.

In this section, we describe the Hamiltonian exact numerics
[24] starting from Eq. (12). The time evolution is obtained by
the well-known leap-frog splitting technique where the system
is evolved alternatively (setting g = m = 1, and choosing
ρ0 = 1) by kinetic, ψ̃(kq,t) → e−ik2

q τ/2ψ̃(kq,t), and potential,
ψ(n,t) → e−iτ |ψ(n,t)|2ψ(n,t), terms in sequence V τ

2
· Tτ · V τ

2
,

with time step τ .
In the simulation [24] we measure the structure function

S̃(kq,ω): At each time step we obtain the time evolved
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FIG. 1. (Color online) (Top) Comparison between exact numer-
ics of discrete GPE with nonlinear fluctuating hydrodynamics. Here
the temperature T = 0.005, L = 5 × 214. The best fit to the scaling
function h(ω)/h(0) is given by λopt ∼ 0.005 (and theoretical λ ∼
0.045) with universal tail (shown by log-log inset) close to ω− 7

3 at
significantly large frequencies [14]. (Bottom) Similar comparison
for a different set of parameters. Here the temperature T = 0.001,
L = 10 × 213. The best fit to the scaling function h(ω)/h(0) is given
by λopt ∼ 0.0028 (and theoretical λ ∼ 0.0041). The wave vectors are
given by k = 2π

L
q where the values of the integers q are given in

the legends. The inset shows the dynamical structure factor on a
logarithm scale. All quantities plotted are in dimensionless units.

density ρ(n,t) = |ψ(n,t)|2, which we then space-time Fourier
transform to ρ̃(kq,ω). Then the dynamical structure factor is
the ensemble average: S̃(kq,ω) = 〈|ρ̃(kq,ω)|2〉. These results
are expected to depend only on the total energy and particle
number of the initial conditions because the dynamics are
chaotic and we expect ergodic behavior. The chaos for our
parameters a = 5 and τ = 2 has been confirmed by observing
positive Lyapunov exponents.

For random initial conditions we assume that the Fourier
coefficients �k,θk are independent Gaussian random variables

with mean 0 and covariance given by

〈∣∣�2
kq

∣∣〉 = ρ0

2L

αkq
T

ξkq

,
〈∣∣θ2

kq

∣∣〉 = 1

2ρ0L

T

αkq
ξkq

, (13)

where ξkq
=

√
k2
q

2 (
k2
q

2 + 2ρ0) and αkq
=

√
k2
q

k2
q

4 +ρ0

.

In Ref. [24] the low-temperature dynamical structure factor
was simulated numerically and the KPZ scaling exponent
was observed, i.e., phonon line width 	k ∼ |k|z with z =
1.510 ± 0.018 was found. Here we provide a more quantitative
comparison with the full scaling function (Fig. 1). Importantly,
we have also presented the mapping to nonlinear fluctuating
hydrodynamics, which tells us that the structure factor should
be of the form shown in Eq. (10). This means that the structure
factor we obtain from our brute-force simulations must have
the KPZ scaling exponent and follow the scaling function in
the hydrodynamic limit. In Fig. 1 we show the remarkable
quantitative agreement between exact Hamiltonian numerics
and the expectations of a nonlinear hydrodynamic theory with
fluctuations. Our results are in a regime where the system is
not near integrability, due to a chosen large lattice spacing a.
We notice that, on approaching integrability [25] by reducing
a we find strong deviations from KPZ, both in terms of
scaling form and exponent. Since the generic nonintegrable
case is the central agenda of our paper, our findings in
the crossover regime will be discussed elsewhere [26]. The
discrepancy between the optimally chosen value of λ (λopt) and
the one expected from KPZ correspondence (λ = 2

√
2|Gσ

σσ |)
probably arises due the fact that higher-order nonlinearities
and the different chiral sectors effectively renormalize the
first relevant nonlinearity of the specific chiral sector under
consideration. Such a disagreement has also been seen recently
in case of the FPU problem [27]. One therefore requires
an effective renormalization scheme to make more precise
connections between λ and λopt.

IV. CONCLUSION

We have demonstrated a strong connection between the
statistical mechanics of a discrete NLS/GPE and a nonlinear
hydrodynamic theory with fluctuations. This was done by
first formulating the GPE in terms of hydrodynamic vari-
ables (conjugate classical fields) and then adapting a recent
procedure in formulating a fluctuating version of nonlinear
hydrodynamic theory [21]. In our case, the resulting theory is
shown to be of the KPZ universality class. This immediately
enables us to use the rich physics of KPZ class and a
well-established one-loop approximation to make predictions
for GPE. This was then benchmarked by exact Hamiltonian
numerics. Given the wide range of phenomena described by
these equations, our results have implications in fields ranging
from cold gases to nonlinear optics. Moreover, extending this
mapping to coupled nonlinear Schrödinger equations (also an
experimentally realized situation in both cold atoms [28,29]
and nonlinear optics [30]) is shown to give a variety [31]
of interesting dynamical critical phenomena arising due to
coupled stochastic differential equations [26].
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