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Atom-optics approach to studying transport phenomena
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We present a simple experimental scheme, based on standard atom-optics techniques, to design highly versatile
model systems for the study of single-particle quantum transport phenomena. The scheme is based on a discrete set
of free-particle momentum states that are coupled via momentum-changing two-photon Bragg transitions, driven
by pairs of interfering laser beams. In the effective lattice models that are accessible, this scheme allows for single-
site detection, as well as site-resolved and dynamical control over all system parameters. We discuss two possible
implementations, based on state-preserving Bragg transitions and on state-changing Raman transitions, which, re-
spectively, allow for the study of nearly arbitrary single-particle Abelian U(1) and non-Abelian U(2) lattice models.
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I. INTRODUCTION

Over the past few decades, atomic, molecular, and optical
(AMO) systems have played an increasingly important role in
shaping our understanding of complex quantum phenomena.
Precise knowledge of the microscopic properties of AMO
systems, combined with unprecedented levels of control and
novel diagnostic tools, have stimulated the development of
several platforms—based on cold atoms [1], trapped ions [2],
and photons [3]—for the quantum simulation of myriad
physical phenomena, especially those related to condensed
matter [4,5].

For the study of single electron transport phenomena, pho-
tonic [6–11] and cold atom [12–20] simulators have made great
progress in the experimental exploration of disordered and
topological systems, while offering largely complementary ca-
pabilities and challenges. Photonic simulators generally permit
control of system parameters and the detection of probability
distributions at the microscopic, site-resolved level. However,
the use of real materials as the medium for light transport
makes these systems susceptible to inherent disorder in sample
preparation [21] and to absorption in the material [22], and
makes simulations in higher spatial dimensions and time-
dependent control of system parameters nontrivial. For cold
atoms, pristine and dynamically variable potential landscapes
can be constructed based on their interaction with laser
light. However, a microscopic control over system parameters
is difficult to realize in atomic systems. Moreover, finite
temperatures and the absence of hard-wall system boundaries
have limited the observation of topological phenomena.

Here, we propose an atom-optics-based [23–26] approach
to the study of coherent transport phenomena, which incor-
porates many of the desired features of atomic and photonic
experimental platforms. The scheme we describe is motivated
in spirit by magnetic resonance-based techniques for local
manipulation via global field addressing [27,28]. In the context
of studying transport phenomena, however, we consider an
inhomogeneous landscape of site energies, with unique energy
differences between neighboring sites, which defines unique
tunneling resonances for each site-to-site link. Combined with
global field addressing that can drive transitions between
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neighboring sites, and in particular by simultaneous driving
of many such transitions in an amplitude, frequency, and
phase-controlled manner, this would allow for local control
over the parameters of a discrete lattice model relevant to
myriad coherent transport phenomena.

Atom optics offers a natural candidate system featuring
a quadratic energy landscape and field-driven transitions
between states. Here, we propose to create a discrete “lattice
of sites” represented by free-particle momentum states of
atomic matter waves, having quadratic energy-momentum
dispersion, which can be effectively nearest-neighbor coupled
via resonant two-photon Bragg transitions [29,30]. The free
particle dispersion allows for spectrally resolved control
over all parameters of the system at the single-link level,
including all site-to-site “tunneling” amplitudes and phases,
achieved by writing multiple radio-frequency sidebands onto
a pair of interfering laser beams. We describe how this can
enable the simulation of near-arbitrary single-particle models,
including two-dimensional Abelian U(1) lattice models de-
scribing integer Hall systems [31]. Additionally, we show how
another well-established atom-optics tool—stimulated Raman
transitions that change both the internal state and momentum
of atoms [32,33]—can be used to study non-Abelian U(2)
gauge fields, which to date have been difficult to realize in
photonic and cold atom settings.

The proposed scheme builds on a large body of work
involving the study of transport phenomena using the evo-
lution of momentum-space distributions of cold atomic gases
[12,34–37], including recent precision studies of the three-
dimensional Anderson insulator-metal transition [38–40].
While the majority of such studies have involved time-
dependent driving by lattice potentials not fulfilling a resonant
Bragg condition, notably in the realization [12,38–41] of
quantum kicked rotor models [42,43], here our proposed
method operates deep within the resonant Bragg diffraction
regime.

The paper is organized as follows. In Sec. II, we introduce
the basic experimental scheme based on state-preserving
Bragg transitions that allows for the simulation of Abelian
U(1) models in discrete lattice systems. In Sec. III, we
discuss in more depth some relevant aspects of the proposed
scheme, including how it is extended to higher-dimensional
systems, some of its unique capabilities, and some practical
experimental limitations. In Sec. IV, we introduce a second
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experimental scheme based on internal state-changing Raman
transitions, which allows for the simulation of non-Abelian
U(2) models. Finally, conclusions are presented in Sec. V.

II. ABELIAN U(1) LATTICE MODELS

We begin by considering a generic system of two-level
atoms, having a single internal ground (excited) state |g〉 (|e〉)
with energy �ωg(e) and having a mass M . These two-level
atoms and their interaction with a driving electric (laser) field
E, neglecting spontaneous emission, are described in the dipole
approximation by the single-particle Hamiltonian,

Ĥ = p̂2

2M
+ �ωe|e〉〈e| + �ωg|g〉〈g| − d · E, (1)

where p is the free-particle momentum of the atoms and d =
−|e|r is the atomic dipole operator, with r a vector pointing
from the atomic nucleus to the electron position. We assume
that, as shown in Fig. 1(a), the electric field E of the driving
lasers is composed of two distinct contributions—a right-
traveling field E+(x,t) with a single frequency component
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FIG. 1. (Color online) Experimental scheme for studying lattice-
driven momentum-space dynamics. (a) Atomic matter waves are
driven by a pair of counterpropagating laser fields, one of which
is composed of several different frequency components, with con-
trollable phase, frequency, and amplitude. (b) Energy-momentum
dispersion. All laser fields are far-detuned by an amount � from
atomic resonance between the ground |g〉 and excited |e〉 states.
Stimulated two-photon Bragg transitions are driven by the pairs of
interfering laser fields, coherently coupling plane-wave momentum
states separated by two-photon momenta (2�k). The quadratic free-
particle dispersion defines a unique two-photon Bragg resonance
condition �ω̃n = (2n + 1)4ER for each link between neighboring
states. Each frequency component of the multifrequency field
addresses a unique state-to-state link.

and a left-traveling field E−(x,t) with a number of discrete
frequency components. Explicitly, we take these two fields
to be

E+(x,t) = E+ cos(k+ · x − ω+t + φ+), and (2)

E−(x,t) =
∑

j

E−
j cos(k−

j · x − ω−
j t + φ−

j ). (3)

We assume without loss of generality that the fields prop-
agate along the x axis, and moreover that they are nearly
monochromatic such that k+ = kx̂ and k−

j � −kx̂ ∀ j ,
with k = 2π/λ the wave vector of the laser light having
wavelength λ. Similarly, all laser frequencies are detuned
from atomic resonance (ωeg ≡ ωe − ωg) by a nearly equal
amount � ≡ ωeg − ω+ � ωeg − ω−

j ∀ j . For each frequency
component of the driving electric field, we define the respective
resonant Rabi couplings to be �+ = −〈e|d · E+|g〉/� and
�−

j = −〈e|d · E−
j |g〉/�.

Experimentally relevant terms related to the energy-
momentum dispersion of the atoms are depicted in Fig. 1(b).
The (nearly) common frequency detuning � of all the laser
fields from atomic resonance is assumed to be much larger
than all other relevant terms, including Doppler shifts of
magnitude |p|k/M and the resonant Rabi coupling frequencies
|�+| and |�−

j |. This large single-photon detuning from
resonance makes direct population of the atomic excited
state |e〉 negligible. In the following we assume an effective
ground-state Hamiltonian Ĥeff = Ĥ0 + Ĥint based on adiabatic
elimination of the excited state |e〉. This effective Hamiltonian
describes the free-particle kinetic energies Ĥ0 and light-atom
interactions Ĥint that drive two-photon processes changing
the atomic momenta by ±�keff = ±2�kx̂ while leaving the
internal state unchanged, characterized by virtual absorption
of a photon from one laser field and stimulated emission into
the other. Assuming that the atomic source is a condensate of
atoms with small momentum spread 2σp � �k, we now define
a discrete basis of relevant plane-wave momentum states |n〉
(with n an integer), having momenta pn = 2n�kx̂.

This discrete set of allowed momentum states will form
the “lattice of sites” that can be coupled in a controlled way
via two-photon transitions. These states have kinetic energies
En = 〈n|Ĥ0|n〉 = n2(4ER), where the single-photon recoil
energy is given by ER = �

2k2/(2M). In the assumed form of
the driving electric field E, off-diagonal terms that increase the
momentum by 2�kx̂ can in principle come about by absorption
of a photon from the right-traveling field, followed by
stimulated emission into any of the different frequency fields
that constitute the left-traveling laser field. For such a process
driven by the respective frequency component labeled by the
index j , we define a corresponding two-photon Rabi coupling,

�̃j e
iφ̃j = �∗−

j �+

2�
ei(φ+−φ−

j ), (4)

where �̃j is assumed to be real and positive, and the phase shift
associated with this process is determined by the phases φ+
and φ−

j of the two laser fields, which can be easily controlled
using acoust-optic or electro-optic modulators, for example.

We now define the effective ground-state Hamiltonian of
this system in the interaction picture Ĥ I

eff , where the time
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dependence due to Ĥ0 is moved onto the system operators.
In the ground-state plane-wave basis, the diagonal terms are
now all zero (up to an ignored diagonal ac Stark shift that
is common to all states). The nearest-neighbor off-diagonal
elements, described in terms of the two-photon Rabi couplings
for all allowed transitions, take the time-dependent form,

〈n + 1|Ĥ I
eff|n〉/� =

∑

j

�̃j e
iφ̃j e−iδ

(n)
j t , (5)

where δ
(n)
j describes the two-photon detuning of the j th

frequency component from the |n〉 to |n + 1〉 transition, given
as δ

(n)
j = (ω+ − ω−

j ) − ω̃n. Here, the term ω̃n describes the
Doppler frequency shift of the transition |n〉 → |n + 1〉. Given
that the free-particle dispersion is quadratic, its linear first
derivative relates to a linearly varying Doppler frequency shift,

ω̃n = pn · keff

M
+ �|keff|2

2M
= (2n + 1)4ER/�, (6)

which serves to define the two-photon Bragg resonance
condition for the |n〉 to |n + 1〉 transition.

We can make use of this unique state-to-state frequency
shift to achieve the stated goal of controlling the off-diagonal
elements in a link-specific manner. We explicitly assume that
the two-photon detuning between each frequency component
j of the left-traveling field and the right-traveling field
approximately satisfies a unique Bragg resonance condition.
Formally, for every frequency component of the field labeled
by index j , we set ω+ − ω−

j ≡ ω̃j − ξj , with j an integer
and ξj a small (�ξj � 8ER ∀ j ) and controllable detuning
from the j th two-photon Bragg resonance. This now brings
us to the physical picture of building up individual links
between a “lattice” of discrete momentum states, through the
engineering of many interfering laser frequency components.
In the limit of “weak driving,” which for this one-dimensional
example we define as ��̃j � 8ER ∀ j , the bandwidth of
two-photon transitions is sufficiently reduced such that at most
one frequency component has a substantial contribution to
each off-diagonal element. We then ignore all but the most
near-resonant contribution for each off-diagonal coupling, in
the spirit of a rotating wave approximation. This greatly sim-
plifies the effective interaction-picture Hamiltonian, leading to
weakly time-dependent off-diagonal couplings of the form,

〈n + 1|Ĥ I
eff|n〉/� ≈ �̃ne

iφ̃neiξnt . (7)

For any two coupled modes, this weak time dependence
can be further absorbed into diagonal “site” energies εn

(related by ξn = εn+1 − εn) by a rotating frame transformation,
permitting a fully time-independent Hamiltonian description
with a controlled “potential landscape.” We will assume the
less general case, however, where all frequency components of
the applied fields exactly fulfill a two-photon Bragg resonance
condition, i.e., ξn = 0 ∀ n. We then arrive at the desired
description of a single-particle tight-binding Hamiltonian,

Ĥ I
eff ≈

∑

n

tn(eiϕn ĉ
†
n+1ĉn + H.c.). (8)

Here, arbitrary control over all tunneling amplitudes tn ≡ ��̃n

and tunneling phases ϕn ≡ φ̃n of the system are enabled
in a link-dependent way through control of a single global

addressing field E−(x,t). This can be simply accomplished,
for example, by passing a single laser beam through a pair of
acousto-optic modulators driven by tailored radio-frequency
signals [44]. Moreover, the tailored radio-frequency signal can
be smoothly varied in time, such that the parameters of the
model system can be made time dependent.

The scheme as described, with local control over tunneling
amplitudes and phases, permits the study of near-arbitrary one-
dimensional systems. Of natural interest would be the study
of superlattice systems known to have nontrivial topological
properties [8,45–48], in particular when combined with either
additional modulation of the tunneling parameters [49–51] or
in the presence of disorder [52,53].

III. FURTHER ASPECTS OF THE SCHEME

A. Extension to higher dimensions

While the ability to simulate arbitrary Hamiltonians de-
scribing lattice transport in one dimension would allow for
a number of interesting studies, particularly relevant to disor-
dered and symmetry-protected topological states, the tunneling
phases ϕn are of little physical consequence when applied only
to one-dimensional systems with nearest-neighbor couplings.
In higher dimensions, a natural application of the ability
to engineer link-specific phases would be to mimic the
Aharonov-Bohm phase φAB acquired by charged particles
(with charge q) moving along a path P in an electromag-
netic vector potential �A, φAB = (q/�)

∫
P

�A · �dx. This would
allow the study of topologically nontrivial (2+1)-dimensional
Abelian U(1) models, such as those describing the integer
quantum Hall effect exhibited by electrons confined in two
dimensions under the influence of strong transverse magnetic
fields [31,54]. The local manipulation of phases could also
allow the study of random magnetic flux models [55,56],
which are believed to exhibit metallic behavior and provide
an interesting counterexample to Anderson’s theorem [57,58]
in two dimensions. Higher-dimensional studies allow access
to novel lattice geometries as well, where link-specific control
over tunneling amplitudes can be used to transform a simple
square lattice into a brick-wall honeycomb lattice [59] by
setting certain links to zero tunneling. In general this control
allows one to impose hard-wall boundary conditions, and a
two-dimensional scheme with tailored links would allow one
to create one-dimensional systems with periodic boundary
conditions. Recently, researchers have used such a local
manipulation in photonic simulators to probe novel questions
about the bulk-boundary correspondence in integer quantum
Hall systems [60].

Here, we describe the simple extension to realizing two-
dimensional models that preserve full spectral control over
all tunneling links (with straightforward extensions to higher-
dimensional systems as well). We consider the case of driving
by two independent pairs of counterpropagating laser fields as
shown in Fig. 2, where we neglect any effect of cross interfer-
ences (by choice of polarization or an appropriate frequency
offset). Elementary changes to the atomic momentum by
�p1 = 2�k1 and �p2 = 2�k2 result from allowed two-photon
Bragg processes as in the earlier-described scheme. Assuming
that we start with population nominally at zero momentum,
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FIG. 2. (Color online) A two-dimensional lattice system with
spectrally resolved link resonances. (a) Two pairs of interfering laser
fields (set 1 shown in red, set 2 shown in blue), intersecting in a plane
at an angle θ , are shone onto a collection of atomic matter waves.
Cross interferences between the two pairs of beams can be avoided
by choice of laser polarizations or by introducing a frequency offset
between the two pairs. (b) The discrete “lattice” of momentum states
that can be populated by stimulated two-photon Bragg transitions,
starting from zero momentum. (c) The spectral positions of the
nearest-neighbor Bragg resonances ω̃x

m,n driven by the laser pair 1,
relating to the finite-sized set of states labeled (m,n) with momenta
pm,n = 2�(mk1 + nk2) as shown in (b). (d) Same as in (c), but for
the Bragg transition resonances ω̃y

m,n addressed by the second pair of
lasers.

this defines a set of possible momentum states |m,n〉, having
momenta pm,n = 2�(mk1 + nk2). We next assume, without
loss of generality, that k1 = k1x̂ and k2 = k2[cos θx̂ + sin θŷ]
as depicted in Fig. 2. If k1 �= k2, this can allow for effectively
higher-dimensional systems (of finite extent) to be realized
even for θ = 0 [37]. Here we consider instead the case of
driving by lattices with near-identical wave vectors along
two different directions, i.e., k1 � k2 = k and θ �= 0,π . The
resulting kinetic energies of the |m,n〉 states will be given by

Em,n = 4ER[m2 + n2 + 2mn cos θ ]. (9)

So long as the lattice directions are not orthogonal (θ �=
π/2,3π/2), there will exist unique Bragg resonance conditions
for each link of a finite-sized two-dimensional system.

Similar to the unique Bragg transition frequencies ω̃n

between adjacent states |n〉 and |n + 1〉 in one dimension,
described in Eq. (6), in two dimensions we have unique Bragg
transition frequencies that depend on the initial state |m,n〉
and in which direction the momentum is imparted. For a
momentum change of �p1, this gives the condition,

ω̃x
m,n = [2m + 1 + 2n cos θ ]4ER/�. (10)

A similar condition (ω̃y
m,n = [2n + 1 + 2m cos θ ]4ER/�) ex-

ists for a momentum change �p2, and because there is no cross
interference between the pairs of laser fields, unique spectral
control of tunneling terms along all links can still be preserved
even if there exist overlapping resonances ω̃x

m,n = ω̃
y

m′,n′ along
the two different directions. Following the procedure as in
Sec. II, through the application of spectral sidebands to one

laser from each pair, being controlled in amplitude and phase
and offset in frequency from the counterpropagating partner
to fulfill particular resonance conditions, one may realize a
two-dimensional Abelian U(1) lattice model of the form,

Ĥ I
eff ≈

∑

m,n

[
txm,n

(
eiϕx

m,n ĉ
†
m+1,nĉm,n + H.c.

)

+ tym,n

(
eiϕ

y
m,n ĉ

†
m,n+1ĉm,n + H.c.

)]
. (11)

As a concrete example, we analyze in Fig. 3 the effective
dynamics that can be driven in a two-dimensional system
with nontrivial tunneling phases, relating to an effective
Aharonov-Bohm phase acquired by particles evolving in
the system of momentum states. We show that far in the
weak-driving limit, the effective dynamics that emerge from
Eq. (5) exactly coincide with those of Eq. (11). In the case
of a nonzero synthetic magnetic flux, these dynamics show
insulating behavior in the bulk of the system and transport
along the edge of the system. The dynamics illustrated in
Fig. 3 also highlight an important aspect of the simplest studies
that can be performed using the proposed scheme—those
involving population initiated in one or a few momentum
states, with laser driving turned on suddenly. Similar to the case
of many photonic simulators [7], spatial projection onto the
system’s eigenmodes dictates the ensuing dynamics, and there
is no explicit energy selection or preparation in the system’s
ground state. For a nonzero synthetic magnetic flux, population
initiated in the bulk of the system will remain stationary,
while population on the system’s edge will undergo transport.
Furthermore, Fig. 3 shows how particular edge modes can be
populated by beginning with population in a superposition of
multiple momentum states. Given the similarities to photonic
systems, with respect to projective state initialization and
out-of-equilibrium dynamics, we expect that many of the
techniques developed for studying topological properties of
photonic simulators should prove useful in the envisioned
atom-optics setting [61].

One issue to note in accessing higher-dimensional models
is that the frequency spacing between the link-specific Bragg
resonances, found in one dimension to have the value 8ER/�, is
reduced as the number of links in each direction is increased.
This in general requires lower tunneling rates (two-photon
Rabi rates) to remain in the weak-driving limit where indi-
vidual resonances are spectrally resolved. Practically, a more
realistic approach to studying higher dimensional systems
while preserving arbitrary control of all parameters may be
found in systems extended in one direction and with only
two or a few sites along a second [17–19,62] or second and
third [63] direction.

B. Unique features

The suggested atom-optics-based approach, which allows
for precise and time-dependent control of a single-particle
lattice model at a link-specific level, affords many unique
experimental capabilities relevant to quantum simulation.
Furthermore, the fact that the effective “tunneling” transitions
between sites are explicitly field driven and do not result
from quantum tunneling through a barrier allows in principle
for several unique features. As discussed in the previous
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FIG. 3. (Color online) Simulated momentum-space dynamics of a small (6 site × 6 site) two-dimensional (2D) lattice system. (a)–(d)
Probability distributions of the different momentum modes |m,n〉, following dynamics initiated from a state |ψin〉, at times of 0, 1.875, 3.75,
and 7.5 in units �/t , with t the tunneling energy. (a) Shown for a regular lattice with homogeneous tunneling energies t and no tunneling
phases, starting from |ψin〉 = |0,0〉. The dynamics shown relate to evolution governed by Eq. (11) from the text. (b) Same, but for an enclosed
synthetic magnetic flux of 2π/3 per lattice plaquette, set through a nontrivial tunneling phase along one direction, ϕy

m,n = 2mπ/3. In this case,
the particles avoid entering the bulk or interior of the system, and instead propagate along the system boundaries. Because state preparation
is based on mode projection, with no explicit energy dependence, a combination of clockwise and counterclockwise propagating edge states
are populated. (c) As in (b), but starting from the state |ψin〉 = (|0,0〉 + i|0,1〉)/√2. The populated state propagates with essentially only one
chirality. (d) Exactly as in (c), but including all tunneling contributions due to the entire sideband spectrum [i.e., with dynamics governed by
the 2D equivalent of Eq. (5) and not Eq. (11), with t/ER = 0.01]. (e) Energy spectrum relating to the systems of (b) and (c), with 2π/3 flux
enclosed per lattice plaquette. The system is split into three bulk energy bands, and features additional dispersive edge states (shaded in blue
as a guide to the eye). Insets show the modal distribution of different energy eigenstates. (f) Probability distribution of eigenstates populated
by projection from |ψin〉 = (|0,0〉 (solid blue) and |ψin〉 = (|0,0〉 + i|0,1〉)/√2 (dashed red). (g) and (h) Center-of-mass position dynamics, in
terms of mode numbers m and n along the two directions, for enclosed flux and initial state as in (c) and (d). The black lines show the exact
dynamics as in (c). From darker to lighter colors, the red (blue) lines in (g) [(h)] show dynamics for t/ER = 0.01, 0.04, 0.08. The smallest
energy gap between spectral resonances ω̃x(y)

m,n in the system is 0.97ER .

section, this allows for the simulation of higher-dimensional
systems of finite extent in three or fewer physical dimensions.
It additionally allows for direct and independent control of
tunneling terms beyond nearest neighbor. For example, one
can access next-nearest-neighbor hopping terms by driving
second-order Bragg processes with resonances given by
2ω̃(NNN)

n = (4n + 4)4ER , which are spectrally distinct from
the first-order resonances [29]. Controlled access to such
terms would allow tunable symmetry breaking (inversion or
particle hole) of topological insulator systems. Additionally,
it has been shown [64] that the combination of nearest-
neighbor (NN) and next-nearest-neighbor (NNN) tunneling
in one dimension can be used to realize systems analogous
to the two-dimensional Haldane model [65], allowing study
of the anomalous quantum Hall effect in an experimen-
tally simple setting. Such a combination of terms may
also allow for the study of Lifshitz-type behavior [66],
e.g., as found in axial next-nearest-neighbor Ising (ANNNI)
models [67–69].

Another relatively unique aspect of the proposed system
stems from the combination of local and time-dependent
parameter control. To note, either local control or time-
dependent control of the system parameters would allow,
e.g., for the controlled implementation of quenched disorder
or of a time-varying Hamiltonian for quantum annealing to
novel ground states [70,71], respectively. In this context, their
specific combination could allow for the study of annealed
disorder, with randomly distributed system parameters that

are additionally modulated in time [72]. In essence, such
modulation of the lattice parameters over an appropriate
range of frequencies can mimic the coupling of particles to
a thermal phonon bath. Through the modulation of disorder
at frequencies corresponding to relevant energy scales of the
model system being studied, such annealed disorder could
allow access to the thermodynamic properties of an otherwise
intrinsically out-of-equilibrium system.

C. Limitations

There exist several practical limitations to the time scales
over which the proposed scheme can be used to simulate
coherent dynamics. The major limitation comes from the
fact that ultracold atoms are not idealized zero-momentum
plane waves, but have a spread in momentum due to
finite temperature, interactions between particles, and the
zero-point motion associated with the ground state of their
confining potential [73]. The momentum spread of trapped
Bose-Einstein condensates is typically much smaller than
the recoil momentum, 2σp � �k, such that the picture of a
discrete lattice of states is justified. However, even a small
but finite momentum spread will introduce restrictions on the
experimental time scales over which coherent momentum-
space dynamics can be observed. Coherent dynamics in
momentum space requires that momentum states with direct
off-diagonal coupling occupy indistinguishable spatial modes.
In other words, the laser-driven dynamics will occur only in
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the near-field regime [36,74], before the populated momentum
states have time to spatially separate into distinct wave
packets.

While this imposes a strong limit on the time scales over
which coherent transport phenomena can be expected to occur,
a significant number of coherent tunneling events can still
be achieved. Moreover, this effect will be less relevant to
the observation of phenomena involving localized states or
ballistic, nondispersive propagation in momentum space. Still,
we can provide a lower estimate for the limiting time scale
based on the worst-case scenario, the Ramsey decoherence
time in the absence of continuous coupling between two
states. For nearest-neighbor states differing in velocity by 2vR

(with vR ≡ �k/M the recoil velocity), their spatial overlap
will be lost roughly on the time scale Tcoh = Lc/2vR , where
Lc is the cloud’s spatial coherence length along the direction
of momentum transfer. We assume that Lc is determined at
ultracold temperatures and low densities by the finite system
size in a trapping potential, and we relate this to the number
of lattice sites Ns (of the interfering laser fields) over which
the atomic distribution would extend, with Lc = Nsλ/2. This
description allows for the simple relation Tcoh = Nsτ0, where
τ0 = h/8ER . We recall that in one dimension the tunneling
rates are restricted to be much less than 8ER/� to spectrally
resolve individual link resonances. Assuming tunneling rates
t ∼ 8ER/10�, we can expect Ramsey coherence times corre-
sponding to roughly Ns/10 tunneling events.

This expected limitation to the scheme motivates
some practical considerations. When implementing higher-
dimensional “lattices” of momentum states, because the
tunneling rates necessary to achieve complete spectral control
of all tunneling parameters become severely restricted, the
dynamics will remain coherent for far fewer tunneling events.
We thus expect that it will be more realistic to pursue
studies of one-dimensional lattice and superlattice systems,
as well as ladder-type systems with only a few sites along a
second direction [17–19,62] or two additional directions [63].
Additionally, an active increase of the relevant experimental
time scales may be achieved by increasing the spatial coher-
ence length of the atomic sample prior to the lattice-driven
dynamics. This can be achieved by an adiabatic decrease of
the trapping depth and stiffness, leading to an increase of
the atoms’ spatial extent [29,75]. One can also pursue still
more active methods for increasing of the atomic sample’s size
based on analogies to Gaussian beam optics, namely by using
matter-wave lensing techniques [76] for the construction of an
atomic beam expander or Galilean telescope. Such techniques
have recently been employed to create mm-scale atomic clouds
of 87Rb with pK-scale temperatures [77], which for lattice light
tuned near the D2 transition would allow for a few hundred
coherent tunneling events in one dimension.

If these studies are performed in atomic free fall or free
expansion, so as to minimize any influence of trapping poten-
tials on the ensuing matter-wave dynamics, another practical
limitation is found. Assuming a geometry of lattice driving
along a direction perpendicular to gravitational acceleration,
to avoid additional complications due to time-varying Doppler
shifts, then gravity will cause the atoms to fall away from
the region of light-atom interaction. Restricting the atoms
to fall less than d0 = 1 mm, for example, will restrict the

experimental time scales to Tgrav = √
2d0/g ∼ 14 ms (where

g = 9.81 m/s2 is the assumed gravitational acceleration due
to free fall), or roughly 270 tunneling events in the case of
one-dimensional simulations. These time scales are generally
less restrictive than those due to the near-field constraint, and
can be largely assuaged through levitation in a magnetic field
gradient without introducing significant external confinement.

Lastly, we remark that spontaneous photon scattering can
in principle provide an additional limitation to the observation
of coherent momentum-space dynamics driven by stimulated
photon scattering [78]. Practically, however, the heating rates
due to off-resonant absorption and re-emission events can
be mitigated by setting the single-photon detuning � to be
large compared to the spontaneous decay rate � of the excited
state |e〉.

IV. NON-ABELIAN U(2) LATTICE MODELS

We now describe a straightforward extension to the scheme
described in Sec. II, which is based on using internal state-
changing two-photon Raman transitions [32,33] as opposed
to state-preserving Bragg transitions. This modified scheme
requires the use of two low-energy internal ground states
|g1〉 and |g2〉, such as two |mF = 0〉 Zeeman sublevels of
different hyperfine manifolds, as typically used in Raman atom
interferometers [24,32]. At low magnetic field, these states
have an energy difference �ω12 ≡ �ωg2 − �ωg1 determined by
their hyperfine splitting, which we assume greatly exceeds
the largest kinetic energy scales in the problem. As we show
below, this extra internal ground-state degree of freedom,
when combined with a laser-driving protocol similar to that
described in Sec. II, will allow for the study of U(2) lattice
models with near-arbitrary parameter control.

We consider interaction of these three-level atoms (having
mass M) with an electric field E, governed by

Ĥ = p̂2

2M
+ �ωe|e〉〈e| +

∑

α∈{1,2}
�ωgα

|gα〉〈gα| − d · E . (12)

We assume from the outset that the electric field is formed
by two laser fields counterpropagating along the x axis, a
right-traveling field E+(x,t) and a left-traveling field E−(x,t),
having nearly identical wave-vector magnitudes k. As in the
previous scheme, the right-traveling field is monochromatic
(ω+) and far-detuned from atomic resonance by an amount
� ≡ (ωe − ωg1 ) − ω+ � ω12. The left-traveling field contains
a number of spectral components with frequencies ω−,α

n . The
fields are explicitly given by

E+(x,t) = E+ cos(kx − ω+t + φ+), and (13)

E−(x,t) =
∑

n,α∈{1,2}
E−,α

n cos
( − kx − ω−,α

n t + φ−,α
n

)
. (14)

As before, the index n will relate to transitions between
plane-wave states with momenta 2n�k and 2(n + 1)�k. The
index α = 1 relates to processes where atoms undergo a
transition from |g1〉 to |g2〉 as their momentum increases by
2�k (|g1,n〉 ↔ |g2,n + 1〉), while α = 2 relates to momentum-
increasing processes that transition from |g2〉 to |g1〉 (|g2,n〉 ↔
|g1,n + 1〉), as depicted in Fig. 4. Making the restrictive
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FIG. 4. (Color online) Laser driving scheme for studying U(2)
lattice dynamics. (a) Counterpropagating laser fields drive a sample
of atomic matter waves, where the field along one direction is
composed of multiple spectral components, having frequencies ω−,α

n .
(b) Energy-momentum dispersion diagram. Two low-energy internal
states |g1〉 and |g2〉 are coupled through stimulated state- and
momentum-changing two-photon Raman transitions. All laser fields
are far-detuned by an amount � � ω12 from atomic resonance, so
that the excited state |e〉 is only virtually driven. For the left-traveling,
multifrequency field, two distinct sets of frequency components
(labeled α = 1 and 2), are used in conjunction with the right-traveling
field to drive unique state- and momentum-changing transitions that
depend on the initial internal state, as described in the text and shown
in the figure.

assumption that every frequency component is exactly resonant
with a unique momentum-changing Raman transition, the
frequencies of the left-traveling field’s various components
are given by

ω−,1
n = ω+ − ω12 − (2n + 1)4ER/�, and (15)

ω−,2
n = ω+ + ω12 − (2n + 1)4ER/�. (16)

The relevant one-photon Rabi frequencies relating to interac-
tion with the different field components are given by �+,α =
−〈e|d · E+|gα〉/�, �−,1

n = −〈e|d · E−,1
n |g2〉/�, and �−,2

n =
−〈e|d · E−,2

n |g1〉/�. As in the previous case, we assume that
we are in the limit where all one-photon Rabi frequencies are
much less than the single-photon detuning �. This restriction
allows us to again consider an adiabatic elimination of the
excited state |e〉, with only stimulated two-photon processes
allowed. For processes characterized by absorption of a photon
from the right-traveling laser field and stimulated emission into
the frequency component of the left-traveling field with indices
n and α, the effective two-photon Rabi frequency and phase

shift are given by

�̃α
neiφ̃α

n = �∗−,α
n �+

2�
ei(φ+−φ−,α

n ). (17)

We again make the stronger restriction that the two-
photon Rabi frequencies are all smaller in magnitude than
the frequency spacing between unique spectral components,
��̃α

n � 8ER/� ∀ n,α. In this weak-driving limit, the off-
diagonal elements of the interaction Hamiltonian Ĥ I

eff have
only one dominant contribution,

〈g2,n + 1|Ĥ I
eff|g1,n〉/� ≈ �̃1

ne
iφ̃1

n , and (18)

〈g1,n + 1|Ĥ I
eff|g2,n〉/� ≈ �̃2

ne
iφ̃2

n . (19)

The dynamics of this system, neglecting differential ac Stark
shifts of the two ground states, can again be described by
an effective tight-binding Hamiltonian in the limit of weak
driving, given by

Ĥ I
eff ≈

∑

n

t+n (eiϕ+
n ĉ

†
n+1σ̂+ĉn + H.c.)

+
∑

n

t−n (eiϕ−
n ĉ

†
n+1σ̂−ĉn + H.c.), (20)

with σ̂+ = (σ̂x + iσ̂y)/2 = |g2〉〈g1| and σ̂− = (σ̂x − iσ̂y)/2 =
|g1〉〈g2|, where σ̂x and σ̂y are the Pauli matrices. Control of
the laser sideband amplitudes and phases provides arbitrary
control over all tunneling amplitudes t+n ≡ ��̃1

n and t−n ≡ ��̃2
n

and tunneling phases ϕ+
n ≡ φ̃1

n and ϕ−
n ≡ φ̃2

n. For every site-
to-site transition, there exist two possible pathways involving
noncommuting operations on the internal (pseudo)spin degree
of freedom. By coordination of the tunneling amplitudes and
phases relating to each of these pathways, a tunable U(2) lattice
model can be constructed. To be explicit, if we assume equal
tunneling amplitudes for the two pathways (t+n = t−n ≡ tn), the
effective Hamiltonian can be recast as

Ĥ I
eff ≈

∑

n

tn(ĉ†n+1Ûnĉn + H.c.), (21)

where Ûn = ei�n/2[cos(�n/2)σ̂x − sin(�n/2)σ̂y], with �n =
ϕ+

n + ϕ−
n and �n = ϕ+

n − ϕ−
n . This allows us to vary the

U(1) phase and SU(2) internal state spin rotation associated
with every individual tunneling link. Further inclusion of
state-preserving Bragg transitions associated with each link
would allow for an even more generalized form of the Ûn

matrices.
Following the procedure outlined earlier, this U(2) lattice

model can also be performed in more than one spatial
dimension, allowing for a model of the form,

Ĥ I
eff ≈

∑

m,n

[
txm,n

(
ĉ
†
m+1,nÛ

x
m,nĉm,n + H.c.

)

+ tym,n

(
ĉ
†
m,n+1Û

y
m,nĉm,n + H.c.

)]
. (22)

This allows for the study of genuine non-Abelian U(2) models,
where motion along closed paths can lead to nontrivial
operations on the atoms’ internal degree of freedom. For the
smallest counterclockwise path around a four-site plaquette,
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this can lead to an operation distinct from identity I ,

Û�
m,n ≡ Û †y

m,nÛ
†x
m,n+1Û

y

m+1,nÛ
x
m,n �= eiβI, (23)

such that the Wilson loop variable associated with this closed
path, tr(Û�

m,n), is not equal to 2, the dimension of the internal
state space. Independent control over all tunneling amplitudes
and phases allows for the study of models with homogeneous
Wilson loops [79] for all elementary lattice plaquettes, as
well as spatially varying and disordered configurations. In
particular, it has been suggested that the U(2) random flux
model may be of direct relevance to the effect of giant magne-
toresistance displayed in manganese oxides [56]. Furthermore,
while the described setup is clearly restricted to the simulation
of matter interacting with classical Abelian and non-Abelian
gauge fields, Ref. [72] recently raised the interesting prospect
of using such simulations—along with averaging over an
appropriate distribution of static and annealed classical gauge
field configurations—to gain insight into certain properties of
lattice gauge theories describing the interaction of matter with
dynamical gauge fields.

V. CONCLUSIONS

In conclusion, we have presented a simple experimental
scheme for studying nearly arbitrary single-particle transport
phenomena based on well-established atom-optics techniques.
We described two variations of this scheme, based on internal
state-preserving Bragg transitions and internal state-changing
Raman transitions, which enable the study of Abelian U(1)
and non-Abelian U(2) lattice models, respectively. Some
unique features of this platform were discussed, including the

possibilities of studying annealed disorder and variable-range
hopping. We have discussed practical limitations to the time
scales of coherent evolution that this scheme allows, which
relate to several tens to several hundreds of tunneling events
for realistic system parameters. We neglected discussion of
further extensions, such as the use of additional internal ground
states for the simulation of U(N ) models with N > 2, and we
neglected a discussion of the important and intriguing role of
nonlinear interactions between the atoms themselves.

In contrast to many photonic simulators, a system of atomic
condensates evolving in momentum space would naturally
play host to significant nonlinear processes [80], such as
cross-phase modulation, self-phase modulation, and four-wave
mixing [81]. Moreover, the general scheme of developing
link-resolved control of tunneling by use of an inhomogeneous
potential and global field addressing may be transportable to
strongly correlated studies. In an optical lattice simulator, for
example, tunable inhomogeneous potentials may be created
by projective methods [82–84], and global addressing via
laser-assisted tunneling [85,86] may be used to reintroduce
site-to-site coupling in a link-dependent fashion, allowing local
control over tunneling amplitudes and phases.

Lastly, as a natural consequence of developing a new
atom-optics-based system for simulating coherent transport
phenomena, the atom-optics tool set will be expanded to
include unique new capabilities for the manipulation of atomic
matter waves.
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Nature (London) 462, 74 (2009).

[84] L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C.
Chin, Phys. Rev. Lett. 114, 055301 (2015).

[85] C. Sias, H. Lignier, Y. P. Singh, A. Zenesini, D. Ciampini, O.
Morsch, and E. Arimondo, Phys. Rev. Lett. 100, 040404 (2008).

[86] R. Ma, M. E. Tai, P. M. Preiss, W. S. Bakr, J. Simon, and M.
Greiner, Phys. Rev. Lett. 107, 095301 (2011).

043606-9

http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1038/242190a0
http://dx.doi.org/10.1038/242190a0
http://dx.doi.org/10.1038/242190a0
http://dx.doi.org/10.1038/242190a0
http://dx.doi.org/10.1103/PhysRevLett.93.150501
http://dx.doi.org/10.1103/PhysRevLett.93.150501
http://dx.doi.org/10.1103/PhysRevLett.93.150501
http://dx.doi.org/10.1103/PhysRevLett.93.150501
http://dx.doi.org/10.1103/PhysRevLett.82.871
http://dx.doi.org/10.1103/PhysRevLett.82.871
http://dx.doi.org/10.1103/PhysRevLett.82.871
http://dx.doi.org/10.1103/PhysRevLett.82.871
http://dx.doi.org/10.1088/0953-4075/35/14/307
http://dx.doi.org/10.1088/0953-4075/35/14/307
http://dx.doi.org/10.1088/0953-4075/35/14/307
http://dx.doi.org/10.1088/0953-4075/35/14/307
http://dx.doi.org/10.1103/RevModPhys.58.519
http://dx.doi.org/10.1103/RevModPhys.58.519
http://dx.doi.org/10.1103/RevModPhys.58.519
http://dx.doi.org/10.1103/RevModPhys.58.519
http://dx.doi.org/10.1103/PhysRevLett.70.2706
http://dx.doi.org/10.1103/PhysRevLett.70.2706
http://dx.doi.org/10.1103/PhysRevLett.70.2706
http://dx.doi.org/10.1103/PhysRevLett.70.2706
http://dx.doi.org/10.1126/science.283.5408.1706
http://dx.doi.org/10.1126/science.283.5408.1706
http://dx.doi.org/10.1126/science.283.5408.1706
http://dx.doi.org/10.1126/science.283.5408.1706
http://dx.doi.org/10.1038/35083510
http://dx.doi.org/10.1038/35083510
http://dx.doi.org/10.1038/35083510
http://dx.doi.org/10.1038/35083510
http://dx.doi.org/10.1126/science.1061569
http://dx.doi.org/10.1126/science.1061569
http://dx.doi.org/10.1126/science.1061569
http://dx.doi.org/10.1126/science.1061569
http://dx.doi.org/10.1103/PhysRevLett.96.160403
http://dx.doi.org/10.1103/PhysRevLett.96.160403
http://dx.doi.org/10.1103/PhysRevLett.96.160403
http://dx.doi.org/10.1103/PhysRevLett.96.160403
http://dx.doi.org/10.1103/PhysRevLett.110.190401
http://dx.doi.org/10.1103/PhysRevLett.110.190401
http://dx.doi.org/10.1103/PhysRevLett.110.190401
http://dx.doi.org/10.1103/PhysRevLett.110.190401
http://dx.doi.org/10.1103/PhysRevLett.101.255702
http://dx.doi.org/10.1103/PhysRevLett.101.255702
http://dx.doi.org/10.1103/PhysRevLett.101.255702
http://dx.doi.org/10.1103/PhysRevLett.101.255702
http://dx.doi.org/10.1103/PhysRevLett.105.090601
http://dx.doi.org/10.1103/PhysRevLett.105.090601
http://dx.doi.org/10.1103/PhysRevLett.105.090601
http://dx.doi.org/10.1103/PhysRevLett.105.090601
http://dx.doi.org/10.1103/PhysRevLett.108.095701
http://dx.doi.org/10.1103/PhysRevLett.108.095701
http://dx.doi.org/10.1103/PhysRevLett.108.095701
http://dx.doi.org/10.1103/PhysRevLett.108.095701
http://dx.doi.org/10.1103/PhysRevLett.87.074102
http://dx.doi.org/10.1103/PhysRevLett.87.074102
http://dx.doi.org/10.1103/PhysRevLett.87.074102
http://dx.doi.org/10.1103/PhysRevLett.87.074102
http://dx.doi.org/10.1103/PhysRevLett.49.509
http://dx.doi.org/10.1103/PhysRevLett.49.509
http://dx.doi.org/10.1103/PhysRevLett.49.509
http://dx.doi.org/10.1103/PhysRevLett.49.509
http://dx.doi.org/10.1103/PhysRevLett.77.4536
http://dx.doi.org/10.1103/PhysRevLett.77.4536
http://dx.doi.org/10.1103/PhysRevLett.77.4536
http://dx.doi.org/10.1103/PhysRevLett.77.4536
http://dx.doi.org/10.1038/nature08244
http://dx.doi.org/10.1038/nature08244
http://dx.doi.org/10.1038/nature08244
http://dx.doi.org/10.1038/nature08244
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.108.220401
http://dx.doi.org/10.1103/PhysRevLett.108.220401
http://dx.doi.org/10.1103/PhysRevLett.108.220401
http://dx.doi.org/10.1103/PhysRevLett.108.220401
http://dx.doi.org/10.1103/PhysRevLett.109.116404
http://dx.doi.org/10.1103/PhysRevLett.109.116404
http://dx.doi.org/10.1103/PhysRevLett.109.116404
http://dx.doi.org/10.1103/PhysRevLett.109.116404
http://dx.doi.org/10.1103/PhysRevLett.110.180403
http://dx.doi.org/10.1103/PhysRevLett.110.180403
http://dx.doi.org/10.1103/PhysRevLett.110.180403
http://dx.doi.org/10.1103/PhysRevLett.110.180403
http://dx.doi.org/10.1103/PhysRevB.91.125438
http://dx.doi.org/10.1103/PhysRevB.91.125438
http://dx.doi.org/10.1103/PhysRevB.91.125438
http://dx.doi.org/10.1103/PhysRevB.91.125438
http://dx.doi.org/10.1103/PhysRevB.91.041402
http://dx.doi.org/10.1103/PhysRevB.91.041402
http://dx.doi.org/10.1103/PhysRevB.91.041402
http://dx.doi.org/10.1103/PhysRevB.91.041402
http://dx.doi.org/10.1103/PhysRevLett.113.046802
http://dx.doi.org/10.1103/PhysRevLett.113.046802
http://dx.doi.org/10.1103/PhysRevLett.113.046802
http://dx.doi.org/10.1103/PhysRevLett.113.046802
http://dx.doi.org/10.1103/PhysRevB.89.224203
http://dx.doi.org/10.1103/PhysRevB.89.224203
http://dx.doi.org/10.1103/PhysRevB.89.224203
http://dx.doi.org/10.1103/PhysRevB.89.224203
http://dx.doi.org/10.1088/0022-3719/21/14/008
http://dx.doi.org/10.1088/0022-3719/21/14/008
http://dx.doi.org/10.1088/0022-3719/21/14/008
http://dx.doi.org/10.1088/0022-3719/21/14/008
http://dx.doi.org/10.1103/PhysRevLett.47.882
http://dx.doi.org/10.1103/PhysRevLett.47.882
http://dx.doi.org/10.1103/PhysRevLett.47.882
http://dx.doi.org/10.1103/PhysRevLett.47.882
http://dx.doi.org/10.1088/0305-4470/32/31/101
http://dx.doi.org/10.1088/0305-4470/32/31/101
http://dx.doi.org/10.1088/0305-4470/32/31/101
http://dx.doi.org/10.1088/0305-4470/32/31/101
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1038/nature10871
http://arxiv.org/abs/arXiv:1504.00369
http://dx.doi.org/10.1103/PhysRevLett.110.076403
http://dx.doi.org/10.1103/PhysRevLett.110.076403
http://dx.doi.org/10.1103/PhysRevLett.110.076403
http://dx.doi.org/10.1103/PhysRevLett.110.076403
http://dx.doi.org/10.1103/PhysRevA.89.023619
http://dx.doi.org/10.1103/PhysRevA.89.023619
http://dx.doi.org/10.1103/PhysRevA.89.023619
http://dx.doi.org/10.1103/PhysRevA.89.023619
http://dx.doi.org/10.1103/PhysRevLett.110.126402
http://dx.doi.org/10.1103/PhysRevLett.110.126402
http://dx.doi.org/10.1103/PhysRevLett.110.126402
http://dx.doi.org/10.1103/PhysRevLett.110.126402
http://dx.doi.org/10.1103/PhysRevB.89.085111
http://dx.doi.org/10.1103/PhysRevB.89.085111
http://dx.doi.org/10.1103/PhysRevB.89.085111
http://dx.doi.org/10.1103/PhysRevB.89.085111
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevB.87.115132
http://dx.doi.org/10.1103/PhysRevB.87.115132
http://dx.doi.org/10.1103/PhysRevB.87.115132
http://dx.doi.org/10.1103/PhysRevB.87.115132
http://dx.doi.org/10.1103/PhysRev.124.346
http://dx.doi.org/10.1103/PhysRev.124.346
http://dx.doi.org/10.1103/PhysRev.124.346
http://dx.doi.org/10.1103/PhysRev.124.346
http://dx.doi.org/10.1103/PhysRevLett.44.1502
http://dx.doi.org/10.1103/PhysRevLett.44.1502
http://dx.doi.org/10.1103/PhysRevLett.44.1502
http://dx.doi.org/10.1103/PhysRevLett.44.1502
http://dx.doi.org/10.1016/0370-1573(88)90140-8
http://dx.doi.org/10.1016/0370-1573(88)90140-8
http://dx.doi.org/10.1016/0370-1573(88)90140-8
http://dx.doi.org/10.1016/0370-1573(88)90140-8
http://dx.doi.org/10.1088/0022-3719/16/6/007
http://dx.doi.org/10.1088/0022-3719/16/6/007
http://dx.doi.org/10.1088/0022-3719/16/6/007
http://dx.doi.org/10.1088/0022-3719/16/6/007
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/PhysRevLett.95.010403
http://dx.doi.org/10.1103/PhysRevLett.95.010403
http://dx.doi.org/10.1103/PhysRevLett.95.010403
http://dx.doi.org/10.1103/PhysRevLett.95.010403
http://dx.doi.org/10.1103/PhysRevLett.82.4569
http://dx.doi.org/10.1103/PhysRevLett.82.4569
http://dx.doi.org/10.1103/PhysRevLett.82.4569
http://dx.doi.org/10.1103/PhysRevLett.82.4569
http://dx.doi.org/10.1103/PhysRevLett.83.5407
http://dx.doi.org/10.1103/PhysRevLett.83.5407
http://dx.doi.org/10.1103/PhysRevLett.83.5407
http://dx.doi.org/10.1103/PhysRevLett.83.5407
http://dx.doi.org/10.1126/science.1088827
http://dx.doi.org/10.1126/science.1088827
http://dx.doi.org/10.1126/science.1088827
http://dx.doi.org/10.1126/science.1088827
http://dx.doi.org/10.1364/OL.11.000073
http://dx.doi.org/10.1364/OL.11.000073
http://dx.doi.org/10.1364/OL.11.000073
http://dx.doi.org/10.1364/OL.11.000073
http://dx.doi.org/10.1103/PhysRevLett.114.143004
http://dx.doi.org/10.1103/PhysRevLett.114.143004
http://dx.doi.org/10.1103/PhysRevLett.114.143004
http://dx.doi.org/10.1103/PhysRevLett.114.143004
http://dx.doi.org/10.1016/S1049-250X(08)60186-X
http://dx.doi.org/10.1016/S1049-250X(08)60186-X
http://dx.doi.org/10.1016/S1049-250X(08)60186-X
http://dx.doi.org/10.1016/S1049-250X(08)60186-X
http://dx.doi.org/10.1103/PhysRevA.79.023624
http://dx.doi.org/10.1103/PhysRevA.79.023624
http://dx.doi.org/10.1103/PhysRevA.79.023624
http://dx.doi.org/10.1103/PhysRevA.79.023624
http://dx.doi.org/10.1038/416219a
http://dx.doi.org/10.1038/416219a
http://dx.doi.org/10.1038/416219a
http://dx.doi.org/10.1038/416219a
http://dx.doi.org/10.1103/PhysRevLett.104.200402
http://dx.doi.org/10.1103/PhysRevLett.104.200402
http://dx.doi.org/10.1103/PhysRevLett.104.200402
http://dx.doi.org/10.1103/PhysRevLett.104.200402
http://dx.doi.org/10.1103/PhysRevA.57.R4106
http://dx.doi.org/10.1103/PhysRevA.57.R4106
http://dx.doi.org/10.1103/PhysRevA.57.R4106
http://dx.doi.org/10.1103/PhysRevA.57.R4106
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1103/PhysRevLett.114.055301
http://dx.doi.org/10.1103/PhysRevLett.114.055301
http://dx.doi.org/10.1103/PhysRevLett.114.055301
http://dx.doi.org/10.1103/PhysRevLett.114.055301
http://dx.doi.org/10.1103/PhysRevLett.100.040404
http://dx.doi.org/10.1103/PhysRevLett.100.040404
http://dx.doi.org/10.1103/PhysRevLett.100.040404
http://dx.doi.org/10.1103/PhysRevLett.100.040404
http://dx.doi.org/10.1103/PhysRevLett.107.095301
http://dx.doi.org/10.1103/PhysRevLett.107.095301
http://dx.doi.org/10.1103/PhysRevLett.107.095301
http://dx.doi.org/10.1103/PhysRevLett.107.095301



