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The concept of nonlinear quantum-beat pump-probe Auger spectroscopy is introduced by discussing a relatively
simple four-level model system. We consider a coherent wave packet involving two low-lying states that was
prepared by an appropriate pump pulse. This wave packet is subsequently probed by a weak, time-delayed probe
pulse with nearly resonant coupling to a core-excited state of the atomic or molecular system. The resonant Auger
spectra are then studied as a function of the duration of the probe pulse and the time delay. With a bandwidth of the
probe pulse approaching the energy spread of the wave packet, the Auger yields and spectra show quantum beats
as a function of pump-probe delay. An analytic theory for the quantum-beat Auger spectroscopy is presented,
which allows for the reconstruction of the wave packet by analyzing the delay-dependent Auger spectra. The
possibility of extending this method to a more complex manifold of electronic and vibrational energy levels is
also discussed.
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I. INTRODUCTION

In 1925, Auger discovered and interpreted the nonradiative
decay process of an inner-shell ionized atom by the emission
of an electron, which is now known as the Auger effect. In the
following year, Robinson and Cassie investigated the Auger
electrons by means of a magnetic electron spectrograph, which
was the start of Auger spectroscopy [1]. After its discovery,
Auger spectroscopy has been broadly applied and extensively
developed in many different areas [1–5]. The appearance
of dedicated storage-ring x-ray radiation sources in the last
quarter century has brought Auger spectroscopy into a new
period. With the rapid development of x-ray free electron
laser pulses (FELs) in the past decade, Auger spectroscopy
is expected to be pushed into a new level of application to
study ultrafast electronic processes, considering the unique
properties of FELs that are ultrashort pulses and ultrastrong
intensities [6]. Actually, the development of FELs has spurred
an increasing number of new studies of Auger spectroscopy in
the soft x-ray region in atomic and molecular systems [7–17].
In most of these studies, all kind of nonlinear interactions of the
FELs on core-valence transitions are addressed, leading to a
manipulated Auger spectrum in the strong-field limit. Contrary
to those studies taking advantage of the ultrahigh intensities
of FELs, we focus on the application of ultrashort FEL pulses
with appropriate bandwidth and propose quantum-beat Auger
spectroscopy to study coherent wave-packet dynamics. We find
that quantum-beat Auger spectroscopy, a linear probe process
in the photon interaction, can be efficiently employed to extract
information about the initial coherent wave packet.

Many aspects have inspired us to propose quantum-beat
Auger spectroscopy. One scientific interest is the recon-
struction of coherent electronic wave packets prepared by
appropriate pulses. Various techniques [18–25] have been
proposed for the complete reconstruction of coherent wave
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packets in the optical or ultraviolet regimes. Among those
methods, it is worth mentioning that femto- and attosecond
transient-absorption spectroscopy [20,21] has become a very
powerful one with the development of femtosecond and
attosecond laser pulses, especially with its successful appli-
cation to extract the phase and amplitudes of laser-induced
wave packets [20,25–30]. Transient absorption measurement,
however, requires optically dense samples and interpretation
is sometimes cumbersome due to propagation effects of the
applied laser pulses. A way to circumvent this problem is
the detection of electrons rather than photons in optically
thin samples. Reading the spectroscopic information via the
electron emission can also be an advantage in the development
of nonlinear coherent x-ray pump-probe techniques, based
on stimulated x-ray Raman scattering [31,32]. The transfer
of these nonlinear optical techniques to the x-ray regime is
not only challenged by the relatively low nonlinear optical
susceptibilities in the x-ray region, beam propagation effects,
and the relative unstable shot-to-shot properties of FELs
but also by the direct coupling of the probe pulse to the
ionization continuum, creating a large amount of ions in
the sample. These ions can have resonances in the spectral
region of interest of the nonlinear signal and therefore can
induce background, i.e., resonance absorption in homodyne
detection schemes overlapping with typically low Raman
signals [33]. One way to circumvent these problems would
be to extract the coherent nonlinear response by Auger
electron spectroscopy rather than detect the signal photons
or photoionized electrons. Auger spectroscopy is proposed as
a complementary method in the x-ray regime to reconstruct the
coherent wave packet. Here, we focus on one of the concep-
tually easiest nonlinear pump-probe techniques, quantum beat
spectroscopy.

We present the method of quantum-beat Auger spec-
troscopy by discussing a relatively simple four-level model
system, shown in Fig. 1. In our analysis, we do not discuss
the process of creating a coherent wave packet, but suppose
a coherent wave packet, involving two bound states |B1〉 and
|B2〉, that was created by an appropriate pump pulse, with the
populations c2

1 and c2
2 (c2

2 = 1 − c2
1), respectively, and a relative

1050-2947/2015/92(4)/043420(10) 043420-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.043420


SONG BIN ZHANG AND NINA ROHRINGER PHYSICAL REVIEW A 92, 043420 (2015)

Probe
Auger

|B
1
〉

|B
2
〉

|C〉

|A〉

c
1

c
2
ei

0

Pump

Aug

0 t time

FIG. 1. (Color online) Schematics of the Auger process triggered
by the weak short x-ray probe pulse from a two-state coherent wave
packet with initial populations c2

1 and c2
2 and relative phase ϕ0. The

coherent wave packet is supposed to be created by an appropriate
pump pulse and the probe pulse is time delayed by �t .

phase φ0. A weak femtosecond x-ray probe pulse triggering the
Auger process is time delayed by �t from the pump pulse and
has a driving frequency ω0 between the resonant transition en-
ergies ECB1 and ECB2 . In our notation EI refers to the energy of
a particular state |I 〉, and the energy differences between states
|J 〉 and |I 〉 are defined by EJI = EJ − EI . The femtosecond
x-ray pulse prompts the wave packet to the intermediate core
excited state |C〉, followed by the Auger decay to state |A〉
with decay rate �Aug (see Fig. 1). Our studies show that with a
bandwidth of the probe pulse approaching the energy spread of
the wave packet, the Auger yields and spectra show quantum
beats as a function of pump-probe time delay �t .

Our studies are limited to weak probe pulses, in the
sense that a perturbative treatment of the Auger process is
applicable. The intensities of the applied probe field should be
small enough so that strong resonant coupling, inducing Rabi
flopping between the resonantly coupled levels and resulting
in the typical broadening and splitting of the Auger spectra
[7,11–15], can be neglected. In other words, the intensities are
chosen to be small enough so that the Rabi period is much
longer than the pulse duration of the probe pulse.

The outline of the paper is as follows: In the next section,
the theoretical methods including the numerical method and
the analytic solution for the model system are introduced.
Section III presents the numerical results and discussions, and
the possibility of extending this method to molecular systems
is discussed and numerical results on the CO molecule are
given in Sec. IV. Section V gives a summary of this work.
Atomic units (a.u.) are used throughout the paper, if not
otherwise stated.

II. THEORETICAL METHODS

The time-dependent wave-packet propagation method for
a few-level system [11,14,34,35] is employed to evaluate
the dynamics of the electronic states and the Auger electron

spectrum. The total wave function �(t) can be expanded in

�(t) = aB1 (t)|B1〉 + aB2 (t)|B2〉 + aC(t)e−iω0t |C〉

+
∫

aA(ε,t)e−iω0t |A,ε〉dε, (1)

where aB1 (t), aB2 (t), aC(t), and aA(ε,t) are the time-dependent
amplitudes of the levels |B1〉, |B2〉, |C〉, and |A,ε〉, respec-
tively. In our study, we only treat the probe process explicitly
and suppose that a coherent wave packet was prepared by an
appropriate pump pulse (by, for example, Raman scattering)
and at time t = 0 the initial wave packet is �(t = 0) =
c1|B1〉 + c2e

iϕ0 |B2〉. For the probe field, we suppose a weak
linearly polarized electric field G(t) = g0g(t)cos(ω0t) with
pulse envelope g(t), electric field strength g0, and envelope
peak at t = �t . Inserting the total wave function into the time-
dependent Schrödinger equation for the total Hamiltonian and
implying the rotating wave approximation [36,37] and the local
approximation [12,34,38,39] leads to the following equation
determining the evolution of the expansion coefficients:

i�̇a(t) = H̄(t)�a(t), (2)

where

�a(t) = [
aB1 (t),aB2 (t),aC(t),aA(ε,t)

]T
(3)

and

H̄(t)=

⎛
⎜⎜⎜⎜⎝

EB1 0 D
†
1(t) 0

0 EB2 D
†
2(t) 0

D1(t) D2(t) EC−ω0−i
�Aug

2 0

0 0 V EA−ω0 + ε

⎞
⎟⎟⎟⎟⎠.

(4)

Here, the in generally complex dipole coupling term is
Di(t) = 	ig(t)/2 with the Rabi frequency 	i = g0di , di is
the transition dipole from state |Bi〉 to state |C〉 (i = 1,2);
V = 〈A,ε|1/r̂12|C〉 is the Coulomb matrix element between
the core excited state and the final ionic state; �Aug = 2π |V |2
is the Auger decay width. Finally, the Auger electron spectrum
with the residual ions in the ionic stat |A〉 is given by

σA(ε) = lim
t→∞ |aA(ε,t)|2. (5)

The total Auger electron yield pertaining to the ionic channel
A can be computed as

σT
A =

∫
σA(ε)dε. (6)

We suppose the pulse is short and weak and the direct
ionization process is neglected in the theory. Therefore, only
the Auger process contributes to the depletion of the bound
states, so that the total Auger yield can also be computed by

σT
A = 1 − lim

t→∞
[∣∣aB1 (t)

∣∣2 + ∣∣aB2 (t)
∣∣2]

. (7)

The system of Eq. (2) was solved numerically by employing
Gaussian pulse g(t) = e−2 ln 2t2/τ 2

, where τ is the pulse duration
at full width of half maximum of the field intensity. Since
a perturbative probe pulse is employed, the system can
also be approximately solved based on the time-dependent
perturbation theory. The analytic solutions based on the
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second-order time-dependent perturbation theory are given in
detail in the appendix.

A model system is employed and we suppose ECB1 = 210
eV, ECA = 200 eV, EB2B1 = 0.2 eV, and �Aug = 0.1 eV (cor-
responding to a lifetime of 6.6 fs), that are typical in atomic and
molecular soft x-ray induced excitations. The pulse duration τ

is varied from several femtoseconds to tens of femtoseconds.
In terms of the weak probe-pulse limit, we suppose Rabi
frequencies of 	1 = 	2 = 0.0001 a.u., corresponding to a
Rabi period of about 1.5 ps, i.e., much longer than the
considered pulse duration. For typical dipole matrix elements
in the soft x-ray domain, this would correspond to a peak
intensity in the range of 1013–1015 W/cm2. The shape of the
Auger spectrum below this intensity limit does not depend on
the applied intensities, so that an integration over the spatial
focus profile of the interaction region will not change the
presented spectra.

We study different choices for the initial phase ϕ0 and
initial-state populations c2

1 and c2
2. Since the energy gap EB2B1

can be resolved from the quantum beating of the time-delayed
Auger spectra or from the nonresonant Auger spectra for long
pulses, we suppose this quantity is known a priori. Generally,
the probe frequency ω0 can be chosen anywhere between
ECB1 and ECB2 . Choosing ω0 = (ECB1 + ECB2 )/2 = ECB1 −
EB2B1/2 = 209.9 eV allows for a more compact derivation
of the explicit analytical expression for the reconstruction of
the wave packet by perturbation theory and greatly simplifies
the discussion of the results, but it is not a restriction on
the applicability of the method. With this specific choice, the
analytic expression of the total Auger yield is given by

σT
A

(
ω0 = ECB1 − EB2B1/2

)

� πτ 2

8 ln 2
e
− τ2

16 ln 2 (E2
B2B1

−�2
Aug)[(c1	1)2p(τ ) + (c2	2)2p(τ )

+2c1	1c2	2q(τ ) cos ϕ], (8)

where ϕ = mod(ϕ0 − EB2B1�t,2π ) is the scaled phase, which
includes the initial phase and the phase accumulated with time.
We define the functions q(τ ) = [Erf( �Aug

4
√

ln 2
τ ) − 1] and p(τ ) =

Re{ei
EB2B1

�Aug
8 ln 2 τ 2

[Erf(i
EB2B1 −i�Aug

4
√

ln 2
τ ) − 1]}, where Erf is the error

function. Equation (8) shows the exchange symmetry between
c1	1 and c2	2.

Being derived from perturbation theory, the linear depen-
dence of the scaled phase with respect to the time delay is
strictly valid only in the perturbative limit. In the strong cou-
pling case, additional phase can be accumulated by Rabi flop-
ping between the resonantly coupled levels and the expression
for the scaled phase and Eq. (8) is no longer valid. By choosing
the Rabi period of the probe pulse at least ten times longer than
the pulse duration, we make sure to stay in the perturbative
limit of the applied intensities. For the considered Rabi
frequencies, our numerical calculations (valid also for higher
probe-pulse intensities) and the analytic results obtained by
perturbation theory are in good agreement. As can be directly
seen, in the limit of long pulse duration, q(τ ) tends towards
zero and the Auger spectrum approaches the static limit of an
incoherent sum of contributions from states B1 and B2.

Similarly, the analytic expression of the Auger electron
spectrum is given by

σA

(
ω0 = ECB1 − EB2B1/2,ε

) � �Augτ
2

16 ln 2
(
�2 + �2

Aug

4

)

× {
(c1	1)2e− τ2

4 ln 2 (�+ EB2B1
2 )2+(c2	2)2e− τ2

4 ln 2 (�− EB2B1
2 )2

+2c1	1c2	2 cos ϕe− τ2

8 ln 2 [(�+ EB2B1
2 )2+(�− EB2B1

2 )2]},
(9)

where � = ε − ECA. There is a special case for Eq. (9):
If c1	1 = c2	2, then the spectrum will be symmetric with
respect to �. Equation (9) can be further simplified if � = 0
or the spectrum is detected at the Auger energy ε = ECA =
200 eV, as

σA

(
ω0 = ECB1 − EB2B1/2,ε = ECA

) = τ 2

4 ln 2�Aug
e
− τ2

16 ln 2 E2
B2B1

×(
c2

1	
2
1 + c2

2	
2
2 + 2c1c2	1	2 cos ϕ

)
. (10)

These analytic expressions allow us to extract the initial
state populations and phase.

III. NUMERICAL RESULTS

The total Auger yield and Auger electron spectra for the case
with equal initial-state populations c2

1 = c2
2 = 0.5 are shown

in Fig. 2. Figure 2(a) shows the total Auger yield as a function
of the pulse duration τ and the scaled phase ϕ, which relates
to the time delay �t . The total overall yield increases with
longer pulse duration, since the peak Rabi frequency is kept
constant as the pulse duration is increased, leading to larger
pulse energies. As Fig. 2(a) shows, the total Auger yield
shows only a small dependence on ϕ for long pulses. For
long pulses durations with τ > 25 fs, the energy bandwidth
(�ω < 0.1 eV) of the applied probe pulse is small compared
to the energy splitting EB2B1 = 0.2 eV and the Auger lifetime
of the upper state and the situation is approaching the static
limit, i.e., no variation of the total yield on the time delay
(scaled phase) is observable. In the quasistatic case, the probe
pulse has a well-defined frequency and is considerably detuned
by ±EB2B1/2 from the core-valence transition energies ECB1

and ECB2 . The Auger spectral characteristics therefore are
described by the static limit of the resonant Auger effect
(nonradiative resonance scattering) [40]. The energy of the
Auger electron follows a linear dispersion with respect to
the incoming photon energy; i.e., two distinct peaks appear
due to the detuning by ±EB2B1/2 from the resonant limits of
transitions ECB1 and ECB2 . The two distinct peaks can be seen
in the Auger electron spectra shown in Figs. 2(b) and 2(c), that
shows the spectra as a function of pulse duration for scaled
phases of ϕ = 0 an ϕ = π , respectively.

The situation changes significantly when ϕ varies from
0 to 2π and the pulse duration τ is reduced below 13.5 fs:
In that case, the bandwidth of the probe pulse approaches
the energy splitting EB2B1 between states B1 and B2 and
is large compared to the Auger lifetime width. The broad
bandwidth supports resonance scattering initiated from both
states B1 and B2 to the same final Auger-electron energy
and interference of the two pathways starts to dominate the
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FIG. 2. (Color online) The total Auger yield and Auger electron spectra for the case with initial-state populations c2
1 = c2

2 = 0.5. The
parameters of the system are EB2B1 = 0.2 eV, ω0 = ECB1 − EB2B1/2 = 209.9 eV, and 	1 = 	2 = 0.0001 a.u. Explicitly, panel (a) shows the
total Auger yield with respect to the pulse duration τ and the scaled phase ϕ; panels (b) and (c) show the Auger electron spectra with respect
to the pulse duration for the scaled phase ϕ = 0 and ϕ = π , respectively; panel (d) shows the Auger electron spectra with respect to the scaled
phase ϕ for the pulse with fixed pulse duration τ = 13.5 fs. The scaled phase is defined as ϕ = mod(ϕ0 − EB2B1�t,2π ).

Auger-electron spectrum. The total Auger yield for the pulses
with fixed pulse duration τ ∼ 13.5 fs shows clear maxima
and a minimum for scaled phases ϕ = 0 or 2π and ϕ = π ,
respectively. This means that clear constructive and destructive
interference of the resonance scattering of the two initial
states B1 and B2 is observed. This result provides a way to
extract the initial phase ϕ0: Explicitly, the delay times �tmax or
�tmin corresponding to the maximum or minimum of the total
Auger yield for a fixed pulse duration τ < 13.5 fs have to be
determined. By analyzing Eq. (8), the initial phase ϕ0 can then
be found by the condition mod(ϕ0 − EB2B1�tmax,2π ) = 0 or
mod(ϕ0 − EB2B1�tmin,2π ) = π . In principle, the initial-state
populations can also be extracted by fitting the total Auger
yield for a given pulse duration by the expression given by
Eq. (8). A simpler and more straightforward way to extract
populations will be introduced in the following, analyzing the
Auger-electron spectra.

Figures 2(b) and 2(c) show the Auger electron spectra as
a function of the pulse duration for the scaled phase ϕ = 0
and ϕ = π , respectively, and highlight the emergence of the
interference pattern as the pulse duration decreases. When
the pulse is long, two isolated main peaks are observed
around ω0 − EAB1 = 199.9 eV and ω0 − EAB2 = 200.1 eV,
corresponding to the quasistatic resonant Auger spectra from
the two states |B1〉 and |B2〉 with well-defined photon-energy
detuning of ±EB2B1 , respectively; with decreasing pulse
duration, the two main peaks become broader and shift towards
200 eV. The two channels begin to interfere, and for τ ∼ 13.5
fs, the spectra are dominated by the interference pattern. As

shown clearly in the plots, ϕ = 0 and ϕ = π correspond to the
cases of constructive and destructive interference, respectively.

The Auger electron spectra as a function of the scaled
phase ϕ (related to the pump-probe time delay) are shown
in Fig. 2(d) for a probe-pulse duration of τ = 13.5 fs.
In the main spectral region where ε ∼ ECA = 200 eV, the
spectra show strong dependence on the scaled phase ϕ, and
maximum and minimum are observed around ϕ = 0 (and
2π ) and π , respectively. Those results are in agreement with
the perturbative predictions of Eq. (9). Bearing in mind that
Eq. (9) reduces into the simpler expression of Eq. (10) at
Auger electron energies of ε = ECA = 200 eV, the initial wave
packet can be easily reconstructed by examining the spectral
Auger intensity at ε = ECA as a function of the delay time
(phase ϕ): The initial phase ϕ0 and the state populations can be
extracted from the delay times corresponding to the maximum
or minimum of the spectral intensity and the modulation
depth β of the spectral intensity [defined as (max-min)/max],
respectively. The same method for extracting the initial phase
from the total Auger yield of Fig. 2(a) can be applied to
extract the initial phase ϕ0 from the spectral intensities at
ε = ECA. Analyzing Eq. (10), we find that the modulation
depth β satisfies the following equation:

β = 4c1d1c2d2

c2
1d

2
1 + c2

2d
2
2 + 2c1d1c2d2

, (11)

which gives two solutions: c1d1
c2d2

= 2−β−2
√

1−β

β
and c2d2

c1d1
=

2−β−2
√

1−β

β
. If the dipole ratio d1

d2
	= 1 and is known a priori, the
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FIG. 3. (Color online) The spectral intensity at Auger energy ε =
ECA = 200 eV as a function of the scaled phase ϕ. Results are shown
for a probe-pulse duration of τ = 13.5 fs and for different initial
state populations. The system parameters are EB2B1 = 0.2 eV, ω0 =
ECB1 − EB2B1/2 = 209.9 eV, and 	1 = 	2 = 0.0001 a.u. β is the
modulation depth of the spectra, defined as (max − min)/max.

initial-state populations c2
1 and c2

2 can be uniquely determined
with the additional constraint c2

1 + c2
2 = 1.

The evolution of the modulation depth at the resonant
Auger energy ε = ECA = 200 eV is shown in Fig. 3 as a
function of scaled phase for different initial-state populations

and for a pulse duration τ = 13.5 fs. The modulation
depths for initial-state occupations of c2

1 = 0.5 (c2
2 = 0.5),

c2
1 = 0.9 (c2

2 = 0.1), c2
1 = 0.99 (c2

2 = 0.01), and c2
1 = 0.999

(c2
2 = 0.001) are 100.0%, 75.0%, 33.2%, and 11.9%,

respectively. Even a low excitation fraction of 0.1% from the
ground state results in a significant modulation depth of 11.9%
in the delay-dependent Auger electron spectra, if the dipole
transition strengths d1 and d2 to the intermediate core-excited
state are comparable in size. Due to the exchange symmetry
of Eqs. (8)–(10) with respect to the product c1d1 and c2d2, the
occupation probabilities c2

1 and c2
2 cannot be unambiguously

determined for d1 = d2 in the considered case. By shifting
the central frequency ω0 off the midpoint between transition
energies ECB1 and EC,B2 , it is however possible to lift the
ambiguity in the assignment of the occupation probabilities to
states B1 and B2. A complete analysis of the delay-dependent
Auger spectra then yields a unique reconstruction of the initial
level occupancies and their relative phase.

The situation is different for initially occupied states that
show different coupling strengths to the intermediate core-
excited state. Figure 4 shows the Auger spectra as a function
of scaled phase (delay time) for a probe-pulse duration of τ =
13.5 fs for an initial-state population of c2

1 = 0.9 (c2
2 = 0.1)

for different ratios of the transition dipole moments d1
d2

. The
driving frequency of the probe field is still supposed to be mid-
way between the core-excited resonances. Figures 4(a)–4(d)
correspond to the cases with the dipole ratios of d1

d2
= 	1

	2
= 1

0.5 ,
1
1 , 1

3 , and 1
4 , respectively. As shown clearly, the Auger electron
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FIG. 4. (Color online) Auger electron spectral intensity as a function of the scaled phase ϕ and the Auger electron energy for different dipole
ratios d1

d2
, supposing a probe-pulse duration of τ = 13.5 fs and initial-state populations of c2

1 = 0.9 (or c2
2 = 0.1). The energy gap EB2B1 = 0.2
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spectra in Fig. 4(c) for c1d1
c2d2

= c1	1
c2	2

= 1 (corresponding to
d1
d2

= 1/3 and c2
1 = 0.9, c2

2 = 0.1) are symmetric with respect
to the energy ε = ECA = 200 eV, consistent with Eq. (9).
This symmetry is no longer prevalent in the other cases
of Figs. 4(a), 4(b), and 4(d), that present results for ratios
c1d1
c2d2

	= 1 ( c1d1
c2d2

of 3
0.5 , 3

1 , and 3
4 , respectively). Equation (9),

the case of central probe frequency ω0 = ECB1 − EB2B1/2,
clearly shows that the Auger spectra do not show symmetry
with respect to the resonant Auger energy ε = ECA, if c1	1

c2	2
=

c1d1
c2d2

	= 1. This asymmetry of the Auger spectra allows us to
lift the unambiguity presented by the solutions of Eq. (11)
for the modulation depth at ε = ECA, that has two solutions
for the ratios c1d1

c2d2
. If the partial Auger yield of energies

ε < ECA (ε > ECA) is dominant in the Auger spectrum
[the Auger spectrum is shifted below (above) the resonance
energy condition], then c1d1

c2d2
> 1 ( c1d1

c2d2
< 1), which chooses one

solution of Eq. (11). Therefore, the ratio c1d1
c2d2

can be uniquely
determined. Moreover, if the ratio of the dipole transition
strengths d1

d2
is known, the initial-state occupancies c2

1 and

c2
2 and their relative phase can be unambiguously recovered.

Also in the more general case of the probe-pulse driving
frequency ω0 	= ECB1 − EB2B1/2, a similar reconstruction can
be achieved. In that case, the delay-dependent modulation
of the Auger spectral intensity has to be monitored at the
energy ε = ECA + ω0 − ECB1 +ECB2

2 and similar analysis and
reconstruction to that presented applies.

IV. APPLICATION OF QUANTUM-BEAT AUGER
SPECTROSCOPY TO MOLECULES

Although the quantum-beat Auger spectroscopy was studied
based on a relatively simple four-level model system, we note
that such a four-level model system can be applied to a large
class of real atomic or ionic systems. For example, Ar+ would
be a possible realistic system, with an energy splitting of
the first two low-lying (spin-orbit) bound states of 0.18 eV
and a 2s excitation threshold of about 300 eV. The real
power of the method will, undoubtedly, lie in the application
to molecular systems, that can be prepared in a mixture
of coherent electronic and vibrational wave packets. As in
optical quantum-beat spectroscopy, a complete reconstruction
of a complex wave packet, involving many different states
and relative phases, is not realistically achievable. To discuss
the challenges and complications involved, we present a
numerical case study on quantum-beat Auger spectroscopy on
the CO molecule. We suppose a relatively simple wave packet,
consisting only of a mixture of the lowest two vibrational
states in the electronic ground state of CO. Coupling of
this electronic ground-state wave packet to the intermediate
core-excited manifold by a femtosecond broadband x-ray
pulse results in the excitation of a vibrational wave packet
in the core-excited state. The electronic potential surfaces of
ground- and core-excited state are not necessarily parallel,
so that many different vibrational excited states in the core-
excited manifold are involved in the resonance scattering
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FIG. 5. (Color online) Panel (a) potential curves involved in the study. The vibrational wave packet at time zero is supposed to be
�(t = 0) = (|ν = 0〉 + eiφ0 |ν = 1〉)/√2, and the probe pulse is time delayed by �t ; panel (b) total Auger yield with respect to the pulse
duration τ and the scaled phase ϕ = mod(ϕ0 − Eν01�t,2π ); panels (c) and (d) show vibrationally resolved Auger electron spectra with respect
to the pulse duration for the scaled phase ϕ = 0 and ϕ = π , respectively.
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process. The delay-dependent Auger spectrum will therefore
also be sensitive to the intermediate core-excited valence-
wave packets that are induced by resonant excitation from
the electronic ground state. The probe process, with more
than one intermediate level being involved, is therefore too
complex to allow for a unique reconstruction of the initial
ground-state vibrational wave packet. Nevertheless, quantum
beat Auger spectroscopy can create some knowledge of
the initial wave packet. We discuss the case on numerical
results obtained for the CO molecule as an illustrative
example.

We suppose that at time zero, CO is in a coherent superpo-
sition of vibrational states |ν = 0〉 and |ν = 1〉 [or �(t = 0) =
(|ν = 0〉 + eiφ0 |ν = 1〉)/√2] of the electronic ground state
X 1�+. The energy difference of the first two vibrational states
in state X 1�+ is Eν01 = 0.266 eV. As in the model system
treated in Secs. II and III, the probe pulse is triggered at time
�t with respect to the pump pulse and has a driving frequency
to resonantly couple to the intermediate core excited state
C 1s−1π∗1�, roughly 287.4 eV above the electronic ground
state. The core-excited state has an Auger decay width of
� = 0.08 eV and decays predominantly into the final ionic
state 1π−12�+ [see Fig. 5(a)]. We treat the system in the
Born Oppenheimer approximation and restrict the electronic
degrees of freedom to only these three states. The electronic
potential curves are described by Morse potentials with param-
eters taken from Ref. [41]. The time-dependent wave packet
propagation method for the molecular system is employed and
details of this method for molecular systems can be found

in Refs. [11,34]. In our numerical simulation, we choose
the probe-pulse frequency in the middle of the resonance
frequencies (ω0 = 287.543 eV = 287.41–0.266/2), and the
peak Rabi frequency of the probe pulse is supposed to be
0.0001 a.u. (corresponding to a Rabi period of about 1.5 ps).

Figure 5(b) shows the total Auger yield with respect to
the pulse duration τ and the scaled phase ϕ = mod(ϕ0 −
Eν01�t,2π ). For pulses τ < 10 fs, corresponding to the energy
splitting of the vibrational states of the initial wave packet,
the total Auger yield shows strong variation as a function of
the pump-probe delay (scaled phase). The Auger yield shows
little dependence on ϕ for long pulses. These features are
quite similar to that shown in Fig. 2(a). Figures 5(c) and 5(d)
show the vibrationally resolved Auger electron spectra for
ϕ = 0 and π , respectively, as a function of the pulse duration.
As the plots show, for long pulses, the Auger spectra for
both cases of ϕ = 0 and ϕ = π are quasi-identical, because
of little interference from the two initial states |0〉 and |1〉.
The observed spectrum consists of many different resonant
scattering channels, involving several vibrational levels of the
core excited and final ionic electronic states. The spectra
correspond to an incoherent sum of resonance scattering
from initial states |ν = 0〉 and |ν = 1〉. Decreasing the pulse
duration, the pulses excite more vibrational states in the core
excited manifold. The resonance scattering pathways initiating
from vibrational states |ν = 0〉 and |ν = 1〉 of the ground
electronic state interfere. Therefore, more complex wave-
packet dynamics is created, which is manifested in the energy
shifts and splitting of the Auger spectra. The Auger spectra for
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FIG. 6. (Color online) (a) Auger electron spectra for initial states of vibrational state |0〉 (red [dash dot]) and |1〉 (blue [dash]) for τ = 10 fs
and the Auger spectrum of an incoherent sum (black [solid]) of the initial states |0〉 and |1〉; (b) vibrationally resolved Auger electron spectra as
a function of ϕ for τ = 10 fs for the initial coherent wave packet |0〉 + |1〉; panels (c) and (d) are the same as in panels (a) and (b), respectively,
but for τ = 20 fs.
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the cases of ϕ = 0 and ϕ = π show significant differences
for pulses of less than 10 fs, due to destructive (clearly
visible for the case of ϕ = 0 for energies about 271.1 eV)
and constructive interference (clearly visible for the case of
ϕ = π for energies about 271.1 eV) of the different scattering
pathways.

The vibrationally resolved Auger electron spectra for pulses
of τ = 10 fs (20 fs) as a function of the scaled phase are shown
in Fig. 6(b) [Fig. 6(d)]. To highlight the delay-dependent
changes of the Auger spectra, we also show the Auger spectra
from initial vibrational states |0〉, |1〉 and their incoherent sum
in Figs. 6(a) and 6(c). As shown in Fig. 6(d), the Auger spectra
show weak dependence on the pump-probe delay for τ = 20
fs. The spectra can be understood as the incoherent sum of
spectra of initial states |ν = 0〉 and |ν = 1〉 shown in Fig. 6(a).
The broad bandwidth of the probe pulse with 10-fs duration
results in the excitation to many different vibrational levels
in the core-excited electronic state and in a smearing of the
energy resolution of the vibrational transitions, which results
in the more complex structures shown in Fig. 6(a) as compared
to Fig. 6(c). Clearly strong interference effects of scattering
pathways initiating from levels |ν = 0〉 and |ν = 1〉 are visible
in Fig. 6(b) at Auger energies in the range of 270.8 to 271.2 eV,
showing a large variation for the Auger spectrum as a function
of pump-probe delay. Quantum beats can be clearly seen in
the Auger spectra. A reconstruction of the initial vibrational
wave packet, however, proves as difficult, due to complex
wave-packet dynamics excited in the core-excited state of
the system. Quantum beat spectroscopy [42,43] could be a
potential technique to help us to clear the difficulties; further
studies will be performed in the near future.

V. CONCLUSIONS

We introduced quantum-beat Auger spectroscopy by dis-
cussing a relatively simple four-level model system. We
suppose a coherent wave packet involving two low-lying
states that was prepared by an appropriate pump pulse. This
wave packet is subsequently probed by a weak, time-delayed
ultrashort x-ray pulse that has near resonant coupling to a
core-excited state of the atomic or molecular system. The
Auger spectra are then studied as a function of the duration
of the probe pulse and the time delay. With a bandwidth of

the probe pulse approaching the energy spread of the wave
packet, the Auger yields and spectra show quantum beats as
a function of pump-probe delay. An analytic theory for the
quantum-beat Auger spectroscopy is also presented, which
allows for the full reconstruction of the wave packet by
analyzing the delay-dependent Auger spectra. The extension
of this method to a more complex manifold of electronic
and vibrational energy levels is possible, however, methods
for complete reconstruction of the wave packet by quantum-
beat Auger spectroscopy need to be further investigated.
The techniques of creating controlled two-pulse emission at
present-day FELs of different wavelength, pulse duration, and
relative time delays are rapidly evolving [44–46]. Moreover,
sub-fs precision measurements of the relative delay times of
two-pulse FEL schemes [47] have been developed, so that the
presented quantum beat pump-probe spectroscopy should be
feasible at current FEL facilities.

APPENDIX

Second-order time-dependent perturbation theory is em-
ployed to approximately solve the Hamiltonian of Eq. (4). In
this case, the diagonal parts and the off-diagonal parts of Eq.
(4) are considered as unperturbed and perturbed Hamiltonians,
respectively. The expansion coefficients an(t) (n = B1, B2, or
A) can be expanded in powers of the interactions (second
order) [48],

an(t) � a(0)
n + a(1)

n (t) + a(2)
n (t), (A1)

where a(m)
n is the mth order amplitude of state n. An

appropriate pump pulse creates the two-state wave packet
with relative phase ϕ0, and the wave packet evolves freely
as �(�t) = c1|B1〉 + c2e

iϕ |B2〉, where the relative phase
ϕ = ϕ0 − EB2B1�t and �t is defined as the time delay from
the pump pulse envelope center. Supposing the weak probe
pulse is applied at time �t , the perturbation expressions
of a(m)

n [48] can be employed, and we can easily get the
zeroth- and first-order amplitudes: a

(0)
B1

= c1, a
(0)
B2

= c2e
iϕ ,

a
(1)
B1

= a
(1)
B2

= a
(0)
A = a

(1)
A = 0. Let us define ωAC = −ωCA =

EAC + ε − i
�Aug

2 , ωCBi
= −ωBiC = ECBi

− ω0 − i
�Aug

2 , and
ωABi

= −ωBiA = EABi
− ω0 + ε (i = 1,2), and the second-

order amplitudes:

a
(2)
B1

(t → ∞) = −c1

∫ t

−∞
dt ′eiωB1Ct ′D1(t ′)

∫ t ′

−∞
dt ′′eiωCB1 t ′′D1(t ′′) − c2e

iϕ

∫ t

−∞
dt ′eiωB1Ct ′D1(t ′)

∫ t ′

−∞
dt ′′eiωCB2 t ′′D2(t ′′)

= − c1	
2
1τ

8
√

2π ln 2

∫ t

−∞
dt ′eiωB1Ct ′g(t ′)

∫ t ′

−∞
dt ′′eiωCB1 t ′′

∫ ∞

−∞
dωe− τ2ω2

8 ln 2 eiωt ′′

−c2e
iϕ	1	2τ

8
√

2π ln 2

∫ t

−∞
dt ′eiωB1Ct ′g(t ′)

∫ t ′

−∞
dt ′′eiωCB2 t ′′

∫ ∞

−∞
dωe− τ2ω2

8 ln 2 eiωt ′′

= i
c1	

2
1τ

8
√

2π ln 2

∫ ∞

−∞
dωe− τ2ω2

8 ln 2

∫ t

−∞
dt ′

eiωt ′g(t ′)
ωCB1 + ω

+ i
c2e

iϕ	1	2τ

8
√

2π ln 2

∫ ∞

−∞
dωe− τ2ω2

8 ln 2

∫ t

−∞
dt ′

ei(EB1B2 +ω)t ′g(t ′)
ωCB2 + ω

= i
c1	

2
1τ

16 ln 2

∫ ∞

−∞
dω

e− τ2ω2

8 ln 2

ωCB1 + ω
τe− τ2ω2

8 ln 2 + i
c2e

iϕ	1	2τ

16 ln 2

∫ ∞

−∞
dω

e− τ2ω2

8 ln 2

ωCB2 + ω
τe− τ2(ω−EB2B1

)2

8 ln 2
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= c1π

16 ln 2
τ 2	2

1e
−

τ2ω2
CB1

4 ln 2

[
Erf

(
i

τ

2
√

ln 2
ωCB1

)
− 1

]
+ c2e

iϕπ

16 ln 2
τ 2	1	2e

− 1
16 ln 2 τ 2E2

B2B1 e− τ2

4 ln 2 (
ωCB1

+ωCB2
2 )2

×
[

Erf

(
i

τ

2
√

ln 2

ωCB1 + ωCB2

2

)
− 1

]
, (A2)

where Erf is the error function. Note that t ′ and t ′′ in the integration are relative to the probe pulse envelope center. The two
parts included in the above expression correspond to the second-order processes |B1〉 → |C〉 → |B1〉 and |B2〉 → |C〉 → |B1〉,
respectively. Similarly

a
(2)
B2

(t → ∞) = −c2e
iϕ

∫ t

−∞
dt ′eiωB2Ct ′D2(t ′)

∫ t ′

−∞
dt ′′eiωCB2 t ′′D2(t ′′) − c1

∫ t

−∞
dt ′eiωB2Ct ′D2(t ′)

∫ t ′

−∞
dt ′′eiωCB1 t ′′D1(t ′′)

= c2e
iϕπ

16 ln 2
τ 2	2

2e
−

τ2ω2
CB2

4 ln 2

[
Erf

(
i

τ

2
√

ln 2
ωCB2

)
− 1

]
+ c1π

16 ln 2
τ 2	1	2e

− 1
16 ln 2 τ 2E2

B2B1 e− τ2

4 ln 2 (
ωCB1

+ωCB2
2 )2

×
[

Erf

(
i

τ

2
√

ln 2

ωCB1 + ωCB2

2

)
− 1

]
, (A3)

and

a
(2)
A (t → ∞) = −c1

∫ t

−∞
dt ′eiωACt ′V

∫ t ′

−∞
dt ′′eiωCB2 t ′′D1(t ′′) − c2e

iϕ

∫ t

−∞
dt ′eiωACt ′V

∫ t ′

−∞
dt ′′eiωCB2 t ′′D2(t ′′)

= − c1τ	1V

4
√

2π ln 2

∫ t

−∞
dt ′eiωACt ′

∫ t ′

−∞
dt ′′eiωCB1 t ′′

∫ ∞

−∞
dωe− τ2ω2

8 ln 2 eiωt ′′

−c2e
iϕτ	2V

4
√

2π ln 2

∫ t

−∞
dt ′eiωACt ′

∫ t ′

−∞
dt ′′eiωCB2 t ′′

∫ ∞

−∞
dωe− τ2ω2

8 ln 2 eiωt ′′

= i
c1τ	1V

4
√

2π ln 2

∫ ∞

−∞
dωe− τ2ω2

8 ln 2

∫ t

−∞
dt ′

ei(ωAB1 +ω)t ′

ωCB1 + ω
+ i

c2e
iϕτ	2V

4
√

2π ln 2

∫ ∞

−∞
dωe− τ2ω2

8 ln 2

∫ t

−∞
dt ′

ei(ωAB2 +ω)t ′

ωCB2 + ω

= i
c1τ	1V1

4
√

2π ln 2

∫ ∞

−∞
dω

e− τ2ω2

8 ln 2

ωCB1 + ω
2πδ(ω + ωAB1 ,0) + i

c2e
iϕτ	2V

4
√

2π ln 2

∫ ∞

−∞
dω

e− τ2ω2

8 ln 2

ωCB2 + ω
2πδ(ω + ωAB2 ,0)

= −i
c1τ

√
π	1V

2
√

2 ln 2

e−
τ2ω2

AB1
8 ln 2

ωAC

− i
c2e

iϕτ
√

π	2V

2
√

2 ln 2

e−
τ2ω2

AB2
8 ln 2

ωAC

, (A4)

whose two parts are contributed by states |B1〉 and |B2〉, respectively. Note that the integral expression of the Gaussian function in
the frequency domain helps us to separate the variables and makes the analytic integration possible. Finally, the the total electron
depletion (equals to the total Auger yield in the present case) can be calculated as

σT
A � 1 − lim

t→∞
[∣∣a(0)

B1
(t) + a

(2)
B1

(t)
∣∣2 + |a(0)

B2
(t) + a

(2)
B2

(t)
∣∣2] � − lim

t→∞
(
2Re

[
a

(0)∗
B1

(t)a(2)
B1

(t)
] + 2Re

[
a

(0)∗
B2

(t)a(2)
B2

(t)
])

= πτ 2

8 ln 2
(c1	1)2Re

(
e
− τ2

4 ln 2 ω2
CB1

[
Erf

(
i

τ

2
√

ln 2
ωCB1

)
− 1

])
+ πτ 2

8 ln 2
(c2	2)2Re

(
e
− τ2

4 ln 2 ω2
CB2

[
Erf

(
i

τ

2
√

ln 2
ωCB2

)
− 1

])

+ πτ 2

4 ln 2
c1	1c2	2 cos ϕe

− τ2

16 ln 2 E2
B2B1 Re

(
e− τ2

4 ln 2 (
ωCB1

+ωCB2
2 )2

[
Erf

(
i

τ

2
√

ln 2

ωCB1 + ωCB2

2

)
− 1

])
. (A5)

The three parts in the above expression have very clear correspondences to the bound states |B1〉, |B2〉 and their coherence,
respectively. The interference term [last term in Eq. (A5)] modulated with the relative phase ϕ is determined by the time

delay. Note that Erf(z∗) = Erf(z)∗, when ω0 = ECB1 − EB2B1/2, we have iωCB1 = (iωCB2 )∗, so e
− τ2

4 ln 2 ω2
CB1 = (e− τ2

4 ln 2 ω2
CB2 )∗ and

Erf(i τ

2
√

ln 2
ωCB1 ) = Erf(i τ

2
√

ln 2
ωCB2 )∗. Due to these symmetry relations, a simplified expression for the case ω0 = ECB1 − EB2B1/2

can be derived [see Eq. (8) of the main text]. The Auger electron spectrum can be calculated as

σA(ε) � lim
t→∞

∣∣a(2)
A (ε,t)

∣∣2 = �Augτ
2

16 ln 2|ωAC |2
[

(c1	1)2e
− τ2

4 ln 2 ω2
AB1 + (c2	2)2e

− τ2

4 ln 2 ω2
AB2 + 2 cos ϕc1	1c2	2e

− τ2

8 ln 2 (ω2
AB1

+ω2
AB2

)
]
, (A6)

the three contributing terms possess a very clear interpretation equivalent to that of Eq. (A5).
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