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Quantum magnetism of spinor bosons in optical lattices with synthetic non-Abelian gauge fields
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We study quantum magnetism of interacting spinor bosons at integer fillings hopping in a square lattice in
the presence of non-Abelian gauge fields. In the strong-coupling limit, this leads to the rotated ferromagnetic
Heisenberg model, which is a new class of quantum spin model. We introduce Wilson loops to characterize
frustrations and gauge equivalent classes. For a special equivalent class, we identify a spin-orbital entangled
commensurate ground state. It supports not only commensurate magnons, but also a gapped elementary excitation:
incommensurate magnons with two gap minima continuously tuned by the spin-orbit coupling (SOC) strength.
At low temperatures, these magnons lead to dramatic effects in many physical quantities such as density of
states, specific heat, magnetization, uniform susceptibility, staggered susceptibility, and various spin-correlation
functions. The commensurate magnons lead to a pinned central peak in the angle-resolved light or atom Bragg
spectroscopy. However, the incommensurate magnons split it into two located at their two gap minima. At high
temperatures, the transverse spin-structure factors depend on the SOC strength explicitly. The whole set of Wilson
loops can be mapped out by measuring the specific heat at the corresponding orders in the high-temperature
expansion. We argue that one gauge may be realized in current experiments and other gauges may also be realized
in future experiments. The results achieved along the exact solvable line sets up the stage to investigate dramatic
effects when tuning away from it by various means. We sketch the crucial roles to be played by these magnons at
other equivalent classes, with spin anisotropic interactions and in the presence of finite magnetic fields. Various

experimental detections of these phenomena are discussed.
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I. INTRODUCTION

Quantum magnetism has been an important and vigorous
research field in material science for many decades [1,2]. In
general, the Heisenberg model and its variants have been
widely used to study quantum magnetisms in both kinds of
systems. However, they can not be used to describe mate-
rials or cold atom systems with strong spin-orbit couplings
(SOCs). Recently, the investigation and control of spin-orbit
coupling (SOC) have become subjects of intensive research
in both condensed matter and cold atom systems after the
discovery of the topological insulators [3,4]. In the condensed
matter side, there are increasing number of new quantum
materials with significant SOC, including several new 5d
transition metal oxides and heterostructures of transition metal
systems [5]. In the cold atom side, there have also been
impressive advances in generating artificial gauge fields in both
continuum and on optical lattices [6]. Several experimental
groups have successfully generated a one-dimensional (1D)
synthetic non-Abelian gauge potential coupled to neutral
atoms by dressing internal atomic spin states with spatially
varying Laser beams [6]. Unfortunately, so far, 2D Rashba or
Dresselhauss SOC and 3D isotropic (Weyl) SOC have not been
implemented experimentally.

Notably, there are very recent remarkable advances to
generate magnetic fields in optical lattices [6—15]. Indeed,
staggered magnetic field along one direction [Fig. 7(a)] [6]
in an optical lattice has been achieved by using laser-assisted
tunneling in superlattice potentials [7] and by dynamic lattice
shaking [8]. By using laser-assisted tunneling in a tilted optical
lattice through periodic driving with a pair of far-detuned
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running-wave beams, one experimental group [11] (see also
Refs. [12,13] for related work) successfully generated the
time-reversal symmetric Hamiltonian underlying the quantum
spin Hall effects [Fig. 7(b)]: namely, two different pseudospin
components (two suitably chosen hyperfine states for 5’Rb
atoms) experience opposite directions of the uniform magnetic
field. In one recent experiment [14], both the vortex phase
and Meissner phase were observed for weakly interacting
bosons in the presence of a strong artificial magnetic field
in an optical lattice ladder systems. In another [15], a first
measurement on Chern number of bosonic Hofstadter bands
was also performed. The celebrated Haldane model was also
realized for the first time with ultracold fermions [16]. As
pointed out in Ref. [13], the non-Abelian gauge in Eq. (1)
can be achieved by adding spin-flip Raman lasers to induce
a oo, term along the horizontal bond, or by driving the
spin-flip transition with RF or microwave fields. Scaling
functions for both gauge-invariant and non-gauge-invariant
quantities across topological transitions of noninteracting
fermions driven by the non-Abelian gauge potentials on an
optical lattice have also been derived [17]. However, so far,
a possible class of quantum magnetic phenomena due to
the interplay among the interactions, the SOC and lattice
geometries, have not been addressed yet.

In this paper, we investigate such an interplay systemat-
ically by studying the system of interacting spinor (multi-
component) bosons at integer fillings hopping in a square
lattice in the presence of SOC. Starting from the spinor-boson
Hubbard model in the presence of non-Abelian gauge fields,
at strong coupling limit, we derive a rotated ferromagnetic
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Heisenberg model (RFHM), which is a class of quantum
spin models to describe cold atom systems or materials with
strong SOC. Wilson loops are introduced to characterize
frustrations and gauge equivalent classes in this RFHM. For
a special equivalent class, we enumerate all the discrete
symmetries, especially discover a hidden spin-orbit coupled
continuous U(1) symmetry, then we identify a commensurate
spin-orbital entangled quantum ground state and classify
its symmetry-breaking patterns. By performing spin wave
expansion (SWE) above the ground state, we find that it
supports two kinds of gapped excitations as the SOC parameter
changes: one is commensurate magnons C-Cy, C-C, with
one gap minimum pinned at (0,0) or (0,7), another is an
elementary excitation: incommensurate magnons C-IC with
two gap minima (0, kg) continuously tuned by the SOC
strength. The boundary between the two kinds of magnons
are signaled by their divergent effective mass [or equivalently
divergent density of states (DOS)]. Both kinds of magnons
lead to dramatic experimental observable consequences in
many thermodynamic quantities such as the magnetization,
specific heat, uniform and staggered susceptibilities, the
Wilson ratio, and also spin-correlation functions, such as the
uniform and staggered, dynamic and equal-time, longitudinal
and transverse, normal and anomalous spin-spin-correlation
functions. At low temperatures, we determine the leading
temperature dependencies in the C-Cy, C-C, regime and C-IC
regime, also near their boundaries. The magnetization leads to
one sharp peak in the longitudinal equal-time spin-structure
factors at (7,0). Both kinds of magnons lead to sharp peaks in
dynamic transverse spin-correlation functions. The commen-
surate magnons lead to one Gaussian peak in the transverse
equal-time spin-structure factors with its center pinned at (0,0)
or (0,7) respectively. However, the incommensurate magnons
split the peak into two centered at their two gap minima
O, £ kg) continuously tuned by the SOC strength. At high
temperatures, by performing high-temperature expansion,
we find that the equal-time transverse spin-structure factors
depend on SOC strength explicitly, the specific heat depends
on all sets of Wilson loops at corresponding orders in the
high-temperature expansion. This fact sets up the principle
to map out the whole sets of Wilson loops by specific
heat measurements. Experimental detections by atom or light
Bragg spectroscopies [35,36] and specific heat measurements
are discussed. We argue that a special gauge [called U(1)
gauge] may be achieved by a combination of previous
experiments to realize staggered magnetic field [7,8] and recent
experiments to realize quantum spin Hall effects [11-13].
It is also possible to realize the other gauges in future
experiments.

The results achieved on the special equivalent class sets
up the stage to investigate dramatic effects when tuning away
from it by adding or changing various parameters. Especially,
the crucial roles played by these magnons in the RH model at
generic equivalent classes, or with spin anisotropic interactions
or in the presence of finite uniform and staggered magnetic
fields will also be briefly mentioned.

The paper is organized as follow. In Sec. II, starting
from the spinor-boson Hubbard model in the presence of
non-Abelian gauge fields [Fig. 1(a)], in the strong-coupling
limit, we derive the rotated ferromagnetic Heisenberg model
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(RFHM), also stress its crucial differences than the previously
well-known models such as the Heisenberg model [1,2],
Kitaev model [18,19], Dzyaloshinskii-Moriya (DM) interac-
tion [20,21], and some other strong-coupling models [22,23].
In Sec. III, we introduce the Wilson loops [Fig. 1(b)] to
characterize gauge equivalent classes and frustrations of
the RFHM. We identify an exactly solvable line in the
non-Abelian gauge parameter space and also determine all
the discrete symmetries, especially a hidden spin-orbital
coupled continuous U(1) symmetry. We determine the exact
ground state [Fig. 2(a)] and its symmetry-breaking patterns.
In Sec. IV, by using spin wave expansion (SWE), we will
determine the excitation spectra of commensurate magnons
and incommensurate magnons [Figs. 2(b), 4]. We will also
compute their contributions to the many thermodynamic
quantities such as the magnetization, specific heat, uniform
and staggered susceptibilities, the Wilson ratio, and also
the finite temperature phase diagrams (Fig. 3). In Sec. V,
we determine all the spin-correlation functions such as the
uniform and staggered, dynamic and equal-time, longitudinal
and transverse, normal, and anomalous spin-spin-correlation
functions. We use the hidden spin-orbital coupled continuous
U(1) symmetry to derive exact relations among different spin-
correlation functions. We specify how the incommensurate
magnons will split the equal-time spin-structure factors into
two peaks located at their two gap minima (Fig. 5). We stress
the asymmetric shape of the uniform normal spin-structure
factor, which can be measured by light or atom scattering
cross section. In Sec. VI, using high-temperature expansion,
we will evaluate specific heat and equal-time spin-structure
factors. We stress that in principle, the whole set of Wilson
loops can be measured by the specific heat measurements
at high temperatures. In Sec. VII, we perform a local gauge
transformation to a basis where the hidden spin-orbital U(1)
symmetry becomes an explicit U(1) symmetry. We contrast
the gauge field configurations in the U(1) basis [Fig. 7(a)]
against quantum spin Hall effects [Fig. 7(b)] realized in recent
experiments [11-13]. We propose a scheme how the U(1) basis
can be achieved by some possible combinations of previous
experiments to realize staggered magnetic fields [7,8] and
recent experiments to realize quantum spin Hall effects. All
the thermodynamic quantities are gauge invariant (up to some
exchange between uniform and staggered susceptibilities), but
spin-correlation functions are not. In Sec. VIII, we reevaluate
all the spin-correlation functions in the U(1) basis at both
low and high temperatures, then contrast with those in the
original basis. In addition to its potential to be more easily
realized in future experiments, another advantage of the U(1)
basis is that the asymmetry in the light or atom scattering
cross sections in the original basis (Fig. 5) can be eliminated
in the U(1) basis (Figs. 8 and 9), so all the commensurate
magnons and incommensurate magnons can be more easily
detected in the U(1) basis. In Sec. IX, we discuss experimental
realizations of the RFHM, higher-order corrections in the
SWE, and a possible incommensurate superfluid at weak
coupling U/t < 1. We also stress the important roles of these
magnons in driving quantum phase transitions when tuning
away from the solvable line by various means changing («, 8),
spin anisotropic interactions, and external magnetic fields.
Some technical details are presented in the four Appendixes.
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All the physical quantities shown in all the figures are made
dimensionless.

II. SYNTHETIC ROTATED SPIN-S HEISENBERG MODEL
IN THE STRONG-COUPLING LIMIT

The pseudospin 1/2 boson Hubbard model at integer fillings
"(b]ﬁ);]-’_ bib 1) = N subject to a non-Abelian gauge potential
is

, U
Hy,=—tY [blio)U" b(jo') + He] + 5 > (i = NY,
(i,4) i

ey
where 0 = 1, stands for the two hyperfine states which are
|F,mp) = |1, —1),]2, — 1) used inRef. [11] or |2,2),|2, — 2)
used in Ref. [13], the U; = ¢'%%, U, = ¢'#% are the non-
Abelian gauge fields put on the two links in the square
lattice [Fig. 1(a)], n; =n;4 +n;, is the total density. In
this paper, we focus on spin-independent interaction. This is
probably the most relevant experimental situation, because
the spin-dependent energies are typically much smaller than
the on-site interaction. However, the dramatic effects of
spin-dependent interactions Eq. (24) will be mentioned in
the Sec. VII and Sec. IX. Following Ref. [17], we find the
Wilson loop around one square W, = Tr[U, UszlUgl] =
2 —4sin’* asin® B. The W, = £2 (|W| < 2) correspond to
Abelian 6 = 0,7 (non-Abelian) regimes [Fig. 1(b)]. Similar
to Ref. [17], the other two Wilson loops around two squares
oriented along the x and y axis are W;, , = 2 — 4 sin? 2« sin’ 3,
W,y = 2 — 4sin? o sin? 28. In the following, we focus on the
strong-coupling limit U >>> t. The possible superfluid states
at weak U <t coupling will be briefly mentioned in the
conclusion section.
In the strong-coupling limit U >> ¢, to leading order
in t2/U, we get a spin S = N/2 rotated ferromagnetic

i+ =
y 3
N
Nl g
<v Q.
[v'=
ao,
i R(%,2a)
(a)

FIG. 1. (Color online) (a) For the bosonic model Eq. (1) [the
rotated Heisenberg (RH) quantum spin model Eq. (2)], the non-
Abelian gauge potentials U; = ¢/, U, = €' (blue or dark gray)
[the two rotation matrices R,, R, (red or light gray)] with directions
are put on the two links x, y inside the unit cell respectively. (b) Wilson
loop Wg(e,B) of the RH model Eq. (2) reaches maximum, 3, at the
Abelian points, minimum,—1, in the most frustrated regime. Shown
at the bottom is the dashed line (« = /2, 8) focused on in this paper.
The x stands for the most frustrated point 8 = /4.
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Heisenberg (RFH) model:
Hpy = —J Y [SER (%208}, + S{R™(5.28)S0 5]
2)

with a ferromagnetic (FM) interaction J = 4%/ U and the sum
is over the unit cell 7 in Fig. 1(a), the R(X,2w), R(9,28) are
two SO(3) rotation matrices around the %, § spin axis by angle
2w, 28 putting on the two bonds x, y respectively [Fig. 1(a)].
Obviously, at « = g = 0, the Hamiltonian becomes the usual
FM Heisenberg model H = —J > _,»'S; - S;. In fact, when
expanding the two R matrices, one can see that Eq. (2)
leads to a Heisenberg [1] + Kitaev [18,19] + DM inter-
action [20,21]: Hy; = —J[Z(m JgSi-S; + Z(ij)a Jg S8+
ZWM Jaa-S; x S;1, where a=2%,9, Jj =cos2aJy =
cos2B; Ji =2sin*a,Jy =2sin? B and J} = sin2a,J) =
sin28. However, as we show in the following, many deep
physical pictures and exact relations can only be established
in the R-matrix representation Eq. (2).

Note that there are other strong-coupling models. For
example, Ref. [22] studied the effects of U on Kane-Mele
model [3,4] (called the Kane-Mele-Hubbard model with the
S* conserving SOC), focusing on the stability of topological
insulator and the corresponding helical edge states against
the interactions U. Reference [23] studied the time-reversal
invariant Hofstadter-Hubbard model of spin 1/2 fermions
hopping on a square lattice subject to an Abelian flux ¢ = p/q.
This is the quantum spin Hall effects model in Fig. 7(b). The
RH model Eq. (2) is in a completely different class than these
models. It will be contrasted with the quantum spin Hall effects
in Sec. VIII. The rotated antiferromagnetic Heisenberg (RAF)
model with J = —4¢%/U will be mentioned in Sec. IX.

III. CLASSIFICATION BY WILSON LOOPS AND
AN EXACTLY SOLVABLE LINE

The advantages of RHM form in Eq. (2) is significant: It
is much more than its beauty and elegance; it contains deep
and important physics and lead to many important physical
consequences. Only in this representation can one introduce
Wilson loops Wk for the quantum spin models to characterize
equivalent classes in the quantum spin models. The Wilson
loops W can be used to establish many highly nontrivial
exact relations presented in the main paper and also the four
Appendixes. These exact relations are extremely important to
put various constraints on any practical calculations such as
spin wave expansion (SWE) in the next section.

The R-matrix Wilson loop Wy around a fundamental
square [Fig. 1(a)] is defined as Wy = Tr[RXRyR;lRV’l] =
[cos(2a)+ cos(28)— cos(2a) cos(2B8)][2+ cos(2a)+ cos(28)
— cos(2a)cos(2B)] to characterize the equivalent class
and frustrations in the RH model Eq. (2). The W =3
(Wg #3) stands for the Abelian (non-Abelian) points
[Fig. 1(b)]. For example, all the four edges and the
center belong to Abelian points Wy = 3. All the other
points belong to non-Abelian points [Fig. 1(b)]. The
other two Wilson loops around two squares oriented
along x and y axis are Wpg, = [cos(4a) + cos(28) —
cos(4a) cos(2B8)][2 + cos(4a) 4+ cos(2B) — cos(4a) cos(28)]
and Wpg, = [cos(2a) + cos(48) — cos(2a) cos(4B)]1[2 + cos
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(2a) 4+ cos(48) — cos(2) cos(4B)]. The relations between
two sets of Wilson loops in Egs. (1) and (2) are in two-to-one
relation due to the coset SU(2)/Z, = SO(3). For example,
the Abelian points W = +2 correspond to W = 3. We stress
that any RH model with the same set of Wilson loops can
be transformed to each other by performing local SO(3)
transformations and belonging to the same equivalent class.
As shown in the following, the classification according to
the Wilson loops can be used to establish connections among
seemingly different phases. Most importantly, as shown
in Sec. VI, we show that the whole set of Wilson loops
can be mapped out by measuring the specific heat at the
corresponding orders in the high-temperature expansion.

In the S — oo limit, the RH model Eq. (2) becomes
classical. Some interesting results on the possible rich classical
ground states at some sets of general («,8) in the Heisenberg-
Kitaev-DM representation were attempted numerically in
Refs. [24,25]. Here, we plan to study the quantum phenomena
in the RH model at generic («,f). However, it is a very
difficult task, so we take a divide-and-conquer strategy. First,
we identify an exact solvable line: the dashed line o = 7/2,
0 < B < /2 in Fig. 1(b) and explore new and rich quantum
phenomena along the line. Then starting from the deep
knowledge along the solvable line, we will try to investigate
the quantum phenomena at generic («, ). In this paper, we
will focus on the first task. The second task will be briefly
mentioned in Sec. IX (Fig. 10) and is a subject for future
research. In the past, this kind of divide-and-conquer approach
has been very successful in solving many quantum spin
models. For example, in the single-channel (multichannel)
Kondo model, one solves the Thouless (Emery-Kivelson)
line [26,27], then does the perturbation away from it. In the
quantum-dimer model, one solves the Rohksa-Kivelson (RK)
point, which shows spin liquid physics [28], then one can study
the effects of various perturbations away from it [29]. For the
Heisenberg-Kitave (HK) model [5] and its various extensions,
one solves the FM or AFM Kitaev point [18,19], which shows
spin liquid and non-Abelian statistics. Then one can study
various Kitaev materials away from the Kitaev point.

The Wilson loops along the dashed lineare W = 2 cos 28 #
+2, W, =2, W, =2 —4sin*2Bin H, and Wg = 2cos4p +
1#3, W, =3, Wg, = 4cos>4f — 1 in Hgy. So all the
points along the dashed line except at the two Abelian
points 8 = 0,7 /2 display dramatic non-Abelian effects. At
the two ends of the dashed linea =7 /2, 8 =0(8 = n/2) in
Fig. 1(b), we get the FM Heisenberg model in the rotated ba-
sis H=—J ZW) S; ~Sj, where the S; = R(%,7n))S; [S; =
R(X,mn1)R(¥,mn,)S;]. One can also see Wr(B) = Wgr(m/2 —
B), which indicates 8 and /2 — B can be related by some local
rotations. Indeed, it can be shown that under the local rotation
S; = R(%,m)R($,7n»)S;, B — /2 — B. The most frustrated
point with Wg = —1 is located at the middle point B = 7 /4
[Fig. 1(b)]. One can also show that y_,(—1)™*S; is a conserved
quantity [Hp, Zi(—l)’?bj o”b;] = 0. This spin-orbit coupled
U(1) symmetry will become transparent after a local gauge
transformation to the U(1) basis in Eq. (23). Obviously, this
spin-orbit coupled U(1) symmetry is kept in the RH model
Eq. (2) [Hgu, >_;(—1)*S;'] = 0. It will be used to identify the
exact quantum ground state and also establish exact relations
among various spin-correlation functions.
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FIG. 2. (Color online) (a) The exact ground state is the Y -x state
where the first capital letter indicates spin polarization along the Y
direction, the second small letter indicates the orbital ordering along
the x bond. (b) The minima position ko = (0, k?) in the RBZ of
the acoustic branch and its gap A_(8) at the minima. When 0 < 8 <
B1 = arccos[v 1 + NG /2] ~ 0.1447, there is one minimum pinned
atk® = Owiththe gap A_(8) =sin? B. When 8y < f < B =7/2 —
B, there are two minima at :l:k;? = Farccos[/1 + sin2 28/tan 28]
with the gap A_(8) =1 — /1 +sin?28/(2sin2p). Only k% >0
is shown here. When B, < B < m/2, there is one minimum  at
k% = L7 with the gap A_(8) = cos® 8. The A ;(B) is the minima gap
of the optical branch. When 8 < 7 /4, the minimum is k; = (7r/2,0)
with the gap A (B) =1 — %cos 28. When B > m/4, the minimum
is kj = (w/2,m) with AL(B) =1+ %cos 2B. The gaps of both
branches reach maximum at the most frustrated point 8 = 7 /4 in
Fig. 1(b).

It is convenient to make a R, (7 /2) rotation to rotate spin Y
axis to Z axis [more directly, one can just put So, along the
y bonds in Fig. 1(a)], then the Hamiltonian Eq. (2) along the
dashed line can be written as

1
Hi=—1% [;Sﬁs,ix TS — SIS

+e PSSt )+ SES?

1 ~
+ E(eIZﬁS;_S' i+y i z+y]' (3)

i+y

All the possible symmetries of H; are analyzed in Appendix A.
It is shown in Appendix B that the Y-x state with the ordering
wave vector (7,0) [Fig. 2(a)] is the exact ground state with the
ground-state energy Eg = —2NJ S?. The conserved quantity
>.(—1)x S reaches its maximum value NS in the ground
state. The symmetry-breaking patterns of the Y-x state are
analyzed in Appendix B.

IV. THERMODYNAMIC QUANTITIES
AT LOW TEMPERATURES

In this section, by using spin wave expansion (SWE)
[30-34], we will first discover C-Cy, C-C,, and C-IC magnons,
then evaluate their contributions to the magnetization, uniform
and staggered susceptibilities, specific heat, and Wilson ratio
at low temperatures.
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A. Commensurate and incommensurate magnons

Introducing the Holstein-Primakoff (HP) bosons [30-34]
St =428 —dalaa, S~ =afv/2S —afa, S =5 —a'a for
sublattice A and ST = bTv/28 —btb, S~ = /25 — bfbb,
§% = bth — § for the sublattice B in Fig. 2(a). By a unitary
transformation in k space:

ax sm%k cos% ok @
be) cos"zk sm— A

cos k.

where sin 6y = 8 ——  cosbg =
\/cosz ky+sin? 28 sin? k,,
sin2p sink, . . . .
in2p sink, , the Hamiltonian H; can be diagonalized:
\/cosz ky+sin? 28 sin? ky,

Hy = Eo+4J8 Y [E (Kofor + E_ (KA (5)
k

where Ey= —2NJS?> and k belongs to the reduced
Brillouin zone (RBZ) and Ei(k)=1— %cos 2B cosk, &=
1+/cos? k, + sin> 2B sin? k, are the excitation spectra of the
acoustic and optical branches, respectively. Note that sin 6, is
even under the space inversion k — —Kk, but cos 6 is odd.

At the two Abelian points 8 = 0,7 /2, as shown above, the
system has SU(2) symmetry in the correspondingly rotated
basis, Eq. (5) reduces to the FM spin wave excitation spectrum
® ~ k? at the minimum (0,0) and (0,7) respectively. The posi-
tions of the minima and the gap at the minima of both branches
are shown in Fig. 2(b). One can see that the Y-x ground
state supports two kinds of gapped excitations. (i) When
0 < B < By, it supports commensurate magnons C-Cy with
one gap minimum pinned at (0,0). Here, we use the first letter to
indicate the ground state, the second the excitations. Similarly,
when 8, < B < m /2, commensurate magnons C-C, with one
gap minimum pinned at (0, £ ). (ii) In the middle regimes
B1 < B < Pa, it supports incommensurate magnons C-IC with
two continuously changing gap minima at (0, :I:k(;) tuned
by the SOC strength (Fig. 3). In fact, at the most frustrated

T/2)
04}

0.3‘ I
0.2
X|state
0.1 /\Jf\
W 03 B, 04 ‘/3/11

0 0.1 8, 0.2 0.5
T=0 L GG | c-Ic [ CC, |

~
~ ~

u(2)

Paramagnet

wn
c
N
=
(%)

FIG. 3. (Color online) The finite temperature phase diagram
along the dashed line in Fig. 1(b). Along the dashed line, the Y-x
ground state supports C-Cy, C-IC, C-C, magnons consecutively.
There is an enlarged symmetry at § = m /4. The finite temperature
phase transitions are controlled by the renormalization group (RG)
flow fixed point at (8 = = /4,T,), where T, is the maximum
temperature at 8 = 7 /4. Its universality class will be speculated in
Sec. VIII C. The arrows indicate the RG flows.
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point 8 = /4, there are two gap minima :I:k?, = #£m /2, which
indicates a2 x 4 short-ranged commensurate orbital structure,
but there is no pinned plateau near this point. In general, kS
is an irrational number at 8; < 8 < B,, justifying the name
C-IC. Both kinds of magnons have striking experimental
consequences in all the thermodynamic quantities at finite 7
to be discussed in the following.

B. Magnetization, specific heat, uniform and staggered
susceptibilities, and Wilson ratio

At the two Abelian points, at any finite 7, the spin
wave fluctuations will destroy the FM order as dictated
by the Mermin-Wegner theorem (Fig. 3). However, at any
non-Abelian points along the dashed line, although the ground
state remains the Y-x ground state [Fig. 2(a)], there is a
gap A_(B) in the excitation spectrum, so the order survives
up to a finite critical temperature 7, ~ A_(B) (Fig. 3). At
low temperatures T < T, in Fig. 3, one can ignore the
optical branch. Expect at 8;(8; = m/2 — ), the acoustic
branch can be expanded around the minima k =k +q

as E_(q;8)=A_(p)+ 2m BT 2m (ﬂ), where the masses
my(B),my(B) given by

2 Bel
mp) = {2sm 28/ 1 +sin228, Bell
2/(|cos2B| —sin?2B), B el

my(ﬂ) = 2sin2ﬁ\/m ﬂ cll (6)

| cos 2B|—sin2 28
where the regime I = (0,81) U (82,7/2) and the regime II =
(B1,B2). The two masses are shown in Fig. 4.

We then obtain the magnetization M(7T) and specific heat
C(T):

m,m
M(T)=8— Y"1 ?T,
2

(7
C(T) = *5— ";;m"’(AZ/T)e—A/T,

6-:21
sl

Al

51

2

|

1 1 TTB/TT
03 B 04 05

0 01, 02

FIG. 4. (Color online) The two anisotropic effective masses
my(B) = m(B) of the magnons. The equality holds only at B =
0,7 /4,7 /2. m(B) diverges near the two C-IC boundaries m ,(8) ~
B—Bil""i=1.2.
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where A = A_(f) and one can judge the product of the two
masses m,m, [or DOS D(e) = @9(6 — A_)] is gauge
invariant. Near 8; or B,, the mass m,(B) is noncritical,
my(B) ~ |B — B1|~" (Fig. 4). It is shown in Sec. V that the
Y-x ground-state order at (;r,0) and its magnetization M(T')
in Eq. (7) are determined by the sharp peak position and
its spectral weight, respectively, of the equal-time staggered
longitudinal spin-structure factor S¥*(k) Eq. (15). So both
quantities in Eq. (7) can be measured by longitudinal Bragg
spectroscopy [35,36] and specific heat experiments, respec-
tively [37,38].

2 4

At B = pi and B, E_(q; ) = A_(B) + % + T, Eq. (1)
should be replaced by M(T)=S — T34 /T, C(T) =
A2/T3e=2/T | which implies my(B1) can be cut off at low
T asm(Br1) ~ T2 n fact, at B = By, the DOS diverges as
D(e) = (e — A)"V*0(e — AL).

By adding a uniform magnetic field —h, Y ; S; to the
Hamiltonian Eq. (3), following the similar SWE procedures,
we can get the expansion of the free energy in terms of
h,: Flh,] = F[0] — %X,,hﬁ + - - -, which leads to the uniform
susceptibility:

Mty my| cos 28| T —A/T
e 2 € ’

Bel

Xu(T) = .
Bell

(®)

_ mi%)efA/T’

By adding a (m,0)
—hy Y ;,(=1)*S) to the

staggered magnetic field
Hamiltonian Eq. (3), the

free-energy expansion in terms of kg Flh] =
F[0] — Mhg — %Xxh% +--- leads to the staggered
susceptibility:
/i, m
xs(T) = 38T ©)
T

At B=pB; and B,, one can put m,(B;) ~ T2 in
Egs. (8), (9), one can get x,(T)~ T4 2/T y(T)~
T—1/40=A/T

The staggered magnetic field &, couples to the conserved
quantity Y, (—1)*S;, so it can be solely expressed in term of
the two effective masses and the gap. From the specific heat
C in Eq. (7) and the staggered susceptibility x, in Eq. (9), one
can form the Wilson ratio [17,26,27]:

2
R, — 1) _ <Z) , (10)
) A

which only depends on the dimensionless scaling variable of
T /A. Coincidentally, it is the same Wilson ratio as that in the
Np = 4 phase in Ref. [17].

New quantum phases and phase transitions at a finite
uniform or a staggered magnetic fields will be mentioned in
Sec. IX.

V. SPIN-SPIN-CORRELATION FUNCTIONS
AT LOW TEMPERATURES

To directly probe the existence of the C-Cy, C-IC, C-C,
magnons, one needs to evaluate their experimental con-
sequences in spin-spin-correlation functions. For the two
sublattice structures A and B [Fig. 2(a)], one can define [1]
the uniform spin M = (S4 + Sp)/2 and the staggered spin
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N =S, — Sg. Then one can define the uniform Sft’”(k,t) =
(M;(k,t)M,,,(—Kk,0)),/,m = 1,2,3 and staggered Sﬁ’"(k,t) =
(Ni(K,t)N,,(—Kk,0)),l,m = 1,2,3 spin-spin-correlation func-
tions [1]. The spin-orbit coupled U(1) symmetry dictates that
there is no mixing between the longitudinal and transverse
components. In the following, one only needs to study the
uniform and staggered longitudinal and transverse spin-spin-
correlation functions separately.

A. Peak positions of the dynamic and equal-time transverse
spin-structure factors at low temperatures

As shown in Appendix C, the spin-orbit coupled U(1)
symmetry dictates the exact relations between the uniform
and staggered correlation functions

S~ (ko) = S+ (k.0),

(11
SH(k,w) = =S (k,w).
The P, symmetry dictates that both S~ and S~ are even
under k, — —k,.
From Eq. (5), one can evaluate the uniform normal and
anomalous transverse dynamic spin-spin-correlation func-
tions, which has the dimension [1/w]:

in? &

SH(kw) = n{l_e—i/r[S(a) —Ef) = 8w+ ED)]
26

COos 2 _ —

++ _ 7 sinb oy +
S, (ko) = T —o-alT {[6(w — E) — 8(w + E{)]

—[8(w — E;) — 8(w + E; )]}, 12)

whose poles are given by the excitation spectra w = EL(K)
in Eq. (5) and the spectral weights are determined by the
coefficients of the unitary transformation in Eq. (4). Both the
excitation spectra and the corresponding spectral weights in
S;F~(k,w) can be measured by the sharp peak positions of the
inelastic scattering cross sections of light or atom dynamic
transverse Bragg spectroscopy at low temperatures [35,36].
Unfortunately, S} (k,w) may not be directly measurable.

Due to the gap in the ground state, it is easy to see the
normal transverse susceptibility x T (T) = S: “(k— 0,w =
0) = 0 and the anomalous transverse susceptibility x +(T) =
Stk — 0,0 = 0) = 0. It is important to observe that the
spectral weights in S~ (k,w) are not symmetric under k, —
—ky, but those in S;*(k,w) are. This is due to the breaking
of the P, and P, symmetries of the ground state analyzed in
Appendix A. This is the main difference between the dynamic
normal and anomalous spin-correlation functions.

From above equation, we obtain equal-time spin-structure
factor S (k) = f do gim (k,w) which is dimensionless:

u,s 2w Tu,s
S cos? %k sin? %k
=-— +
¢ eE/T — 1 BT —

1 1
ET 1 BT 1)
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where one can see the normal structure factor S}~ (k) is not
symmetric under k, — —k,, while the anomalous S; (k) is.

One can see that at T < T, ~ A_(B) (Fig. 3), the acoustic
branch dominates over the optical branch, then in the regime
II = (B,B2)., the peak position of S~ (k) and S (k) are
determined by the two minima positions ko = (0, & kg) of
the acoustic branch shown in Fig. 2(b). As said in Sec. 1V,
expect at B1(B, = /2 — B), the excitation spectrum can
be expanded around the minima k =k 4+ q as E_(q; 8) =

2
AB)+ zt + S "7 Where the masses m.(B), m(p) are

given above Eq. (7). We reach simplified and physically
transparent expressions:

A—(B) ,(

1 0
S;_(k) ~ 5 + cos? ?ke_f T

+

2nu )/ T

(14)
ST (k) ~ %Sineke 25 kgt /T
where k belongs to reduced Brillouin zone (RBZ). At the
two C—I? boundaries 8 = B, B,, it becomes a non-Gaussian
~e 16m(j§ﬂ>r .

Because the peak-splitting process only happens in the
ky, axis, we only show S/~ (k) and S]*(k) at k, =0 in
Fig. 5 and Fig. 6, respectively. Along the k, axis, it is a
Gaussian peak with the width o, = /m ()T . In fact, when
drawing Fig. 5 and Fig. 6, we used the Eq. (13) where we
took the complete expression Eq. (5) for £, and dropped
the optical branch. We also drew the same figure using
Eq. (14) and found very little difference at several temperatures
T/A_(B)=1/2,1/3,1/5,1/10, so Eq. (14) is quite accurate.

Shown in Fig. 5 is ;7 (k). At C-C regime, the asymmetric
peak is pinned slightly right to (0,0). At C-C, regime, the
asymmetric peak is pinned slightly left to (0, = 7). At C-IC

6X10% 7 (K)-1/2,

— B=n/8
- = = fB=n/4
- . - p=31/8 5
4
fixed T=A_(B)/5

PN
1.0

FIG. 5. (Color online) The asymmetric shape of the uniform
spin-structure factor S}(0,k,) at the same T/A_(B) for C-Cy at
B = /8 (blue or solid line), C-IC at 8 = /4 (red or dashed line),
and C-C, at § =3m/8 (green or dash-dotted line). At g = /8,
the single peak is slightly shifted from zero to the right due to the
spectral weight cos” 6;/2 in Eq. (13). At 8 = 7/4, the ratio of two
(red or dashed line) Gaussian peak heights located at k0 ==xr/21is
f“ ~ 5.8. At § = 37/8, the single peak is slightly shifted from =

to the left due to the spectral weight cos® 6, /2 in Eq. (13). S7(0, ky)
can be directly detected by angle-resolved transverse atom or light
Bragg spectroscopies. As to be shown in Figs. 8 and 9, the asymmetry
is eliminated after transforming to the U(1) basis.
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. — F=m8 3.5X10% S(K) 3
v - = - B=m/4 .
\- - B=3m/8 /

, fixed T=0_(B)/5 /-
\‘ I/ \ /ﬁ\\ .
\ /I \ ,/
' \
\ ! v
Y "
_-7 '\ /'\\kiﬁ.1
-1.0 -0.5 0 0.5 1.0

FIG. 6. (Color online) The symmetric Gaussian shape of the
uniform anomalous spin-structure factor S;*(0,k,) at the same
T/A_(B) for C-Cy at B =m/8, C-IC at B =m/4, and C-C,, at
B =3m/8. It becomes a non-Gaussian only near the two C-IC
boundaries. The Gaussian peak’s height and width are determined
by the gap in Fig. 3 and the effective mass in Fig. 4 respectively. The
ratio of the two peak heights [(red or dashed line)/(blue or dash-dotted
line)] is 1/+/2. Unfortunately, S;"(0,k,) may not be directly detected
by atom or light Bragg spectroscopies.

regime, the peak splits into two Gaussian peaks located at (0, £
kg) continuously tuned by the SOC strength. Well inside the

C-IC regime, the two Gaussian peaks have the heights %(1 +
cos Op0)e”2-P/T and the same width along the k, axis oy, =

/my(B)T. Due to asymmetry under k, — —k,, the ratio of
the two Gaussian peaks is (1 + cos Qko)/(l + cosO_ ko) Atp =

/4, ko = /2, the ratio becomes g“ ~ 5.8. So the ratio of

the two peak heights, the heights, and their widths are effective
measures of the unitary transformation Eq. (4), the gap, and the
effective mass, respectively. All these features can be directly
measured by the angle-resolved light or atom transverse Bragg
spectroscopy at low temperatures [35,36]. The C-IC has a
larger gap at the center in Fig. 3, and so can be more easily
detected than C-Cy and C-C,. The two split Gaussian peaks
driven by C-IC magnons in the transverse spin-structure factors
S,j’ ~(k) is a unique and salient feature of the RH model.
Shown in Fig. 6 is S}t (k). At C-Cy regime, the Gaussian
peak is pinned at (0,0). The height and width of the Gaussian
peak s given in Eq. (14). At C-C,, regime, the peak is pinned at
(0, £ 7). Atthe C-IC regime, the peak splits into two Gaussian
peaks located at (0, & k?,) continuously tuned by the SOC
strength. They have the same height § sin e =-/T and the
width o, = \/m,(B)T. The ratio of the peak height at the
I-IC point over that at the C-Cy (or C-C,) point is given by
sinb, < 1. At B = 1/4,kY = 7/2, the ratio becomes 1/+/2.
So the ratio of the peak heights, the height itself, and its width
are effective measures of the unitary transformation, the gap,
and the effective mass, respectively. Unfortunately, S (k)
may not be directly measurable by the Bragg spectroscopy.

B. Longitudinal spin-correlation functions: Ground state
and magnetization detection

One can also evaluate the uniform and staggered connected
dynamic longitudinal spin-spin-correlation functions at low
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temperatures:
_ 27 2 04 + 044k _
SE(k.w) = WZ{C Tq*[ nf(l+nt )8+ EF —Ef ) +n,(1+n,, )8+ E; — E )]
q
20, +6 _ _ _ _
+ sin? qTq“‘[n;(l +n, 8@+ Ef —E ) +n (141, )8w+ E, E;’+k)]}
5% (k )—2—”2 200 =0k () ot )5+ EF — B+ 0T (1L, 08 +E; —E; )
M ,w) = N COS B I’lq l/lq+k w q q+k I’l nq+k w q+k

q

+ sin

6, —0
2 Yq q+k — +
B — [n;(l +nq+k)8(a)+ Eq —

E ) +n (1 +nr 08w+ E; — w%ﬂ} (15)

which include both the intraband transitions and the interband transition between the optical E ,j and the acoustic E, .
It is easy to see that due to the summation over the momentum transfer in Eq. (15), so the dynamic connected longitudinal
spin-spin-correlation functions will just show a broad distribution, in sharp contrast to the transverse dynamic correlation functions

Eq. (12). One can also evaluate the uniform y,(7T) =

S¥(k — 0,0 = 0) and (7,0) staggered susceptibility x,(7) = S¥(k —

0, = 0) and reproduce the results in Eqs. (8) and (9), respectively.
The equal-time longitudinal spin-structure factors follow ;% (k) = [ g2 do §22 (K ):

SE(k) =
q

1 6, —0
N Z {cos2 BB L 5 atk

q

S (k) =

which, at low temperatures T < A,(,B), can be simplified to:

an—l— Zco
an + = Zcos

q-‘rk_,

Slzlz(k) g Mgtk +-

q+k_,

57 (k) = nong

a7
where n, =nS +n_ and --- mean the subleading terms at
low temperatures. Again, due to the summation over the
momentum transfer in Eq. (17), the longitudinal spin-structure
factors will just show a broad distribution, in sharp contrast to
the transverse spin-structure factors in Eq. (13).

Note that in the staggered connected dynamic (equal-time)
longitudinal spin-spin correlation function S¥*(k,w) [S¥(k)]
in Eq. (15) [Eq. (16)], we have subtracted the magnetization
part M?(T)8x0278(w) [M*(T)dko] due to the symmetry
breaking [48] in the quantum ground state in Fig. 2(a). The
magnetization M(T) is given by Eq. (7). The symmetry
breaking and the magnetization can be detected by the
sharp peak at momentum (sr,0) [(0,0) in the RBZ] and its
spectral weight of the longitudinal Bragg spectroscopy at low
temperatures [35,36].

VI. SPECIFIC HEAT AND SPIN-STRUCTURE FACTORS
AT HIGH TEMPERATURES

It was known that the spin wave expansion only works
at low temperature T <K T.. At T > T,, the magnetization
vanishes, all the symmetries of the Hamiltonian Eq. (3)
analyzed in Appendix A were restored, so there isno A and B
structure anymore. At high temperatures 7 >> T, one needs to
use the high-temperature expansion by expanding the spectral

1 6, + 0,11 _ _ .
¥ Z {cos2 %[n;(l +n;r+k) +n, (1 +n, )1+ sin®

[nf (1 +n} ) +n (1 +n, )]+ sin®

27 Pu,s

6, +06 _ _
’T‘”k[nj(l +ng ) +n, 1+ n;k)]}

16
9q _9q+k + — - + (o
T[nq(l +n, ) +n,(I+n )l

(

weight e~ /T = 377 ! nl!)” A7 Tn this section, we focus on

S=1/2.

A. Specific heat and Wilson loop detections

We also obtain the high-temperature expansion of the
specific heat per site to the order of (J/T)*:

37\ 3 /J\ 12cos4p-33/J\*
= 5) - (5) =)

8\ T 16\ T 128 T

18

which depends on g starting at the order of (J/ T)*. Obviously,
at the two Abelian points 8 = 0,7/2, it recovers that of the
Heisenberg model to the same order, reaches the minimum at
the most frustrated point 8 = /4 [Fig. 1(b)]. It is important
to observe that cos48 is nothing but the Wilson loop around
a unit cell cos4p = ¥&=L We expect that the whole high-
temperature expansion series of the specific heat C,/N can
be expressed in terms of the whole set of Wilson loops order
by order in % This set up the principle that the whole set of
Wilson loops with n edges in the RH can be experimentally
measured at the corresponding orders of (J/T)" by specific
heat measurements [37,38].

B. Equal-time transverse spin-structure factors
at high temperatures

At T > T, because all the symmetries of the Hamiltonian
Eq. (3) were restored, there is no A and B structure anymore.
We get the equal-time normal and anomalous transverse
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spin-structure factors to the order of (J/T)*:

ST (k) = J 7 cos(ky + 2B)
AT 1672
2
1 Tz[cosZk + cos(2k, +48)]
J J?
++ K
ST (K) (4T 16T2>coskx

2
+ # cos2B[cos(ky + ky) + cos(k, — k)],

(19)
where the explicit dependence on the gauge parameter § in
St=(Kk) can be easily detected by angle-resolved transverse
light or atom Bragg scattering experiments [35,36]. Again, one
can observe that S;“ ~(k) is not symmetric under k, — —k
but S+ (k,w) is.

In order to make comparisons with the low-temperature
expressions Eq. (13), and also contrast with the corresponding
expressions in the U(1) basis to be discussed in Sec. VIII, we
split Eq. (19) into sublattice A and B in Fig. 2(a), then form
uniform and staggered spin-structure factors:

¥

7
S )_(4T 16T2)Cos(ky+2ﬁ)

2

1T2

J
Sk ke
w0 (4T 16T2> o

[cos 2k, + cos(2k, + 4p)],

JZ
+ —= cos 2B[cos(k, + k) + cos(k, — k)],

872
(20)
which will be compared to those in the U(1) basis in Sec. VIIL.

C. Longitudinal spin-structure factor at high temperatures

One can also evaluate the equal-time longitudinal spin-
structure factor at high temperatures:

J
SE(Kk) = | —— v
&) <8T+32T2
2
HETE
2

1672

) [cosk, — cosk,]

————[cos 2k, + cos 2k, ]

[cos(ky + ky) + cos(k, — ky)], (21)

which is independent of 8 to the order of (J/ T')*. In fact, it can
be shown that Eq. (21) coincides with that of the Heisenberg
model to the same order. However, we expect the § dependence
will appear in the order of (J/T)*.

In order to make comparisons with the low-temperature
expressions Eq. (15), and also contrast with the corresponding
expressions in the U(1) basis to be discussed in Sec. VIII, we
split Eq. (21) into sublattice A and B in Fig. 2(a), then form

PHYSICAL REVIEW A 92, 043609 (2015)

uniform and staggered spin-structure factors:

J 2
S¥(k) = <—— +

3T 32T2>(COS ky —cosk,)

]2
™ [cos 2k, + cos 2k, ]

2

1672

. J J?
S5 (k) = ST DT (cosky + cosky)

2

+ 3272
2

16T2

which will be compared to those in the U(1) basis below.

——[cos(ky + ky) + cos(k, — k)]
(22)

[cos 2k, + cos 2k, ]

———[cos(ky + ky) + cos(ky — k)],

VII. EXPERIMENTAL REALIZATIONS OF THE RH
MODELS IN THE U(1) BASIS

By a local gauge transformation b; = (io,)"b; on Eq. (1)
along the dashed line in Fig. 1(b) to get rid of the gauge fields
on all the x links, then a global rotation b; = e~ 7%b; to rotate
S to §%, Eq. (1) becomes:

HU(I) - —¢ Z[bT i —i—bT (= l)*zﬁob

+ %Z(ﬁi -

where all the remaining gauge fields on the y links commute.
Obviously, the spin-orbital coupled U(1) symmetry in the
original basis Eq. (1) becomes explicit in this U(l) basis
with the conserved quantity ) §7 =Y 8§’ = Y (~1)S’. In
Fig. 7, we contrast the gauge field configurations in the U(1)
basis with that quantum spin Hall effect realized in recent
experiments [11-13].

A specific experimental implementation scheme for the
U(1) basis in Fig. 7(a) can be suggested in the following.
We first introduce the anisotropy A in the interaction term in
Eq. (23):

y+Hcl]

N)?, (23)

U
Vi) = = 3 iy +nfy + 2hnipniy). - (24)

(a) (b)

FIG. 7. (Color online) Gauge fields in (a) the U(1) basis in
Eq. (23). (b) Quantum spin Hall Hamiltonian realized in recent
experiments [11-13,40-43]. Both are translational invariant along
the y direction, so only one row is shown.
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To keep at the integer filling N, the chemical potential will
also be adjusted accordingly. Now if setting A = 0 and the
chemical potential u(A = 0) = U N/2 to keep the total filling
at (n) = N, the interaction term becomes:

U
Vin(h = 0) = = 3 [0nig = N/2)* + (uiy = N/2)), (25)

where each spin species occupies half-integer fillings N /2.
Then Eq. (23) decouples into two identical copies of spin-up
and spin-down, each is in the SF state for N = 1 forall U (we
set N =1 in the following). For the spin-up, the magnetic
field is +28 alternating along x direction, for spin-down,
the magnetic field is just reversed to keep the time-reversal
symmetry. So for the spin-up, the staggered magnetic field
can be realized in the previous experiments [7-10]. For the
spin-down, as demonstrated in Ref. [13], if it carries opposite
magnetic moment to the spin-up state, then it will experience
the opposite magnetic field. Now one can adiabatically turn
on the interspecies interaction between the two pseudospin
components 2An;4n; , setting A =1 will recover Eq. (23).
The two pseudospin components can be two suitably chosen
hyperfine states for ’Rb or the two isotopes of the highly
magnetic element dysprosium [39]: %Dy and '®*Dy. Note
that by turning on A this way, the U(1) symmetry is kept for
all A (see Fig. 10). The dramatic effects of the spin anisotropic
interaction 0 < A < 1 are a subject for future research [66].
Obviously, in the strong-coupling limit U >> ¢, as A increases,
the system will evolve from the SF state at small A to the
Y-x state at A = 1. We conclude that the U(1) basis could
be realized in some combination of previous experiments to
realize staggered magnetic field [7,8] and recent experiments
to realize quantum spin Hall effects [11-13].

The quantum spin Hall Hamiltonian corresponding to
Fig. 7(b) is

Hosy = —t Y [blbisy + bl b,y + Hel

U
+ lZ(ni — N)%, (26)

where the x is the x coordinate [40—43] of the site i. For
irrational B, this Hamiltonian completely breaks the lattice
translational symmetry. For a rational 28 = p/q, it contains g
sites per unit cell (RBZ is 1/¢ of the original BZ, for details,
see Refs. [40-43]). However, the U(1) basis Fig. 7(a) only
breaks the lattice into A and B sublattices for any (irrational)
value B. So the two Hamiltonian are dramatically different.

As pointed out in Ref. [13], non-Abelian gauge in Eq. (1)
can be achieved by adding spin-flip Raman lasers to induce a
a0, term along the horizontal bond in Fig. 1(a), or by driving
the spin-flip transition with RF or microwave fields. If so, the
original basis can also be realized in future experiments.

It was known [52] that for Vy/E, > 10, where Vj is
the optical lattice potential and E, is the recoil energy, the
spinor boson Hubbard model Eq. (1) is well within the
strong-coupling regime J <« t <« U. For ¥Rb atoms used
in the recent experiments [11-13], the superfluid-insulator
transition is estimated to be Vy/E, ~ 12, so the RH model
Eq. (2) applies well in the regime. Near the most frustrated
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point 8 = m/4, the critical temperature 7. ~ J ~ 0.2 nK.
It remains experimentally challenging to reach such low
temperatures [52]. However, in view of two recent advances of
new cooling techniques [53,54] to reach 0.35 nK, the obstacles
maybe overcame in the near future. Before reaching such low
temperatures, the specific heat measurement [37,38] at high
temperatures to determine the whole sets of Wilson loops order
by order in J/T along the dashed line in Fig. 1(b) could be
performed easily.

Because the U(1) basis can be realized in current exper-
iments, so it is important to work out various experimental
measurable quantities in this basis explicitly. As first stressed
in Ref. [17] that in contrast to condensed matter experiments
where only gauge-invariant quantities can be measured, both
gauge-invariant and non-gauge-invariant quantities can be
measured by experimentally generating various non-Abelian
gauges corresponding to the same set of Wilson loops. Some
quantities such as the absolute value of the magnetization
M(T), specific heat C,, the gaps and density of states are
gauge invariant, so are the same in both basis. The uniform
X« and the staggered susceptibilities x; will exchange their
roles between the original and the U(1) basis. However, the
spin-spin correlations functions are gauge dependent [17], so
will be explicitly computed at both low and high temperatures
in the next section. We will also comment on the nature of the
finite temperature phase transition in Fig. 3.

VIII. SPIN-SPIN-CORRELATION FUNCTIONS
IN THE U(1) BASIS

We first make a local rotation Sn = R(%,mn)S, to get rid
of the R matrix on the x links in Fig. 1(a), then just as in the
original basis, we make a global rotation [48] S, = R.(7 / 2)S,
to rotate the spin quantization axis from Y to Z, we reach the
Hamiltonian in the U(1) basis [49]:

1 _ _
HU(I) =—J Z |:§(SI+SI+X + Si StJ-rFx) + SIZSIZ+X
icA

1 2B o+ ¢— —i2B ¢— ¢+ Z Q2
+§(e PSESi, +e PSS )+ 8PS,

1
+ ¢— - ¢t
=3 [E(Sj Siia + S Sh)+ SIS,

jeB
1 —i2 — i2B o— Z
+ E(e PSrSi, +eS St )+ Sjsjﬂ,], (27)

where A and B are the two sublattices in Fig. 2(a).

By comparing with the Hamiltonian in the original basis
Eq. (3), we can see that in the U(1) basis, due to the absence
of the anomalous terms, such as S*S* or §~S, the U(1)
symmetry with the conservation ), S7 is explicit, but at the
expense of the translational symmetry explicitly broken due
to the local spin rotation S, = R(X,mn)S,. It is easy to see
the exact ground state Y-x in Fig. 2(a) in the original basis
becomes simply a ferromagnetic state along the Y direction in
the U(1) basis.

The symmetry of Eq. (27) can be obtained by performing
the local gauge transformation on the symmetries in the
original basis analyzed in Appendix A.
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FIG. 8. (Color online) The uniform spin-structure factor
S;r_;(l)(k) at T/A_(B)=1/10 for C-Cy at B =m/8, C-IC at
B =m/4, and C-C, at B = 37/8. The ratio of the two peak heights
[(red or dashed line)/(blue or dash-dotted line)] is %(l + %).
By comparing with Fig. 5 in the original basis, one can see the
asymmetry is eliminated. So C-Cy, C-C, and C-IC can be more
easily distinguished in the U(1) basis than in the original basis. As
shown in Ref. [65], another advantage is that it is much more easier
to determine the spin-orbital structures of possible phases when the
system is subject to a Zeeman field or a spin-anisotropic interaction
respecting the U(1) symmetry.

A. Spin-spin-correlation functions at low temperatures:
Spin wave expansions

In the U(1) basis Eq. (27), introducing two sets
of HP bosons ST = +/2S —afaa,S~ = a'v/25 —ala,S7 =
S — a'a for the sublattice A and ST = /25 — bibb,S™ =
b'/2S — bTb,S* = S — b'b for the sublattice B [50], we find
the Hamiltonian in terms of the HP bosons becomes identical
to that in the original basis, so the excitation spectra in Eq. (5)
follow; the unique and salient features of the C-Cy, C-IC,
C-C,, the gaps of the acoustic and optical branches shown in
Fig. 2(b), Fig. 3, and Fig. 4 remain the same in the U(1) basis.
However, as to be shown below, Fig. 5 will be replaced by
Figs. 8 and 9.

- §i§§§6X10'2‘SJGm(k)-1

N- - =318

\

Yo
\ .
\‘ / Y
//( N
- * '/ k;/r[
-1.0 -0.5 0 0.5 1.0

FIG. 9. (Color online) The uniform spin-structure factor
SI[,(I)(k) at T/A_(B) = 1/3. It is instructive to compare with Fig. 5
in the original basis.
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1. Sharp peak positions of dynamic transverse
spin-spin-correlation functions: Excitation spectra

Note that the U(1) symmetry dictates that there are no
anomalous spin-spin-correlation functions:

S0 &w) = S Kw) = 0. (28)

Using the HP bosons, we find the uniform and staggered
transverse dynamic spin-spin-correlation functions:

_ 1 — sin Qk
Sev(k.o) =7T|:1_6W5(60 —ED
1 inH
% - ED)
1—e E/T k 29)
4 14+ sin@k +
SSYU“)(k,a)) =TT ma(a) — Ek )
1 —sin6; _
T—emm @B >]’

which is indeed different from Eq. (12) in the original basis.
Both S, (k.w) and S} (K,@) are symmetric under the
space inversion k — —k. As shown in Appendix D, perform-
ing the local spin rotation S, = R(&,7n,)S, on Eq. (29) does
not lead to Eq. (12).

Both the uniform and staggered transverse dynamic spin-
spin-correlation functions in Eq. (29) can be easily detected by
light or atom Bragg scattering experiments [35,36]. So both
the optical E;' and the acoustic E; excitation spectra can be
extracted from the peak positions of scattering cross sections
of these experiments. Taking 7 — 0 limit in Eq. (29), we can
see that the DOS of the spin excitations is given by

d’k
D) = [ S Sinn ko) + Skl GO

which can be detected by energy Bragg spectroscopy [35,36]
or more directly by the in situ measurements [51].

2. Gaussian peak positions of equal-time transverse
spin-structure factors: C-Cy, C-C,, and C-IC magnons

The equal-time spin-structure factors SI ;U(l)(k) =

f %S:;U(l)(k’w) follow:
- 1/1+sin6, 1—sinb
+ _ 2
Seop@® =1+ 2<eEk/T T T eET 31)
~ 1/1—sin6, 14sinb;
+ _ 2
Scum@ =147 <eEk_/T T eEIT 1>’

where one can see both S, (k) and S, (k) are symmetric
under the space inversion k — —k. However, the uniform
structure factor S,j: vy(K) has a higher spectral weight 1+
sin 6; on the acoustic branch and a lower one 1 — sin 6, on the
optical branch, the staggered structure factor S:J(l y(K) is just
opposite. So the uniform structure factor is a better quantity
to measure the acoustic branch by the Bragg spectroscopy. Of
course, it is also an easier one to measure than the staggered
structure factor.

Similar manipulations following Eq. (13) apply here also.
Shown in Fig. 8 and 9 are the uniform spin-structure factor
S;f vy(K) at two different temperatures. We conclude that
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in the U(1) basis, the C-Cy, C-C, magnons with one gap
minimum pinned at (0,0) or (0,7), or C-IC magnons with
two continuously changing gap minima (0, £ k(y)) tuned by
the SOC strength can be measured by the corresponding peak
positions of the uniform transverse Bragg spectroscopy at low
temperatures [35,36].

The interesting phenomena of one central peak S;i vy(B.K)
splits into two as tuning the gauge parameter § resem-
bles those in the angle-resolved photo emission spectrum
(ARPES) Si(k,w) as one tunes the momentum(or energy) in
electron-hole semiconductor bilayer [44—46] or the differential

conductance %L %’V) as tuning the in-plane magnetic field

Q= 2;—0‘18H32 in the bilayer quantum Hall systems at total
filling factor vy = 1 [47]. In all the three systems, there is
a pinned flat regime in the corresponding tuning parameters
B.k,Q before the single peak splits into two symmetric peaks
with smaller heights.

3. Ground state and magnetization detection in longitudinal
spin-correlation functions and spin-structure factors

We can also obtain the longitudinal spin-spin-correlation
functions. They are related to Eq. (15) by the local spin
rotation Sn = R(%,7n)S,, which leads to a very simple
relation between the two bases:

Sevay k) = 57Kk ),

7z 2 (32)
55,0 (ko) = SF k),

namely, there is an exchange between uniform and
staggered components. Obviously, the uniform x, ya) =
S, vk — 0,0 =0) and the staggered susceptibilities
Xs.v(y = S5,k — 0,0 = 0) will exchange their roles be-
tween the original and the U(1) basis. So they just show a
broad distribution, in sharp contrast to the transverse dynamic
correlation functions Eq. (29).

Similarly, the equal-spin longitudinal structure factors
S vy ® = S5F(K), ST, (K) = S;7(k) given in Eq. (17) also
display a broad distribution.

Note that in contrast to the original basis discussed
in Sec. V, now the magnetization part MZ(T)Sk,OZnS(w)
[M?(T)8k ] due to the quantum ground state in Fig. 2(a)
appear in the uniform connected dynamic (equal-time) lon-
gitudinal spin-spin-correlation function S3*(k,w) [Si*(K)],
which can be detected easily by elastic longitudinal Bragg
spectroscopy peak at momentum (0,0) in the RBZ at low
temperatures [35,36].

B. Spin-structure factors at high temperatures:
High-temperature expansions

At high temperature, even the magnetization vanishes, the
Hamiltonian Eq. (27) in the U(1) basis still breaks the lattice
into two sublattices A and B shown in Fig. 2(a), so one still
needs to calculate the uniform and staggered spin-structure
factors separately. We get the uniform and staggered structure
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factors up to the order of (J/T)*:

J J?
SevanyK = (ﬁ - @>[00s k. + cos 2B cosky]

2

+ 1672
2

J
+ 377 cos2B[cos(ky + ky) + cos(k, — k)]

[cos 2k, + cos 4 cos 2k, ]

i J J?
Seua (&) = T 1612 [—cosky, + cos2B cosky]

2

1677
2

J
~ 372 cos 2B[cos(ky + ky) + cos(k, — ky)],

+ [cos 2k, + cos4p cos 2k, ]

(33)

which are indeed different from Eq. (19) in the original basis.
Both depend on § explicitly and can be measured by Bragg
spectroscopy experiments [35,36].

We can also obtain the longitudinal spin-structure factors,
which are related to Eq. (21) by the local spin rotation S, =
R(X,7n1)S,. Then just similar to the low temperatures, we
find again there is an exchange between uniform and staggered
components in the two bases: S;TU(I)(k) = sz(k),Sj’U(l)(k) =
S22 (k) listed in Eq. (22). So they are also independent of the
gauge parameter 8 up to the second order of (J/T)?.

C. Comments on the finite temperature phase transitions

In Fig. 3, there is a finite temperature transition from the
Y-x state to the paramagnet. However, the Y-x state is a
spin-orbital correlated ground state which breaks both spin
and translational symmetry. So in the original basis, it is
not clear if the Y-x to the paramagnet transition in Fig. 3
will split into two transitions, which restore the magnetization
symmetry breaking and lattice symmetry breaking separately.
However, this ambiguity can be resolved in the U(1) basis.
Because the Y ferromagnetic ground state only breaks the
magnetization symmetry, there can only be one transition
to restore this symmetry breaking. The absolute value of
the magnetization and specific heat in Eq. (7) are gauge
invariant; they will display the critical behaviors C(T) ~ |T —
T.|~%,M(T) ~ |T — T.|# with &, two critical exponents.
The gauge invariance proves there can only be one transition
in the original basis Fig. 3.

However, as emphasized in Sec. III, the Hamiltonian at
B = m/4 has an extra symmetry, which is broken by the Y-x
state. This extra symmetry breaking is important to determine
the universality class of the C-IC to the paramagnet transition
at B =m/4 in Fig. 3. In fact, it controls the universality
class of the whole phase boundary 7.(8) in Fig. 3. All
the RG fixed points are shown in Fig. 3: (8 =n/4,T =
T,,) controls the finite temperature transition from the Y-x
state to the paramagnet state. (8 = /2,7 = 0) controls the
whole low-temperature Y-x phase. Of course, there is a
fixed point at (8 = w/2,T = oo) controls the whole high-
temperature paramagnet phase. Determining the universality
class of the finite temperature phase transition in Fig. 3

043609-12



QUANTUM MAGNETISM OF SPINOR BOSONS IN OPTICAL ...

remains an important outstanding problem. This could be
related to the central charge ¢ < 1 conformal field theory
with the orbifold construction (note that Ising model is only
¢ =1/2)[26,27,66,67].

IX. CONCLUSIONS AND PERSPECTIVES ON MOVING
AWAY FROM THE SOLVABLE LINE

In this paper, we show that a class of quantum magnetism
can be realized by strongly interacting spinor bosons loaded
on optical lattices subject to non-Abelian gauge potentials.
This quantum magnetism can be captured by the rotated
Heisenberg model Eq. (2), which may also be used to
describe some materials with strong SOC or DM interaction.
Along the dashed line in Fig. 1(b), it displays a class of
commensurate spin-orbital correlated quantum phase with
elementary excitations (named as incommensurate magnons
here) and phase transitions at finite temperatures. Although
we achieved all these results to the leading order in the
1/S expansion, we expect all the results at 7 = 0 are exact.
Because the Y-x state is the exact eigenstate with no quantum
fluctuations, there are no higher-order corrections at 7 = 0.
so the excitation spectrum of the C-Cy, C-IC, C-C,; magnons
in Fig. 2 are exact. Their boundaries 8, and B, between the
C-Cy, C-C,, and C-IC in Fig. 2 are also exact. However, at
small finite temperatures, there are higher-order corrections
due to the interactions among the magnons to all the physical
quantities studied in this paper, which are expected to be small
and can be evaluated straightforwardly.

Our approach is from three routes: (i) exact statements
from the symmetries, Wilson loops, gauge invariance, and
gauge transformations analysis; (ii) a well-controlled SWE to
leading order in 1/S at low temperature; (ii) a well-controlled
high-temperature expansion at high temperatures. Obviously,
detailed calculations in (ii) and (iii) have to satisfy the con-
straints set by (i), which has been confirmed through the whole
paper. Unfortunately, both the low-temperature SWE in (ii) and
the high-temperature expansion in (iii) fail near the finite
temperature phase transition in Fig. 3 whose universality class
remains to be determined. Numerical calculations are needed
to calculate all the physical quantities near the transition.

It is instructive to compare with incommensurability ap-
pearing in other lattice systems. In Ref. [17], the authors
investigated the topological quantum phase transition (TQPT)
of noninteracting fermions hopping on a honeycomb lattice
in the presence of a synthetic non-Abelian gauge potential.
The TQPT is driven by the collisions of two Dirac fermions
located at incommensurate momentum points continuously
tuned by the non-Abelian gauge parameters. The present
paper focused on the strong-coupling U/¢ > 1 limit along the
solvable line. At weak-coupling U/t limit along the solvable
line, Eq. (1) is expected to be in a superfluid (SF) state. We
hope that future work will show that as one changes the gauge
parameter 8 along the dashed line (¢« = 7/2,8) in Fig. 1(b),
the system will undergo a C-IC transition from a C-SF state
with Y-x spin-orbital order to an IC-SF with incommensurate
spin-orbital orders, which breaks both off-diagonal long-range
order and also the U(1) symmetry [66]. The symmetry breaking
leads to two gapless modes inside the IC-SF phase (Fig. 10).
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FIG. 10. (Color online) Adding or tuning various parameters
away from the solvable line (o = 7/2,8), one can study various
quantum phases with different spin-orbital structures and quantum
phase transitions among these phases. Note that for A # 1, there are
still two different ways to put the non-Abelian gauges fields: So, to
break the U(1) symmetry explicitly, another yo, to keep the U(1)
symmetry, which maybe broken spontaneously by some canted or
Skyrmion crystal states. Adding a Zeeman field 4, or a transverse
field 7 will also lead to quite different phenomena [65].

It is also instructive to compare the C-IC magnons at
(0, £ &Y) in Fig. 2(b) in a lattice system with the roton minima

in a continuous system. In the superfluid *He system, the
roton inside the superfluid state indicates the short-ranged
solid order embedded inside the off diagonal long-ranged SF
order [55-57]. As the pressure increases, the roton minimum
drops and signals a first-order transition to a solid order (or
a putative supersolid order). Similarly, the roton dropping
in a 3D superconductor subject to a Zeeman field signals a
transition from a normal state to the FFLO state [58-60]. In
three dimensions, the roton sphere is a 2D continuous mani-
fold, so its dropping before touching zero signals a first-order
transition. Similarly, in a 2D electron-hole semiconductor
bilayer (EHBL) system [61] or 2D bilayer quantum Hall
(BLQH) systems [62—64], the roton circle is a 1D continuous
manifold tuned by the distance between the two layers, so
its dropping before touching zero also signals a first-order
transition. In contrast, the C-IC magnons in Fig. 2(b) are
located at two isolated points (0, & kg), they indeed touch
zero at all the transitions shown in Fig. 10, so it signals a
second-order phase transition.

The existence of the incommensurate magnons above a
commensurate phase is a salient feature of the RH model. They
indicate the short-range incommensurate order embedded in
a long-range ordered commensurate ground state. Under the
changes of the gauge parameters («,f), namely at generic
equivalent classes (Fig. 10), they are the seeds driving the tran-
sitions from commensurate to another commensurate phase
with different spin-orbital structure or to an incommensurate
phase in the most general RH model Eq. (2). The effects
of the spin-anisotropy interaction A # 1 in Eq. (24) and the
behaviors of the RFH in the presence of external Zeeman
fields are a subject for future research [65,66]. Preliminary
results show that indeed the C-C,y, C-C,;, and C-IC magnons
are the seeds to drive various quantum phase transitions under
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the effects of spin-anisotropy A and the external magnetic
fields © (Fig. 10). Especially, various different kinds of
incommensurate skyrmion crystal phases breaking the U(1)
symmetry, therefore leading to gapless Goldstone modes, are
identified. We expect that investigating the behaviors of these
elementary excitations in the RH model when tuned away
from the solvable line holds the key to explore all the possible
classes of magnetic phenomena in materials with SOC or DM
interaction. The rotated antiferromagnetic Heisenberg model
(RAFH) (not shown in Fig. 10), which shows dramatically
different quantum phenomena is a topic for future research.
The RFH and RAFH models could be used to explore classes
of magnetic phenomena in strongly correlated materials with
strong SOC, such as rare-earth insulators or iridium oxides.
Note added. Recently, an experiment realizing a 2D Rashba
SOC in *°K Fermi gas came out [68]. Based on a simplified
version of the proposal [69], an experiment to realize 2D
Rashba SOC in a square optical lattice is also ongoing [70].
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APPENDIX A: SYMMETRY AND
SYMMETRY-BREAKING ANALYSIS

In Appendix A, we analyze the symmetries of the bosonic
model Eq. (1) and the RFH Eq. (2) at the solvable line
(¢ =m/2,B), also the enlarged symmetry at 8 = /4, the
symmetry-breaking patterns of the Y-x state. In Appendix B,
we show that the Y-x state is the exact ground state along the
solvable line. In Appendix C, we derive the exact constraints
of the U(1) symmetry on the spin-correlation functions in
both the original and U(1) basis. In Appendix D, we establish
the exact relations between spin-correlation functions in the
original basis and those in the U(1) basis due to the unitary
transformation b; = (io, )’ b; in the bosonic language or S, =
R(X,7n)S, in the spin language.

Along the dashed line (¢ =m/2,8) in Fig. 1(b),
the bosonic model Eq. (1) has time reversal k —
—k,S — —S, translational symmetry, and three spin-

orbital coupled Z, symmetries: (i) P, symmetry: S* —
§*ky — —ky, 8 — —§¥,8* - —§*. (i) P, symmetry:
SY — SV ky > —ky, ST — —8%,5° - —§%. (iii) P, symme-
try: ky — —ki, 8 — =8 ky - —ky, 87 — —=8§V,5* - §%,
which is also equivalent to a joint m rotation of the spin
and orbital around Z axis. Most importantly, there is also a
spin-orbital coupled U(1) symmetry [ Hp, Zi(—l)’? b;(ay bl =
0. Of course, at the two Abelian points, the U(1) symmetry is
enlarged to the SU(2) symmetry in the corresponding rotated
basis. The Y-x ground state in the Fig. 2(a) breaks all these
discrete symmetries except the P, and the U(1) symmetry. It
is twofold degenerate.
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In the strong-coupling limit, along the dashed line (o =
w/2,B), after rotating spin axis from Y to Z, we reach
the RH model Eq. (3). It has the time-reversal symmetry
S — —8%,8T < —S7,i — —i (here i is the imaginary unit,
not the site index). Translational symmetry and the three
spin-orbital coupled Z, symmetry: (i) P, symmetry: S; —
—S?,S;f < 55 where j is the image of the site j reflected with
respect to x axis. (ii) P, symmetry: Sz — SZ S+ < S_
where j is the image of the site j 1nvened w1th respect to the
origin. (iii) P, symmetry: SZ — S‘ SJr < S*. where j is
the image of the site j reﬂected w1th respect to y axis. Most
importantly, there is also a spin-orbital coupled U(1) symmetry
[Hrp, Y ;(=D*S81=0

Of course, at the two Abelian points, the symmetry is
enlarged to SU(2) symmetry in the corresponding rotated basis.
The Z-x ground state in the Fig. 2(a) breaks all these discrete
symmetries except the P, and the U(1) symmetry. It is twofold
degenerate.

It can be shown that under the local rotation S; =
R, m)R(Y,mn,)S;, B — m/2 — B. The most frustrated point
with Wx = —1 is located at the middle point g = /4
[Fig. 1(b)] where the Hamiltonian has an extra symmetry
invariant under S; = R(X,7)R(9,7n,)S;. This extra symmetry
is broken by the Y-x state. As discussed in Fig. 3 and
Sec. VIIIC, this extra symmetry breaking is important to
determine the universality class of the C-IC to the paramagnet
transition at 8 = /4.

When performing the unitary transformation from the
original basis to the U(1) basis by the unitary matrix U =
11, e/ 7% listed above Eq. (23), all the symmetry operators
transform accordingly P — U PU~'. See Appendix D below.

APPENDIX B: PROOF OF THE Y-x STATE AS THE EXACT
GROUND STATE OF THE HAMILTONIAN EQ. (3)

Intuitively, we write the state Y — x =| S)4® | —S) 5.

Lemma 1. The Y -x state is an eigenstate of the Hamiltonian.

Since site i and i + x belong to different sublattice, without
loss of generality we seti € A, then we have

S*S;XW —x)=0
(BI)
l+x|Y ) 0.

While site i and i 4+ y belong to the same sublattice, if i € A,
we have

S*Sl+y|Y —x)=0
(B2)
Ay SIJ;)|Y—x) =0.
The same calculations hold for i € B. In all
H|Y —x) = —2NJS?|Y — x). (B3)

Lemma 2. The Y-x state saturates the lower bound of the
Hamiltonian.

For a given bond from i to j, since R € SO(3), one can
introduce S‘J“ = R S’; , then

—S(S+1) < (S7R?S?) < 52, (B4)
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which leads to the lower bond:

min(H) > —2NJ S (B3)

Combining Lemma 1 and Lemma 2 concludes that the state
Y-x is indeed the ground state. Obviously, the ground state has
twofold degeneracy, which is related by the time reversal, or
translation by one lattice site, or by the spin-orbital coupled
Z, symmetries P, or P, of the Hamiltonian.

As shown in Sec. IV, the Y-x ground state and the
magnetization M(T) Eq. (7) can be determined by the sharp
peak and its spectral weight of Bragg spectroscopy in the
staggered longitudinal spin-spin correlation function at low
temperatures.

APPENDIX C: EXACT CONSTRAINTS OF THE U(1)
SYMMETRY ON THE SPIN-CORRELATION FUNCTIONS
IN THE ORIGINAL AND U(1) BASIS

1. Original basis
The U(1) symmetry operator in the original basis is U; (&) =
e L=V Tt is easy to see that

U (@)STER)U; (@) = e*“ S5 (k)
. (ChH
U(@)SE®)U; (@) = ¢TS5 (k).

Using the definition S* = §% + S, the ground state | G) is the

U(1) invariant |G) = U («)|G) and [U,(«),H] = 0, one can

show that the invariance of S;"~(k,#) under the U(1) symmetry
dictates:

(S;{'(k,t)Sg(k,O)) = (S;(k,t)S;(k,O)) =0, (C2)
which leads to

S5k = (SF(k.1)S, (k,0) + (S5 (k. 1)S5 (k,0))

= 5 (k.1), (C3)

which justifies the first equation in Eq. (11).
Similarly, the invariance of S;*(k,r) under the U(1)
symmetry dictates that
(S1(k,1)S}(—k,0)) = (S5 (k,1)Sz(~k,0) =0, (C4)
which leads to

SH(K.1) = (S (k.1)S (=K, 0)) + (S} (k,1)SF (—k,0))
— S k), (C5)

which justifies the second equation in Eq. (11).
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The U(1) symmetry also dictates that the correlation
functions between the longitudinal spin and transverse ones
vanish.

2. UQ) basis

Obviously, the U(1) symmetry operator in the U(1) basis
is UUy (@)U~ = e XS = U)(a) where U =[], e/ 2" is
the unitary transformation between the original basis and the
U(1) basis listed above Eq. (23). The U,(a) symmetry directly
leads to Eq. (28).

APPENDIX D: RELATIONS BETWEEN
SPIN-CORRELATION FUNCTIONS IN THE ORIGINAL
BASIS AND THOSE IN THE U(1) BASIS

Now we establish the connections between the correlation
functions in the original basis and those in the U(1) basis. In
the original basis, H;(S)|G) = E|G) where the Hamiltonian
H;(S) is given by Eq. (3). In the U(1) basis, HU(I)(S)lé) =
E|G), the |G) = U|G) is the ground state in the U(1) basis
and satisfies |G) = U;(@)|G), the Hy1)(S) = UH(S)U™! =
H;(USU™" = Hy(R(%,n 7)S) is given in Eq. (27).

Using the definition S7 () = ! v 1§ L (1)e= Hoa (S,
one can see that ' ’

U'8%(k,1)U = St(k,1)
3 (D1)
U™'S5(k,0)U = SE(k,1).

After transferring from the U(1) basis back to the original
basis, one can show that Eq. (28) leads to the constraints in the
original basis:

(STK,DST(—K,00) + (S5 (k,1)S5(—k,0) =0
(D2)
(ST(k,1)S5 (k,0)) + (S5 (k,1)S, (k,0)) =0,

which are consistent with the Egs. (C4), (C5) achieved in the
original basis directly.

Similarly, after transferring from the U(1) basis back to the
original basis, one can show that Eq. (29) leads to:

Sie v D = (Sy(knS; (k,0) + (S5 (k,1)S5 (k,0))
+ (54 (k1) S5 (—k,0)) £ (S5 (k,1)S; (=k,0)),
(D3)
which, as stressed below Eq. (29), are not directly related to the
corresponding transverse spin-correlation functions Eq. (12) in
the original basis.

However, the longitudinal correlations functions in the two
bases are simply related by Eq. (32).
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