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We investigate the applicability of norm-conserving pseudopotentials to intense laser-matter interactions
by performing time-dependent density functional theory simulations with an all-electron potential and with
norm-conserving pseudopotentials. We find pseudopotentials to be reliable for the simulation of above-threshold
ionization over a broad range of laser intensities both for the total ionization probability and the photoelectron
energy spectrum. For the simulation of high-order-harmonic generation, pseudopotentials are shown to be
applicable for lower-order harmonics in the spectral range in which the one-photon recombination dipole-matrix
element can be recovered by the pseudopotential calculation.
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I. INTRODUCTION

Intense laser-matter interaction is one of the current
hot topics in physics due to the rapid advances of laser
technology [1–4]. In principle, the dynamics can be studied
by solving the many-electron time-dependent Schrödinger
equation. However, apart from a few simple systems like
hydrogen or helium it is still very challenging to perform a
full quantum simulation for many-electron systems. Therefore
many approximate theoretical models ranging from classical
and semiclassical to perturbative methods have been proposed
to interpret experimental observations or to predict physical
processes in laser-matter interactions. The difficulties of
ab initio simulations result from the numerical efforts and
the amount of computational resources needed that are far
beyond the computational power available even for today’s
supercomputers. Density functional theory (DFT) [5–7] and
time-dependent density functional theory (TDDFT) [8–11]
often provide a useful compromise between efficiency and
reliability for studying the electronic structures and dynamical
processes of many-electron systems. However, even with
TDDFT, all-electron (AE) simulations for atoms, molecules,
and solids in an intense laser field are still very challenging
[10,12–15] because of the extensive computational resources
needed.

For moderately strong laser fields [e.g., with intensities
I � 1015 W/cm2 for a near-infrared (NIR) wavelength of
λ = 800 nm] only the valence and subvalence shell elec-
trons effectively contribute to the strong-field response of
matter to the light field. Therefore, representing within a
TDDFT simulation the core electrons by pseudopotentials
rather than performing an all-electron calculation promises to
considerably reduce the numerical effort required. Moreover, it
bypasses the need to represent the fast oscillations of valence
orbitals in the core region. The latter poses an obstacle to
efficiently discretizing the configuration space by equispaced
grids. For laser-atom interactions, the generalized pseudospec-
tral method [16] employs nonequidistant grid distributions
allowing thereby the representation of rapidly varying wave
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functions near the nucleus. This method reaches its limit for
strong long-wavelength laser fields because a large number
of grid points are needed. While it has been meanwhile
applied to diatomic molecules by using spheroidal coordinates
[13,17,18] it cannot be easily extended to general many-atom
systems. One characteristic feature of many-atom systems
in an intense laser field is that many continuum states are
involved and the ejected electron may propagate far away
from its parent core before returning at a later time. Thus
the conventional quantum-chemistry codes, such as GAMESS

[19] or BIGDFT [20], while frequently employed in structure
and spectral calculations, cannot be easily applied to intense
laser-matter interactions. Treating such problems with AE
methods becomes increasingly impractical since too many grid
points are needed to describe the fast oscillation of the wave
function in the inner region, and the wave function extends to
very large space. For extended condensed-matter systems with
periodic-boundary conditions, the use of equispaced grids in
both coordinate and k space and of pseudopotentials is key to
effectively describing strong-field laser-matter interactions.

Although pseudopotentials are frequently used for elec-
tronic structure simulations in large molecules, clusters, and
condensed matter and for dynamical processes in the perturba-
tive limit [21,22], the validity of the pseudopotentials in intense
laser-material interactions beyond the perturbative regime has
not yet been tested systematically. The purpose of the present
paper is to explore the applicability of pseudopotentials to
describing two prominent signatures of strong-field response
of matter: above-threshold ionization (ATI) and high-order-
harmonic generation (HHG). As a test case for an atomic
many-electron system we consider in the following argon for
which we perform comparative all-electron and pseudopoten-
tial (PP) calculations within the framework of TDDFT. In our
study we employ norm-conserving pseudopotentials (NCPP)
[23–26] which feature the distinct advantage of yielding the
same Kohn-Sham (KS) energy levels and the same scattering
phase (modulo π ) for low-energy electron scattering as the
ones from AE simulations. NCPPs can be generated from
all-electron DFT simulations [27] and have been applied in
the past to a variety of dynamical processes for many-electron
systems from atoms [28], molecules [22], and clusters [29] to
condensed matter [30]. Justification of NCPP to many-electron
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dynamics in the perturbative regime has been investigated by
Yabana and Bertsch [31].

By comparing the strong-field response treated by TDDFT-
AE and TDDFT-PP, we demonstrate that NCPPs work well
for above-threshold ionization over a broad range of laser
intensities. For high-order-harmonic generation, NCPPs work
well for lower harmonics with energies E below a critical
value above which the photorecombination matrix element
into pseudostates deviates from that for recombination into
AE orbitals. Implications for the simulation of ATI and HHG
spectra in many-electron systems will be discussed.

An outline of the methods employed will be given in Sec. II
followed by the presentation of the application to ATI and HHG
in argon in Sec. III. Atomic units are used unless specified
otherwise.

II. THEORETICAL METHODS

Laser-matter interactions can be simulated within the
framework of TDDFT by solving the time-dependent Kohn-
Sham (TDKS) equations

i
∂ψi(r,t)

∂t
= H (r,t)ψi(r,t), (1)

with ψi(r,t) the time-dependent ith orbital wave function
(i = 1, . . . ,N ) and H (r,t) the single-particle-like Kohn-Sham
[6] Hamiltonian. The time-dependent electron density is
expressed as

ρ(r,t) =
N∑

i=1

niψ
∗
i (r,t)ψi(r,t), (2)

with ni the electron occupation number of the ith orbital and
N the number of orbitals. For an all-electron calculation

N∑
i=1

ni = Ne, (3)

with Ne the total number of electrons (Ne = 18 in the present
case). For atoms, the Hamiltonian can be written as

H (r,t) = − 1
2∇2 + Veff[ρ(r,t)] + Vext(r,t), (4)

where Vext(r,t) is the electron-laser interaction and
Veff[ρ(r,t)], the effective potential,

Veff[ρ(r,t)] = −Z

r
+

∫
ρ(r′,t)
|r − r′|dr′ + Vxc[ρ(r,t)], (5)

with Z the charge of the nucleus. The first term of the
above equation stands for the electron-nuclear Coulomb
interaction, the second term is the direct (or Hartree)
electron-electron interaction, and the third term represents
the exchange-correlation interaction which is a universal
functional of the electron density the exact form of which
is still unknown. A wide variety of approximate forms for
Vxc have been proposed. Since the focus of the present
paper is not to identify optimal choices for argon, we
choose in the following the simplest and most widely used
local density functional [32,33], which has been shown to
predict most of the physical processes at least qualitatively
correctly. For comparing with experiments quantitatively,

specifically tailored exchange-correlation functionals, such as
the meta-GGA functional [34,35], could be used.

We propagate the time-dependent wave functions by using
the second-order split-operator method in the energy represen-
tation [36] as

ψi(r,t + �t) = e−iH0�t/2e−iV (r,t)�te−iH0�t/2ψi(r,t), (6)

where H0 is the time-independent laser field free atomic
Hamiltonian which in the present case is taken as

H0 = − 1
2∇2 + Veff[ρ0(r)], (7)

with ρ0(r) the ground-state atomic electron density in the
absence of the external laser field. Consequently, the inter-
action potential V (r,t) in Eq. (6) contains, in addition to the
interaction with the external field, Vext, also the interaction
with the time-dependent charge density fluctuation δρ(r,t) of
the many-electron system induced by the external field,

V (r,t) = Vext(r,t) + V [δρ(r,t)]

= Vext(r,t) +
∫

δρ(r′,t)
|r − r′| dr′ + δVxc(r,t), (8)

with δρ(r,t) = ρ(r,t) − ρ0(r,t) and δVxc(r,t) = Vxc[ρ(r,t)] −
Vxc[ρ0(r)], the effective exchange-correlation potential due to
the density variation relative to the initial density. We refer
to V [δρ(r,t)] in the following as the dynamical screening
potential. In the all-electron TDDFT we calculate Veff[ρ0(r)]
for all electrons [Eq. (5)] self-consistently without the laser
field. Accordingly, the dynamical screening potential V [δρ]
accounts for the response and density fluctuations of all
electrons in the system.

For the calculation employing NCPPs we represent the elec-
trons in inner shells (n = 1,2) in terms of pseudopotentials.
In turn, the dynamical screening potential V PP[δρ] describes
the response of the 3s and 3p electrons only. Accordingly,
the all-electron ground-state potential Veff[ρ0] in Eq. (7) is
replaced by nonlocal 	-dependent pseudopotentials V PP

	 ,

V PP
eff (r) =

∑
	,m

V PP
	 (r)

∣∣Ym
	

〉〈
Ym

	

∣∣. (9)

The pseudopotential for each 	 sector is calculated from the
inversion of the Schrödinger equation for the corresponding
radial pseudo-wave-function RPP

	 (r),

V PP
	 (r) = εn	 − 	(	 + 1)

2r2
− 1

2rRPP
	 (r)

d2

dr2

[
rRPP

	 (r)
]
, (10)

where εn	 is the Kohn-Sham energy eigenvalue of the n = 3
electrons from the AE calculation. The pseudo-wave-functions
RPP

	 (r) are constructed subject to the constraints that outside a
cutoff radius rcut (rcut = 2 a.u. in the calculations), the RPP

	 (r)
are identical to the corresponding AE Kohn-Sham orbitals
R	(r). Within the rcut sphere the probability (or charge) of the
AE orbital and the PP orbital must agree,∫ rcut

0
dr

∣∣RPP
	 (r)

∣∣2
r2 =

∫ rcut

0
dr |R	(r)|2r2, (11)

in order to conserve the norm of the wave function. We
construct a smooth nonoscillating pseudo-wave-function for a
given 	 as r	 exp[p(r)] with p(r) a polynomial. Matching both
the pseudo-wave-function and its derivative to the AE wave
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FIG. 1. (Color online) Radial (pseudo-)wave functions of Ar3s,
3p, and 3d orbitals calculated by DFT with the all-electron potential
and norm-conserving pseudopotentials. The 3d wave functions are
multiplied by 50.

function at r = rcut determines the pseudo-wave-functions
(Fig. 1) and, via Eq. (10), the pseudopotentials (Fig. 2).

In our simulation we explicitly calculate V PP
	 (r) for the first

three partial waves (	 = 0,1,2) and assume that higher 	 bound
states or partial waves in the continuum excited by the external
driving field Vext are well represented by the d-wave channel
potential since core penetration is strongly suppressed (see
Fig. 1). Upon replacing Veff[ρ0] in Eq. (7) by V PP

eff (r) [Eq. (9)]
and V [δρ] by the corresponding dynamical response potential
for the pseudodensity, V PP[δρ], the propagation [Eq. (6)]
proceeds completely analogously to the AE simulation.

We will also compare the TDDFT simulations with the
solution of the time-dependent Schrödinger equation in the
single-active electron approximation (TDSAE). In this limit,
the dynamical response of the electrons is completely ne-
glected, V [δρ] = 0, and Eq. (8) reduces to

V (r,t) = Vext(r,t) . (12)

V
(r

)

r

Veff [ρ0]
= 0
= 1
= 2

FIG. 2. (Color online) All-electron effective potential Veff [ρ0]
and norm-conserving pseudopotentials V PP

	 (r) from DFT simulations
for Ar atoms.

The single active electron is propagated in the effective
potential [Eq. (9)]. Therefore, by changing the effective input
potential and by turning on or off the dynamical screening
potential we can study laser-induced dynamical processes
within the framework of either the TDSAE or the TDDFT,
the latter on both the AE and NCPP levels using the same
computer code.

III. APPLICATION TO STRONG-FIELD
LASER-ATOM INTERACTIONS

A. Above-threshold ionization

One prominent signature of the highly nonlinear electronic
response to strong laser-matter interaction is above-threshold
ionization. In our ATI simulation we project, after each time
step of propagation, the wave functions ψi(r,t) in the outer re-
gion (r > RV ) onto Volkov states [37–39] in momentum space
which allows one to propagate analytically the wave-packet
component residing in the outer region until the conclusion of
the laser pulse. After the termination of the laser pulse the inner
and outer components of the wave packet are projected onto
the atomic continuum states {φ	(ε,r)}, which are normalized
on the energy scale. The atomic continuum wave functions
{φ	(ε,r)} at the energy ε are numerically determined for the
given AE potential or NCPPs. The projection coefficients
contain all information on the ATI electron spectrum as
detailed in Refs. [40–42].

In the simulation, we use 80 partial waves, 2000 radial grid
points, and a simulation-box size of Rmax = 240 a.u., which
is about 10 times the electron quiver distance E0/ω

2 for the
highest intensity in the present work. Here E0 is the peak laser
electric field and ω the laser center wavelength. The quiver
radius is the amplitude of a classical free electron oscillating
in the laser field. In the following we present numerical results
for a prototypical set of parameters for the laser field with pulse
duration of τ = 6 fs (FWHM intensity) and central wavelength
λ = 800 nm. We have checked that the PP method is applicable
over a wide range of wavelengths (between 400 and 1600 nm).
The border between the inner and outer Volkov region is set at
RV = 2/3 Rmax, i.e., about the sixfold quiver radius to ensure
that laser-driven recollision with the ionic core is properly
represented.

The substate-resolved ionization probabilities (Fig. 3) of
electrons initially occupying the 3s, 3p0, and 3p1 orbitals dis-
play near-perfect agreement between AE and PP simulations.
The inner-shell (1s, 2s, 2p of Ar atoms) contributions can be
completely neglected due to large ionization potentials. The
total ionization probability is therefore simply the sum of all
subvalence contributions.

While the identification of individual Kohn-Sham orbitals
with electronic states is arguable, the KS orbitals provide
a useful starting point for the qualitative interpretation of
dynamical processes in atoms and molecules [43]. Irrespective
of this ambiguity the total ionization probability is a well-
defined observable within TDDFT. The discrepancies between
the TDDFT-AE and TDDFT-PP are less than a few percent.
The largest discrepancy appears for the 3s valence shell at the
lowest intensity for which the ionization probability is
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FIG. 3. (Color online) Substate resolved ionization probabilities
in Ar for electrons initially occupying the 3p0, 3p1, and 3s orbitals
in intense laser fields calculated by TDDFT with the all-electron
potential and norm-conserving pseudopotentials. Laser parameters:
λ = 800 nm, pulse duration τ = 6 fs.

exceedingly small (less than 10−10). This discrepancy may
reflect, in fact, numerical errors.

Figure 3 also shows that ionization is dominated by the 3p0

contribution followed by 3p1 while the 3s orbital contributes
little. Although the 3p0 and 3p1 orbitals have the same
ionization potential, the electron aligned along the laser field
can be most easily ionized. The difference between 3p and 3s

are due to differences in the ionization potentials. The larger
ionization potential results in a smaller ionization probability.
These findings agree with those previously reported [44–46].

Solving the time-dependent Schrödinger equation with an
SAE model potential is frequently used to investigate the
dynamical processes in laser-atom interactions because of
its simplicity. We therefore compare for argon the ionization
probabilities from a TDDFT and from a TDSAE calculation
(Fig. 4). We find that the ionization probabilities of Ar3p0 and
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FIG. 4. (Color online) As in Fig. 3, but comparing the TDDFT-
AE and TDSAE calculations.
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FIG. 5. (Color online) ATI spectra of Ar in an intense laser
pulse calculated by TDDFT with the all-electron potential and
norm-conserving pseudopotentials. Laser parameters: λ = 800 nm,
I = 7 × 1013 W/cm2, pulse duration τ = 6 fs.

Ar3p1 from TDDFT and the TDSAE model are close to each
other at low intensities (I ∼ 1013 W/cm2) but rapidly diverge
from each other at higher intensities. These discrepancies
can be attributed to the dynamical screening of the laser
field included in TDDFT [Eq. (8)] but absent in the TDSAE
model. More specifically, the dynamic screening due to the
displacement of the electron density, or polarization induced
by the external laser field, reduces the ionization probability
by a factor of 2 to 5 at low intensities as reported in Ref. [22].
For higher intensities when ionization probability is already
significant, the suppression of the ionization in TDDFT can
be attributed to the increase of the ionization potential due
to the partial ionization [10]. Even though the fractional
ionization is a conceptual problem of TDDFT, the reasonable
agreement between simulations [10,47] and measurements
[48,49] indicates that dynamical screening is reasonably well
accounted for by TDDFT on a mean-field level.

For the ionization probability of Ar3s, the two results
differ by orders of magnitude. In the TDSAE simulation,
the ionization probability from Ar3s increases rapidly with
intensity, but still remains much smaller than the one from
TDDFT. The larger ionization probability in TDDFT can be
attributed to indirect field ionization or an “antiscreening”
effect due to the induced charge-density fluctuations in
the valence shell. This can be viewed as the signature of
electron rescattering on the mean-field level. It is also the
precursor of nonsequential multiple ionization observed in
experiment [50–52] and attributed to electron rescattering
[53–55]. The nonsequential multiple ionization has been
studied by TDDFT [12].

Photoelectron spectra (Fig. 5) can provide more detailed
information on the ionization process. Obviously, the PP
calculation can reproduce the spectrum determined by the
AE calculation very well. In fact, the TDDFT-PP calculations
yield smoother and less noisy spectra than the TDDFT-AE
simulation which is a direct consequence of the much smaller
number of grid points needed in the PP calculation to achieve
converged results. This observation underscores the advantage
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in performing TDDFT-PP calculations for many-electron
systems. At this moderate laser intensity the spectrum features
the characteristic ATI peaks with �ω spacing, the first cutoff
for direct electrons at 2Up (Up = E2

0/ 4ω2, the ponderomotive
energy) and the cutoff for rescattering electrons at 10Up [56].
At higher intensities the ATI peaks get blurred (not shown) but
the TDDFT-PP method works equally well.

Although the wave functions and the effective potentials
of the AE and PP calculations differ significantly as shown
in Figs. 1 and 2, the resulting ionization probabilities and the
ATI spectra are in good agreement with each other for a broad
range of laser intensities. This can be understood in terms
of a semiclassical three-step model applied to ATI: tunneling
followed by electron acceleration in the laser field [57] and,
for high-energy electrons, laser-driven rescattering at the ionic
core. The tunneling ionization depends on the potential and
the electron density near the tunneling barrier which is in
the outer region r > rcut where the AE and NCPP potentials
coincide. Also the laser field accelerates the electron in the
outer region in which the potentials are the same. Finally, for
the rescattering process, the PP potentials are constructed such
that the scattering phase of the full AE potential is reproduced
(modulo π ) for low-energy scattering. All of this explains that
the rapid oscillations of the initial wave function in the core
region are of little importance for the strong-field ionization
process.

B. High-order-harmonic generation

High-order-harmonic generation is the second prominent
signature of nonlinear laser-matter interactions, and it is the
process underlying the new ultrafast extreme ultraviolet light
source [58–60] which allows one to probe ultrafast dynamics
of electrons in materials [61–63]. With the time-dependent
density ρ(r,t), we calculate the induced dipole in length form
as

d(t) =
∫

rρ(r,t)dr , (13)

and from Eq. (13) the HHG spectrum by the Fourier transform

P (nω) =
∣∣∣∣ 1

τ

∫ ∞

−∞
d(t)einωtdt

∣∣∣∣
2

, (14)

with τ the pulse duration and n the harmonic order. Unlike
the ATI spectra we cannot decompose the HHG spectra into
contributions from different orbitals since the HHG represents
a coherent sum over different orbitals as shown by Eq. (14).
Therefore, we focus on the total HHG spectrum. We can
also calculate the induced dipole in velocity gauge (v =
i[H,r]) and acceleration gauge (a = i[H,v]) as described in
Refs. [36,64,65]. If the propagation of the wave functions is
converged, the HHG spectra from the three gauges should
agree with each other. Thus, comparing the HHG spectra from
different gauges provides a test of the numerical accuracy of
the simulation.

Since the purpose of the present investigation is to probe
the validity region of a NCPP potential in HHG simulations,
we focus on the single-atom response and do not consider
propagation and phase-matching effects [66] that are important
when comparing with experiment. The convergence of the
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FIG. 6. (Color online) High-order harmonic generation of Ar
atoms in an intense laser pulse calculated by TDDFT with the
all-electron potential and norm-conserving pseudopotentials in length
gauge. For the latter also velocity and acceleration gauge are shown.
Laser parameters: λ = 800 nm, I = 5 × 1013 W/cm2, pulse duration
τ = 6 fs.

HHG spectra calculated within the full TDDFT-AE simulation
in either the velocity or acceleration gauge as a function of
grid-point density is slow because in these gauges the major
contributions to the dipole-matrix elements come from the
derivations of rapidly oscillating wave functions in the core
region. By contrast, the length gauge places more weight on
the outer region yielding rapid convergence as the grid density
is increased. Therefore, when comparing with a PP calculation
whose key advantage is low grid density we will use the length
gauge for the AE calculation (Fig. 6).

Typical HHG spectra feature a rapid decrease for low-order
HHG followed by a plateau terminated by a sharp cutoff
consistent with the prediction by the semiclassical model
[67,68] for the cutoff energy Ecut = Ip + 3.17Up, with Ip the
ionization potential. The sharp peak around n = 6.7 is not a
HHG feature but signifies the resonant transition from 4s →
3p. Overall, the AE spectrum agrees with the PP spectrum
quite well for energies E < n�ω with n ≈ 20. Moreover, the
PP simulations in length, velocity, and acceleration gauges
agree with each other within this spectral range which is
a consequence of the fact that the fast oscillations of the
initial wave functions in the inner region are removed in
NCPP calculations, pointing to the numerical advantages of
pseudopotentials. Similar to previous work [36,64], we find
the HHG in the velocity gauge has less background above
Ecut. Therefore, in the following discussion, we present the
HHG in the velocity gauge for NCPPs and in the length gauge
for the AE potential.

Comparison between the TDSAE model and the TDDFT
employing the same AE potential [see Eq. (7)] displays
discrepancies for HHG (Fig. 7). Interestingly, the HHG spectra
of TDSAE are higher than the ones of TDDFT for lower
order harmonics (n < 20) while the opposite is true for
n > 20. This reversal can be understood with the help of the
three-step model for HHG [68]: tunnel ionization, acceleration
of the liberated electron, and, as a third and final step,
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FIG. 7. (Color online) High-order-harmonic generation of Ar
atoms calculated by TDSAE and TTDFT with all-electron potential.
Laser parameters: λ = 800 nm, I = 2 × 1014 W/cm2, τ = 6 fs.

photorecombination with the parent ion. Within the so-called
quantitative rescattering theory [69] the last step is given
by the radiative recombination probability which is related to
the photoionization cross section via time-reversal symmetry.
The photoionization cross section in the independent-particle
approximation [70] corresponding to the TDSAE model
is found to be higher than the self-consistent field (SCF)
cross section (corresponding to TDDFT) for lower energies
(<20 eV) while for higher photon energies (>20 eV) the SCF
cross section is larger. This general pattern is consistent with
the HHG power spectra calculated with TDDFT and TDSAE
although the crossover position shifts by about 10 eV, which
is close to the ac-Stark shift of the ground state in the laser
field.

Since the HHG originates from the radiative recombination
of the electron with the parent ion it probes the overlap of
the continuum wave function of the energetic electron with
the initial state in the core region [68,71]. The excellent
performance of TDDFT with pseudopotentials over a wide
range of photoenergies is, at first glance, surprising since
the pseudo-wave-function entering the recombination matrix
bears little resemblance to the initial state. In order to explore
the apparent insensitivity of HHG to oscillations of valence
orbitals in the core region we introduce a window function

w(r) =
{

0 for r < Rc,

1 − e−(r−Rc)2/25 for r � Rc,
(15)

and calculate the induced dipole as

d(t) =
∫

rρ(r,t)w(r) dr . (16)

By varying Rc we assess the contribution from the core region
to the harmonic spectrum. Figure 8 shows the variation of
the high-energy spectrum (n > 20) for different values of Rc.
The low-order (n < 20) harmonic spectrum is not significantly
affected at all. Up to energies in the vicinity of the cutoff
energy corresponding to the n ≈ 35 harmonic the removal
of contributions from r � Rc = 1.5 a.u. to the integral alters
the spectrum only slightly. Dramatic variations appear only at
the very-high-energy end of the spectrum beyond the cutoff.
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FIG. 8. (Color online) High-order-harmonic generation of Ar
atoms calculated by TDDFT-AE with different Rc. Laser parameters:
λ = 800 nm, I = 2 × 1014 W/cm2, τ = 6 fs.

Thus, the dominant contribution to the time-dependent induced
dipole is due to the overlap of the initial wave function with
the continuum in the region for r > 1.2 a.u. This explains
why the HHG spectra from the AE and NCPP simulations
are close to each other since the initial wave functions from
AE and NCPP are close to each other in the region of r >

1.2 a.u. More precisely, the transition dipole is dominated
by contributions from r > 1.2 a.u. The latter point is nicely
illustrated by the shape of the pseudo-wave-functions (Fig. 1).
While the radial 3p wave functions peak near r = 1.2 a.u.,
suggesting significant contributions also from r < 1.2 a.u.,
the major contribution to the transition dipole stems from the
coupling between the 3p state and the d-partial wave. The latter
effectively does not penetrate the core region because of the
large centrifugal barrier (Fig. 1) and thus shifts the weight in
Eq. (16) to larger r . Only for large energies of the recolliding
electron does core penetration become important.

For delineating the applicability of the TDDFT-PP method
it is instructive to consider the transition dipole-matrix element
for the radiative recombination, i.e., the last step of the
three-step model as a function of the recombination energy.
We therefore calculate the transition dipole-matrix elements
of Ar εp → 3s and εs(d) → 3p (Fig. 9). The AE and
PP transition matrix elements agree with each other at
low energies while they start to diverge from each other
at higher energies (E � 1.1 a.u.) corresponding to n � 20.
Such discrepancies are magnified when the transition matrix
element features pronounced structures such as in the present
case Ar (d → 3p) a pronounced Cooper minimum near
36 eV [72,73]. Accurately representing the Cooper minimum
requires high-level electronic structure calculations. For the
d → 3p transition the position of the Cooper minimum is
well reproduced by the TDDFT-AE calculation while the
TDDFT-PP calculation shifts it to higher energies (∼44 eV).
The present TDDFT calculation fails to reproduce the Cooper
minimum in the p → 3s channels which requires improved
treatment of correlation effects, e.g., on the random-phase
approximation with exchange level [74]. Our present calcula-
tions suggest therefore the approximate agreement between the
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FIG. 9. (Color online) Transition dipole-matrix elements in Ar
atoms calculated with the all-electron potential and norm-conserving
pseudopotentials.

transition dipole-matrix elements for radiative recombination
in the PP and AE calculations as a useful criterion for the
applicability of the pseudopotential method for a given spectral
range of HHG.

IV. CONCLUSION

In summary, we have studied the region of validity of
norm-conserving pseudopotentials in laser-matter interactions
and found that NCPPs work well for strong-field ionization
over a broad range of energies and intensities when comparing
TDDFT with all electron and NCPP simulations. For high-
order-harmonic generations, NCPP works well for lower order
HHGs but may break down for very-high-order HHGs. The cri-
terion for the applicability of NCPPs to HHG can be deduced
from the laser-field free transition dipole-matrix elements from
AE and NCPP calculations. The present study underscores the
applicability of NCPP to laser-matter interactions and lays the
foundation for the application of NCPPs to larger system such
as molecules, clusters, and solids.
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Reinhard, P. M. Dinh, and E. Suraud, Laser-driven nonlinear
cluster dynamics, Rev. Mod. Phys. 82, 1793 (2010).

[3] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel,
Extremely high-intensity laser interactions with fundamental
quantum systems, Rev. Mod. Phys. 84, 1177 (2012).

[4] W. Becker, X.-J. Liu, P. J. Ho, and J. H. Eberly, Theories
of photoelectron correlation in laser-driven multiple atomic
ionization, Rev. Mod. Phys. 84, 1011 (2012).

[5] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys.
Rev. 136, B864 (1964).

[6] W. Kohn and L. J. Sham, Self-consistent equations including
exchange and correlation effects, Phys. Rev. 140, A1133 (1965).

[7] W. Kohn, Nobel lecture: Electronic structure of matter-wave
functions and density functionals, Rev. Mod. Phys. 71, 1253
(1999).

[8] E. Runge and E. K. U. Gross, Density-Functional Theory for
Time-Dependent Systems, Phys. Rev. Lett. 52, 997 (1984).

[9] C. A. Ullrich, U. J. Gossmann, and E. K. U. Gross, Time-
Dependent Optimized Effective Potential, Phys. Rev. Lett. 74,
872 (1995).

[10] X.-M. Tong and Shih-I Chu, Time-dependent density-functional
theory for strong-field multiphoton processes: Application to
the study of the role of dynamical electron correlation in
multiple high-order-harmonic generation, Phys. Rev. A 57, 452
(1998).

[11] P. Wopperer, P. M. Dinh, P.-G. Reinhard, and E. Suraud,
Electrons as probes of dynamics in molecules and clusters:
A contribution from time dependent density functional theory,
Phys. Rep. 562, 1 (2015).

[12] M. Lein, E. K. U. Gross, and V. Engel, Intense-Field Double
Ionization of Helium: Identifying the Mechanism, Phys. Rev.
Lett. 85, 4707 (2000).

[13] Xi Chu and Shih-I Chu, Time-dependent density-functional
theory for molecular processes in strong fields: Study of
multiphoton processes and dynamical response of individual
valence electrons of N2 in intense laser fields, Phys. Rev. A 64,
063404 (2001).

[14] D. A. Telnov, K. E. Sosnova, E. Rozenbaum, and Shih-
I Chu, Exterior complex scaling method in time-dependent
density-functional theory: Multiphoton ionization and high-
order-harmonic generation of Ar atoms, Phys. Rev. A 87, 053406
(2013).

[15] J. Heslar, D. A. Telnov, and Shih-I Chu, Subcycle dynam-
ics of high-harmonic generation in valence-shell and virtual
states of Ar atoms: A self-interaction-free time-dependent
density-functional-theory approach, Phys. Rev. A 91, 023420
(2015).

[16] Xiao-Min Tong and Shih-I Chu, Theoretical study of multiple
high-order-harmonic generation by intense ultrashort pulsed
laser fields: A new generalized pseudospectral time-dependent
method, Chem. Phys. 217, 119 (1997).

[17] D. A. Telnov and Shih-I Chu, Ab initio study of high-
order-harmonic generation of H2

+ in intense laser fields:

043422-7

http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1103/RevModPhys.82.1793
http://dx.doi.org/10.1103/RevModPhys.82.1793
http://dx.doi.org/10.1103/RevModPhys.82.1793
http://dx.doi.org/10.1103/RevModPhys.82.1793
http://dx.doi.org/10.1103/RevModPhys.84.1177
http://dx.doi.org/10.1103/RevModPhys.84.1177
http://dx.doi.org/10.1103/RevModPhys.84.1177
http://dx.doi.org/10.1103/RevModPhys.84.1177
http://dx.doi.org/10.1103/RevModPhys.84.1011
http://dx.doi.org/10.1103/RevModPhys.84.1011
http://dx.doi.org/10.1103/RevModPhys.84.1011
http://dx.doi.org/10.1103/RevModPhys.84.1011
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1103/PhysRevLett.74.872
http://dx.doi.org/10.1103/PhysRevLett.74.872
http://dx.doi.org/10.1103/PhysRevLett.74.872
http://dx.doi.org/10.1103/PhysRevLett.74.872
http://dx.doi.org/10.1103/PhysRevA.57.452
http://dx.doi.org/10.1103/PhysRevA.57.452
http://dx.doi.org/10.1103/PhysRevA.57.452
http://dx.doi.org/10.1103/PhysRevA.57.452
http://dx.doi.org/10.1016/j.physrep.2014.07.003
http://dx.doi.org/10.1016/j.physrep.2014.07.003
http://dx.doi.org/10.1016/j.physrep.2014.07.003
http://dx.doi.org/10.1016/j.physrep.2014.07.003
http://dx.doi.org/10.1103/PhysRevLett.85.4707
http://dx.doi.org/10.1103/PhysRevLett.85.4707
http://dx.doi.org/10.1103/PhysRevLett.85.4707
http://dx.doi.org/10.1103/PhysRevLett.85.4707
http://dx.doi.org/10.1103/PhysRevA.64.063404
http://dx.doi.org/10.1103/PhysRevA.64.063404
http://dx.doi.org/10.1103/PhysRevA.64.063404
http://dx.doi.org/10.1103/PhysRevA.64.063404
http://dx.doi.org/10.1103/PhysRevA.87.053406
http://dx.doi.org/10.1103/PhysRevA.87.053406
http://dx.doi.org/10.1103/PhysRevA.87.053406
http://dx.doi.org/10.1103/PhysRevA.87.053406
http://dx.doi.org/10.1103/PhysRevA.91.023420
http://dx.doi.org/10.1103/PhysRevA.91.023420
http://dx.doi.org/10.1103/PhysRevA.91.023420
http://dx.doi.org/10.1103/PhysRevA.91.023420
http://dx.doi.org/10.1016/S0301-0104(97)00063-3
http://dx.doi.org/10.1016/S0301-0104(97)00063-3
http://dx.doi.org/10.1016/S0301-0104(97)00063-3
http://dx.doi.org/10.1016/S0301-0104(97)00063-3


XIAO-MIN TONG et al. PHYSICAL REVIEW A 92, 043422 (2015)

Time-dependent non-Hermitian Floquet approach, Phys. Rev.
A 71, 013408 (2005).

[18] Y.-J. Jin, X.-M. Tong, and N. Toshima, Enhanced ionization
of hydrogen molecular ions in an intense laser field via a
multiphoton resonance, Phys. Rev. A 81, 013408 (2010).

[19] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S.
Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen,
S. Su et al., General atomic and molecular electronic structure
system, J. Comput. Chem. 14, 1347 (1993).

[20] S. Mohr, L. E. Ratcliff, P. Boulanger, L. Genovese, D. Caliste,
T. Deutsch, and S. Goedecker, Daubechies wavelets for linear
scaling density functional theory, J. Chem. Phys. 140, 204110
(2014).

[21] K. Yabana and G. F. Bertsch, Time-dependent local-density
approximation in real time, Phys. Rev. B 54, 4484 (1996).

[22] T. Otobe, K. Yabana, and J.-I. Iwata, First-principles calculations
for the tunnel ionization rate of atoms and molecules, Phys. Rev.
A 69, 053404 (2004).
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