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Discrete-valued-pulse optimal control algorithms: Application to spin systems
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This article is aimed at extending the framework of optimal control techniques to the situation where the control
field values are restricted to a finite set. We propose generalizations of the standard GRAPE algorithm suited to
this constraint. We test the validity and the efficiency of this approach for the inversion of an inhomogeneous
ensemble of spin systems with different offset frequencies. It is shown that a remarkable efficiency can be
achieved even for a very limited number of discrete values. Some applications in nuclear magnetic resonance are

discussed.
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I. INTRODUCTION

The design of control sequences accounting for experimen-
tal constraints is a central task in a variety of domains in
quantum dynamics extending from photochemistry, nuclear
magnetic resonance (NMR), and quantum information sci-
ence [1-9]. Nowadays, optimal control theory (OCT) reveals
to be a highly efficient and versatile tool to bring answers to the
different issues raised by the experimental setups [2,10-23].
For the past few years, there has been an intense theoretical
activity in developing new optimal control procedures able to
build high quality control fields in the presence of some ex-
perimental imperfections and constraints [2,13,24-26]. These
include spectral constraints [27-30], amplitude and phase
transients [31], nonlinear interactions between the system and
the control field [32-34], and robustness against experimental
uncertainties and errors [21,35]. To date, the majority of studies
has assumed that the amplitude and phase of the control
field can vary continuously. For example, in modern NMR
spectrometers [7], the amplitude and phase of the control
pulses can be defined with high resolution, allowing for a
virtually continuous variation of these parameters [36,37].
More generally, this is possible in experimental settings,
where arbitrary waveform generators are available [31,38—40].
However, in many cases the available hardware only allows
one to switch between a discrete set of pulse phases [41,42].
This set of phases can be chosen before the experiment, but
cannot be altered during the experiment. Hence the control
is quantized and restricted to a fixed finite number of values,
which can nevertheless be optimized (see Fig. 1 for a schematic
description).

This paper is aimed at tackling this problem by proposing
two fundamentally different approaches. The first method is
based on an extension of a standard optimal iterative procedure,
namely GRAPE [26,43]. The second option can be viewed as
a brute force strategy in the sense that a standard optimization
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method is used in a first step, producing a continuous control
field. A Stuart Lloyd procedure, analogous in its spirit to a
mean square method, is then applied to quantize the field [44].
We test the validity and the efficiency of the two approaches on
a benchmark control problem, the simultaneous control of an
ensemble of uncoupled spin 1/2 particles with different offset
terms [7,45-47]. Extensive numerical simulations reveal that
an efficient control can be achieved even for a small number of
quantized values of the control field. We analyze the relative
efficiency of the two algorithms as a function of the number
of allowed values for the control field. Finally, note that the
discretization of the control field has been recently used in
a series of paper to accelerate the numerical integration of
the time-dependent Schrodinger equation [48-52]. This idea
based on the precomputation of elementary propagators was
applied to quantum optimal control problem and also would
be useful in our case.

The remainder of the paper is organized as follows. In
Sec. II, we outline the principles of the new optimization
procedures, paying special attention to the flexibility and to
the applicability of the methods. Section III is dedicated to
the presentation of the numerical results. The efficiency of
the quantized control field is compared to its continuous
counterpart. The advantages of the optimization algorithm
directly accounting for the constraint and of the brute force
strategy are also discussed. Conclusion and prospective views
are given in Sec. IV.

II. THEORY

The goal of this section is to propose an optimal control
algorithm suited to quantum systems where the control field
is restricted to a finite set M of M discrete values M =
{vi,v2,...,vy}, where M is fixed and the values v, are
optimized. To simplify the discussion, we consider here the
case of mixed quantum systems, which also applies directly
to pure states and can be straightforwardly extended to the
control of unitary operators in quantum computing. Starting
from an initial state py, optimal control is invoked in order
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to maximize the projection onto a target state oy, which is
measured by the following figure of merit:

® = Trlpjp(ty)), (1)

where # is the control duration and p(?) the state of the system
at time 7.

A. The GRAPE algorithm

In this paper, we consider specifically the GRAPE algo-
rithm [26], but the same construction of the discrete version
can be used for other algorithms such as the monotonic or
Krotov ones [33,53-56] (see also the general analysis of such
methods [57,58]).

The time evolution of the mixed state p(#) is ruled by the
Liouville-von Neumann equation:

ip(t) = [H(t),p(1)], 2)

where units such that 7 = 1 have been chosen. The Hamilto-
nian H(¢) of the system can be written as

H(t) = Hy + u(t)H,, 3)

where H, is the field-free Hamiltonian operator and H; the
interaction part. A general presentation of the algorithm is pro-
posed here, but the procedure can be straightforwardly adapted
to phase-modulated pulses with a constant amplitude [60], as
used in Sec. III.

Let U(t) be the evolution operator associated with the
Hamiltonian H(t), such that p(t) = U(t)poU (). Following
the description of a standard GRAPE algorithm [26], we
assume that the field u is discretized in time with a time step
At =ty/N, where N is the number of values of the field. We
denote by u;, with j = 1,2, ..., N the value of u in the interval
[(j — 1)At, j At]. In this approximation, note that the control
field u is now described by a setof N reals (uy,us, ... ,uy). The
time evolution can be computed by the N block propagators
(U1,U,, ..., Uy), where

Uj — e*iAt(H()+ujH1). (4)
The optimal control problem is described by a figure of merit

® to be maximized. Using the different evolution operators
Uj, @ can be written as follows:

® = Tr(UyUy—1 - UrpoU{US - Ulpp). (5)

The optimization procedure is based on the derivation of the
gradient of the figure of merit with respect to the different
values of the control field:

0 _ (uer Wi veviv! . Ut
- Tr PP A,
o NUN—1 ou, 10U U, NPf
T 1
+Tr<UNUN—1"‘UlpoUllel"'—auj "'UvaPf)
J
(6)

We assume that the different propagators are approximated by
a first-order split operator, which is valid up to the order 2 in
At:

Uj ~ e*lAtHoeflAtujHl. (7)
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FIG. 1. Schematic representation of the mapping vector between
the set of M phases and the set of N time steps. The mapping is
depicted by the dashed lines.

This hypothesis simplifies the computation of the derivative of
U; with respect to u ;, which can be written as
oU; )
— > Uj(—iAtH)). (®)
u j
Note that a different approximation of the propagator would
give a different derivative. A straightforward computation
using Eq. (8) then leads to the gradient of the figure of merit:
0P

o, ~ —iAtTr(A;[Hy,p;]), ©))

where the states p; and A; are defined by
0j = jfl"'Ulpon"'U},l,
by =UIUL, - UlpsUy - U;.

In a first-order GRAPE algorithm (see [59] for a recent
generalization to the second order), the field u is updated at
each step by the formula:

Uui—>u;+e——, 10
pe e (10)
with ¢ a small real parameter, which is chosen from a line
search method to ensure the increase of the figure of merit ®.

B. A discrete-valued-pulse version of GRAPE

In the continuous version of the GRAPE algorithm, the
control field # can take any real value, ie., u; € R. We
consider in this section that u is restricted to a finite set M
of M values. We introduce the mapping vector 77) from the
set {1,2,---,N} to {1,2,--- M} which associates with the
different values of u, a value in M: u; = v ;). This mapping
makes a correspondence between the set of time steps and the
set of discrete values. A schematic illustration of this process
is given in Fig. 1. This method will be denoted as Approach I
in this paper.

This optimization procedure has a nontrivial character in
the sense that both the discrete values {v,,} and the mapping
7 can be adjusted to maximize the figure of merit ®. In the
algorithm proposed in this paper, each iteration is decomposed
into two substeps. In the first substep, the mapping _p) is fixed
and the {v,,} values are optimized through a modified version
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of GRAPE which can be described as follows. The functional
@ can be derived with respect to vy,:

P

5 = > —iAtTe(A;[Hy.p))). (11)

JIP (=m
Note that the derivative of the quality factor with respect to
the discrete value v, is simply the sum over the derivatives

with respect to u; which maps to v,,. The control v, is then
updated at each step of the algorithm through the formula:

Up B> Uy +6——. (12)
oV,

The roles are reversed in the second stage which aims at
optimizing 7, while the discrete values {v,,} are not changed.
Since the total number N of values of the field can be very
large, it would be time consuming to find the global optimal
mapping p . Instead, we adopt a more direct approach which
allows one to improve the final result without no guarantee to
attain its upper bound. The efficiency of this procedure will be
shown numerically and discussed in Sec. III.

For each time step j € {1,2,...,N} taken in increasing
order, we test the M possible values of the control field u; =
v, I =1,2,...,M, by computing the corresponding figure of
merit ®(u; = v;). Then we define the new discrete phase as
being the one which maximizes the quality factor:

P (j) = k = arg max d(vy).

A proper use of the adjoint state allows us to obtain a
computational cost of the algorithm with depends linearly
on M.

Since our method is a two-step procedure, it cannot be
easily extended to the second order (the second order is related
here to the gradient and not to the order of accuracy of the
propagator). Note also that this approach is compatible with
a toolkit method [48-52]. At each step of the algorithm, the
propagators associated with the set of M- discrete values can
be precomputed. These propagators can be used to update the
mapping at iteration k — 1 and the same set of propagators
allows us to derive the gradient at step k of the algorithm.

C. Quantization and Lloyd’s algorithm

We sketch in this section a second strategy based on Lloyd’s
algorithm and denoted Approach II. The idea consists first
in using a standard GRAPE algorithm to build a continuous
control field. In our numerical example, we will be inter-
ested in a case where the phase of the field is optimized,
while its amplitude is constant. Nevertheless, it would be
straightforward to extend this procedure to a general situation
with no constraint on the control field. Lloyd’s approach is
then applied in a second step to quantize this field. Lloyd’s
algorithm, which is explained in detail below (we refer the
reader to [44] for additional information), can be viewed as
a mean-square approximation procedure which allows us to
approach a continuous function by a discrete one. In contrast
to the discrete version of GRAPE presented in Sec. II B, no
information about the dynamics is used for the quantization.
In other words, the computation of the continuous control field
is sufficient to design its discrete counterpart. However, since
only geometric (and not dynamical) information is used, there
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is a priori no guarantee about the efficiency of the quantized
control.

To simplify the description of the algorithm, we consider a
set (u;)i=1,.. n of values in the interval [0,27[ (see Sec. III for
details), which corresponds to the pulse phases derived from
the continuous GRAPE algorithm. The angles (u;) are defined
modulo 27 and we identify 0 and 27 by periodicity. The
discrete control field values derived from Lloyd’s algorithm
will be denoted (w;);=;,...n. We also introduce two sets

of M reals belonging to [0,2r[, B® — (B;k))jzl m, and

yeeny

iteration step of the algorithm. The initial set B is defined
such that the values B;O) are equally distributed in increasing
order in the interval [0,27[. Note that the 27 periodicity of the
control field is taken into account in the different relations used
in the algorithm, even if this point is not explicitly mentioned
below in order to clarify the presentation of the computation
of the discrete field. The algorithm can be described as
follows.

Algorithm. Given the initial set B, the control phases
(u;)i=1....N, and the iteration parameters k = 0,¢ > 0, Jo = 0,
do

1) k=k+1.

(2) Forj=1,...,M,do
Y{9 = Mean; (u; € [B{ ", B "]).

(3) Fori =1,...,N, evaluate
d; = min; |u; — Y_;k)lmOdZn
Je=YN, d.

(4) If |Jk — Jk,1| > €, do
forj=1,....M BY =P +y¥)2
and go to 1,
else go to 5.

(5) Fori =1,...,N, compute w; = Proj(u;,Y®).

Note that the function “Mean” stands for the mean value of
a set of numbers belonging to a given interval. The function
“Proj” denotes the projection of each u; onto the discrete set
of values Y®. More precisely, we define the projection as
the value w; € Y® which minimizes the distance from u; to
Y® Tt is then straightforward to define the mapping 7 and
the set M from the values (w;);—1 . n such that V() = @i
A schematic description of this algorithm is displayed in
Fig. 2.

.....

III. APPLICATION TO THE CONTROL OF SPIN SYSTEMS

This section is dedicated to the application of the discrete
versions of the GRAPE algorithm for controlling the dynamics
of spin systems driven by radio-frequency magnetic fields.
The different numerical values are chosen so as to reproduce
the typical features of a spin sample in liquid state NMR
spectroscopy with By inhomogeneities [7]. We test the validity
and the efficiency of the two approaches developed above for
the inversion of an ensemble of inhomogeneous uncoupled
spins with different resonant offset frequencies [45]. Note
that the ensemble of spins that we consider in this paper
is controllable as shown mathematically in [46]. There is,
however, no estimate of the minimum time required to control
the system for a fixed pulse amplitude.
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FIG. 2. (Color online) Schematic representation of the different
steps of Lloyd’s algorithm in the case M = 4. The dots indicate the
position of the control field values {u;}. The two sets of reals B®
and Y® are represented by solid and dashed lines, respectively. At
iteration k = 1, the top panel shows the way to compute the ¥ ;])
values according to step 2 of the algorithm. Different colors have
been used to help the understanding of the procedure. Starting from
this new set Y(", the set B is defined in the middle panel by using
step 4 of the algorithm. The bottom panel depicts a new step 2 for
the next iteration of the algorithm. At this stage, note that the new Y
values have not been computed.

A. The model system

In a given rotating frame, the Hamiltonian of each isochro-
mat, i.e., each subsystem with a different resonance frequency
w, is H, = wo; + w0 + w,0,. For a matter of convenience
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and to simplify the numerical implementation of this problem,
we move to the Bloch picture [7]:

Mi“’) = —wM, +w,M,
M = oM, — o, M,, (13)
M? = o.M, — w,M,,

where the Bloch vector of the isochromat M@ =
(M@, M M) represents the state of the system, which
can be readily related to the corresponding density matrix
through the identification M;” = Tr(p®o;), with i = {x,y,z}
and o; the Pauli matrices. On the right-hand side of Eq. (13),
w is the offset frequency term which belongs to the interval
[—®max,®max]- The two components of the control field along
the x and y directions are denoted w, and w,, respectively.
Starting from Y/I(O) = ﬁz, the goal of the control is to reach
the south pole of the Bloch sphere F = —T/IZ for any spin
of the ensemble. The quality factor or the figure of merit to
maximize can be written as follows:

1 Noff

(@9)
E M“(tp)- F, (14)
Noff o1

b =

where nf is the total number of uncoupled spins and #; the
total control time. The offset terms w; are chosen equally
spaced in [—wmax,®max]- Note that this control problem has
been extensively investigated in the literature in the standard
situation where the field is continuous. We refer the interested
reader to key publications on this subject [21]. Following
Ref. [45], the numerical values are taken to be wmax/(27) =
10 kHz, nof = 200, and ¢, = 0.18 ms. The control field @ =
(wy,wy) is assumed of fixed control amplitude @y and can be
expressed as

@ = wolcos(@(1) X 4 cos(@(1)) Y 1, (15)

where 0 € [0,2r[ is the phase to optimize. The maximum
pulse amplitude wq/(27) is chosen constant and equal to
10 kHz, the same value as wp.. The time digitization is
taken as At = 0.5 us. We have checked that the qualitative
conclusions of this paper do not depend on a specific choice
of the used constants.

B. Numerical results

We are now in a position to check the efficiency of
the discrete GRAPE algorithm, Approach I, through the
comparison with the continuous optimal solution. In all the
numerical simulations with the continuous version, we choose
for the initial control phase the following simple form:

(2t 2
0(t) = E(Z - 1) . (16)

This parabolic behavior leads to a linear evolution of the
corresponding frequency. This class of control fields is known
to be robust to experimental imperfections in the adiabatic
limit [61]. With this initial guess, the GRAPE algorithm
converges to the target state with an accuracy better than
0.9982 and with an optimal control field very close to the
solution proposed in Ref. [45]; see also Fig. 6 for a plot of this
optimal field.
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FIG. 3. (Color online) Histogram distribution of the final quality
factor @ achieved for a broadband inversion of an inhomogeneous
ensemble of spins (see the text for details). The discrete GRAPE
method (Approach I) is used for the cases M = 4 [(a) red bars], M =
8 [(b) blue bars], M = 12 [(c) green bars], and M = 16 [(d) black
bars]. In each optimization, the initial discrete values are randomly
chosen in the interval [0,27[ to generate 100 possible realizations.

In the discrete case, we recall that M is the number of
possible discrete values that can be taken by the control
phase 8. Figure 3 shows the histogram distribution of the
quality factor ® for the cases M =4, 8, 12, and 16. In each
situation, the initial discrete values are randomly chosen in
the interval [0,27[ to generate 100 possible realizations. The
initial mapping p is also generated randomly. We observe that
the final quality factor depends on the initially chosen (random)
discrete set of values of the control field, but a significant
number of examples converges towards a quality factor close
to 1, even for M = 4. For instance, Fig. 3 shows that a large
percentage of the optimizations is close to the maximum
quality factors of 0.992, 0.993, 0.994, and 0.9965 for the cases
of M=4, M =8, M =12, and M = 16, respectively. As
could be expected, we observe that the higher the number
of discrete values M, the narrower the distribution is. Note
also that the global shape of the histogram distribution in this
discrete setting is very similar to standard distributions that can
be observed in the continuous case [45,47]. Another standard
choice for the initial values of the control field is an equidistant
repartition in the interval [0,2[. Here, we consider an initial
zero control field and we determine the initial mapping by
a forward propagation where the M possible values of the
field are tested for each time step. Note that this choice is
not crucial for the final efficiency of the algorithm, but it
allows one in one shot to achieve a very high performance.
The corresponding figures of merit are depicted in Fig. 4 as a
function of the number of iterations. Here again, we observe
the good behavior of the algorithm since a performance higher
than 0.99 is achieved for M > 8.

As could be expected, the larger the number of discrete
values M is, the higher the efficiency. This point is clearly
shown in Fig. 5 where the value of the final quality factor & is

PHYSICAL REVIEW A 92, 043417 (2015)

|
===

oo |

&

log ; 0(1 —®)

-2

20 40 60 80 100
Number of Iterations

FIG. 4. (Color online) Plot of the quality factor ® obtained with
the discrete GRAPE method (Approach I) as a function of the number
of iterations. For this example, the initial values of the phase are
uniformly distributed in the interval [0,27[.

plotted for the two specific choices of the initial set of discrete
values as a function of the number of discrete values M.

For the case of a random choice of the initial set, we observe
that the averaging over 100 realizations of the optimized qual-
ity factor seems less efficient than the performance achieved
when the initial discrete values are uniformly distributed in
the interval [0,27[. However, the maximum of the hundred
realizations has a very high performance, which is better than

!

0-96 1 1 1 1
4 6 8 10 12 14 16

Number of discrete values (M)

FIG. 5. (Color online) Plot of the final quality factor & of
Approach I for two specific initial sets of discrete values as a function
of the number of discrete values M. In the case of a random initial
set (shown by the blue solid line with square), the quality factor has
been obtained by averaging over the 100 realizations given in Fig. 3.
The red solid line with circles represents the value of the final figure
of merit ® when the initial discrete values of the control field are
uniformly distributed in the interval [0,27[. The black curve with
diamonds displays the highest quality factor among the 100 random
realizations.
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FIG. 6. (Color online) Examples of optimal discrete control
phases obtained with Approach I (left column) and with Approach
II (right column) for the cases M = 4 [(a) and (d)], M = 6 [(b) and
(e)], and M = 8 [(c) and (f)]. For GRAPE, the initial discrete values
are randomly chosen in the interval [0,27[. The continuous optimal
field is plotted in the solid line (red) in the right panels.

the one with a uniform distribution, even for M = 4. This
point is illustrated in Fig. 5, where the highest quality factor
among the 100 random realizations is plotted as a function
of M. This observation illustrates a standard optimization

@(a) (@
@) (@
@) (f)%

FIG. 7. Representation on a circle of the discrete phases com-
puted in the example of Fig. 6 for Approach I (left column) and
Approach 1II (right column) with M = 4 [top, (a) and (d)], M =6
[middle, (b) and (e)], and M = 8 [bottom, (c) and (f)].
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problem with a gradient procedure, which only gives a local
information and cannot avoid traps and local maxima in the
control landscapes [2].

The complexity of the optimal solutions designed by the
algorithm is illustrated in Fig. 6 for M = 4,6, and 8. For these
particular cases, we get an efficiency of the order of 0.99 for
M = 4,0.9925 for M = 6, and 0.9931 for M = 8.

In a second series of simulations, we explore the efficiency
of Lloyd’s algorithm for the same control problem. As
explained in Sec. IIC, we first apply a standard continuous
version of GRAPE. Figure 6 shows the different discrete fields
designed by this procedure, which remain very close to the
continuous one. Note the difference with respect to the solution
determined from Approach Iin Fig. 6. The representation used
in Fig. 7 helps the visualization of the two different results.
We have also investigated the computational time of the two
algorithms. In the case of Approach I, this time increases
linearly as a function of the number of discrete values M.
The total computational time is of the order of a few minutes
when M > 10. On the other hand for Approach II, the Lloyd
algorithm is very fast (of the order of a few seconds) and
the limiting factor in terms of computational speed is the
continuous version of GRAPE.

The numerical findings of Fig. 8 confirm the superiority of
Approach I over Lloyd’s algorithm when M < 6. For larger
values of M, we observe that Lloyd’s algorithm becomes more
efficient. This point can be interpreted in light of the local
procedure used here to design the mapping, with therefore no
guarantee to find the global optimal solution. Optimizing such
a mapping is intrinsically a global combinatorial optimization
problem which cannot be easily replaced by a local search
method. Another choice could be to combine a GRAPE
approach, together with a heuristic global procedure such

log, ,(1-®)

n

-3 L L L L
4 6 8 10 12 14 16

number of discrete values (M)

FIG. 8. (Color online) Comparison of the figures of merit
achieved with Approaches I (black diamond) and II (red triangle)
for the broadband inversion of an inhomogeneous ensemble of spins.
Different numbers of discrete values have been considered. In the
case of algorithm I, the best result over the 100 realizations of Fig. 3
has been used. The horizontal solid line indicates the efficiency of the
continuous version of GRAPE.
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as genetic algorithms, which would be used to optimize the
mapping [2]. The global nature of the search method seems
interesting even if the computational cost associated with this
approach may be prohibitive.

As could be expected, the figure of merit for the Lloyd
procedure tends to the continuous optimal result as the number
of discrete values goes to infinity. This is not the case for
Approach I when random or uniform initial phases are used. In
order to improve the efficiency of the quantization procedure,
we have also used the values derived by Lloyd’s algorithm
as an initial guess for algorithm I. However, we observe,
for this example, that the combination of the two algorithms
does not lead to a significantly better figure of merit. Again
this is probably a direct consequence of the local approach
we choose to optimize the mapping. The comparison of the
relative performance of the two algorithms should be tested
on other control problems to confirm the conclusions of this

paper.

IV. CONCLUSION

This paper has focused on the application of new optimiza-
tion procedures for studying the simultaneous control of an
ensemble of uncoupled spins with different offsets. A basic
feature of the methods under consideration is that they allow
us to account for a quantization of the control pulse, which can
only take a fixed finite number of values. We have proposed
two different types of algorithms. The first one is an extension
of the standard GRAPE procedure in which both the discrete
values of the field and the mapping between such values and
the time steps are optimized. The second option combines

PHYSICAL REVIEW A 92, 043417 (2015)

a continuous version of GRAPE with Lloyd’s algorithm,
which is aimed at designing the closest discrete pulse to the
continuous optimal solution. We have numerically analyzed
the efficiency and the relative merits of the two algorithms
in terms of efficiency, computational cost, and complexity
of the control field. We have shown that better results are
achieved by Approach I when the number of discrete values is
lower than 8. The conclusion of this study is crucial in some
electronically controlled nanodevices or in nuclear magnetic
resonance for which such constraints have to be taken into
account. Experiments are in progress in the field of electron
paramagnetic resonance in which such constraints are imposed
by the hardware [62]. Having in mind the different applications
of the standard GRAPE algorithm, an open question is now
to test the efficiency of these new optimal procedures to more
complex systems, such as a chain of coupled spins. This study
could be the subject of future projects.
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