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The photoionization of H+
2 molecular ions is investigated for Bessel beams of twisted light. In particular, the

angle-differential photoionization cross sections are evaluated for a macroscopic target of randomly distributed
but initially aligned ions by using the nonrelativistic first-order perturbation theory. Detailed calculations of
these cross sections and angular distributions are performed for different setups of the electron detectors and for
selected opening angles of the Bessel beams and are compared with those for incident plane-wave radiation. It
is shown that the modification in the angular distributions of the photoelectrons can be understood quite easily
from the variations in the intensity pattern of the Bessel beams, relative to the size of the H+

2 molecular ions.
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I. INTRODUCTION

Like in Young’s well-known double-slit experiment with
plane-wave light, interference effects have been observed and
discussed also in the photoionization of diatomic molecules
[1,2]. These interferences in the photoelectron spectra can
be understood quite easily in terms of the phase shift of the
electrons, if they are emitted from different (atomic) centers
of the molecule. These interference phenomena were first
analyzed by Cohen and Fano [3] almost half a century ago
and since then the photoionization of diatomic molecules has
been intensively explored in both experiment and theory [4,5].
These investigations gave rise to valuable information about
the molecular structure [6,7] as well as the angular distributions
of photoelectrons for their interaction with light of different
frequency and intensity [8,9].

Until the present, however, all molecular double-slit ex-
periments have been performed with incident plane-wave
radiation. Very little is known about the photoionization of (di-
atomic) molecules by beams of twisted (or vortex) light, which
have become available during recent years [10–14]. In contrast
to plane-wave radiation, such twisted photons carry a nonzero
projection of the orbital angular momentum (OAM) upon their
propagation direction. In addition, these twisted beams also
exhibit a quite distinguished inhomogeneous intensity profile,
if taken in the plane perpendicular to the propagation direction
of the beam [15–17]. We can therefore expect [18–24] that the
OAM and intensity profile of such beams will affect also the
cross sections and angular distributions of the photoelectrons
in the photoionization of (diatomic) molecules.

In this paper we investigate theoretically the photoioniza-
tion of H+

2 molecular ions for Bessel beams of twisted light.
Nonrelativistic first-order perturbation theory is applied, along
with Born’s approximation, in order to analyze the cross sec-
tions and angular distributions of the emitted photoelectrons.
In particular, we here compare and discuss the basic formulas
for the (angle-differential) photoionization cross sections for
incident plane waves (Sec. II A) and twisted light (Sec. II B).
For the sake of simplicity, however, we restrict ourselves to
just a macroscopic target of H+

2 molecules that are randomly
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distributed but all aligned with regard to the propagation
direction of the incident beam. Detailed calculations were
performed for different orientations (alignments) of the molec-
ular ions and for different photon energies. In Sec. III we
present our results and show that the known oscillations in
the angular and energy distributions of photoelectrons, as they
were confirmed in experiments with plane-wave radiation [8],
become much less pronounced for twisted light. This loss of
interference in the photoionization cross sections and angular
distributions appears especially if the variations in the intensity
profile of the beams become comparable to the size of the H+

2
molecular ions, i.e., at higher photon energies. Both the energy
and angular dependence of the predicted photoelectron spectra
will be discussed in detail. Finally, a summary and outlook are
given in Sec. IV.

Hartree atomic units (� = 4πε0 = e = me = 1, c =
1/α, where α is a fine-structure constant) are used throughout
the paper unless stated otherwise.

II. THEORY

Let us start from the general transition amplitude that
describes the photoionization of a H+

2 molecular ion, which
consists of just two nuclei (protons) and a single electron.
In first-order perturbation theory, the differential and total
(photoionization) cross sections are usually expressed in terms
of the (transition) matrix element [25]

Mf i = −i

∫
ψ∗

f (r)A(r) · ∇ψi(r)d3r (1)

that describes the transition of the electron from its initial
bound state ψi into the final continuum state ψf because of
the absorption of an incident photon. Here all the properties of
the photons are characterized by means of the vector potential
A(r). Therefore, in order to calculate the transition amplitude
(1), we need to know the explicit form of the wave functions
of the electron in its initial and final states as well as the vector
potential of the incident light field. As usual, we here construct
the initial wave function ψi of the 1σg molecular ground state
as a linear combination of atomic orbitals

ψi(r) = 1√
2
[ψ1s(r − R/2) + ψ1s(r + R/2)], (2)
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FIG. 1. (Color online) Coordinates that are used to describe the
hydrogen molecular ion H+

2 . If the origin is chosen at the midpoint of
the internuclear axis, the position vector r of the electron can easily
be written also in terms of the positions of the two nuclei as r ± R/2.

where ψ1s denotes the 1s ground-state orbital of atomic
hydrogen [25]. Moreover, R is the (internuclear) vector from
the first proton to the second, and r is the position vector of the
electron with regard to the origin of the coordinates (cf. Fig. 1).

In the first-order Born approximation, which is applied in
this work, a plane wave

ψf (r) = (2π )−3/2ei pf ·r (3)

is supposed for the outgoing electron with momentum pf in
the matrix element (1). This approximation is valid when the
kinetic energy Tf of the emitted electron is large compared to
its interaction with the remaining nuclei, but (much) smaller
than the rest energy of the electron

Ip � Tf � mec
2. (4)

In addition, the photon energy ω, ionization potential Ip of the
H+

2 molecular ion, and the (modulus of the) momentum are
related to each other by

Tf = p2
f

2
= ω − Ip, (5)

due to energy conservation.
Indeed, the first-order Born approximation (3) has often

been utilized to analyze the photoionization of diatomic
molecules. For low-Z targets and high photon energies �ω �
200 eV, this approach was found to be adequate for the compu-
tation of both the total and angle-differential photoionization
cross sections [26–28]. In particular, the interference behavior
of the cross sections, obtained for the plane wave (3), has been
reproduced by more accurate calculations based, for example,
on the B-spline basis functions for the continuum electron
spectrum. Since in the present study we aim to elucidate
the major effects arising in the ionization of molecules by
twisted photon beams, we will use the simple first-order
Born approximation for the incident photons with energies
�ω > 200 eV.

Apart from the wave functions ψi and ψf , we need to
know the vector potential A(r) for evaluating the transition
amplitude (1) whose explicit form depends of course on the
(properties of the) incident radiation. In the following sections
we analyze and compare this matrix element for plane-wave
radiation as well as for twisted Bessel light.

A. Ionization by plane-wave photons

The ionization of H+
2 molecular ions by a plane wave has

been discussed in detail; see, for example, Ref. [7]. Here we
therefore restrict ourselves to a rather short account of the basic
formulas. For plane-wave light with photon energy ω = k/α

and helicity λ = ±1, the vector potential is given by

Apl(r) = ekλe
ik·r , (6)

where ekλ denotes the polarization vector. If we insert this
potential (6) into Eq. (1), we then obtain the transition
amplitude

M
pl
f i(k) = − i

∫
ψ∗

f (r)eik·r ekλ · ∇ψi(r)d3r. (7)

To further simplify this amplitude, we can rewrite Eq. (7) as

M
pl
f i(k) = − i

∫
div[ψ∗

f (r)eik·r ekλψi(r)]d3r

+ i

∫
ekλψi(r) · ∇[ψ∗

f (r)eik·r ]d3r

= − i

∮
ψ∗

f (r)eik·r ekλψi(r)d2 S

+ i

∫
ekλψi(r) · ∇[ψ∗

f (r)eik·r ]d3r, (8)

where, in the third line, we made use of Gauss’s integral
theorem to rewrite the integral over the volume into a surface
integral, though for an infinite volume. Since the initial state
decays rapidly to zero ψi(r) → 0 for r → ∞, this surface
integral just vanishes. Hence, the transition amplitude can be
written as

M
pl
f i(k) = − ekλ · pf

(2π )3/2

∫
ei(k− pf )·rψi(r)d3r. (9)

Here we have employed the final-state wave function (3)
and the orthogonality between the polarization and the wave
vectors of a photon ekλ · k = 0.

We can further apply the initial wave function (2) as well as
the well-known Fourier transform of the hydrogenic 1s ground
state [29]∫

ei(k− pf )·rψ1s(r)d3r = 8
√

π

[(k − pf )2 + 1]2
(10)

to finally obtain the (known) transition amplitude for the
photoionization of H+

2 molecular ions as

M
pl
f i(k) = − 4

π

ekλ · pf

[(k − pf )2 + 1]2
cos

[
(k − pf ) · R

2

]
. (11)

In fact, the matrix element (11) can be utilized to express
and obtain all properties of the photoionization process. For
example, the angle-differential cross section is simply given
by

dσ pl

d	f

= 2πpf

j pl

∣∣Mpl
f i(k)

∣∣2

= 32αpf

ω

|ekλ · pf |2
[(k − pf )2 + 1]4

{1 + cos[(k − pf ) · R]},
(12)
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FIG. 2. (Color online) Geometry for the ionization of H+
2

molecules by twisted light. While the quantization axis (z axis)
is taken along the propagation direction of the incident beam, the
H+

2 molecular ion is supposed to lie in the xz plane. Moreover, the
molecule is aligned with angle γ with respect to the z axis and its
center (of mass), i.e., the origin of the intermolecular coordinates, is
displaced by the impact parameter b from the beam axis. Finally, the
two angles ϑf and ϕf describe the detector for observing the emitted
photoelectrons.

where j pl = ω/(2πα) is the flux of the incident plane-wave
radiation [25].

To further evaluate the angle-differential cross section
dσ pl/d	f , we first need to agree about the geometry under
which the photoelectrons are observed. If we choose the z axis
along the direction of the incident light, we can write the wave
and polarization vectors of the photons as

ekλ = −λ√
2

⎛
⎝ 1

iλ

0

⎞
⎠, k =

⎛
⎝0

0
k

⎞
⎠. (13)

Moreover, if we assume the internuclear vector R to lie within
the xz plane and to be tilted by the angle γ with regard to
the z axis (cf. Fig. 2), the differential cross section (12) can
be expressed in terms of the angles (ϑf ,ϕf ) of the emitted
electron as

dσ pl

d	f

≈ 16αp3
f

ω

sin2 ϑf[
p2

f + 1
]4 [1 + cos η(k)] (14)

with

η(k) = Rk cos γ − Rpf [sin γ sin ϑf cos ϕf

+ cos γ cos ϑf ]. (15)

Here we made use of the relations (4) and (5) to obtain the
condition pf /(2c) = k/pf � 1 for not too slow electrons
and to write (k − pf )2 + 1 ≈ p2

f + 1 in the denominator of
Eq. (12).

B. Ionization by twisted Bessel light

1. Transition matrix element

We next analyze the ionization of H+
2 molecular ions by

twisted Bessel light with well-defined longitudinal momentum
kz, the (modulus of the) transverse momentum �, and the
projection m of the total angular momentum (TAM) upon the
quantization axis z. For such a Bessel state of light, the vector
potential is given by [15]

Atw
�mkzλ

(r) =
∫

a�m(k⊥)ekλe
ik·r d2k⊥

(2π )2
(16)

and together with the amplitude

a�m(k⊥) =
√

2π

�
(−i)meimφk δ(k⊥ − �). (17)

As can be seen from these expressions, such a Bessel beam can
be understood also as a superposition of plane waves whose
wave vectors

k =
⎛
⎝k⊥ cos φk

k⊥ sin φk

kz

⎞
⎠ (18)

form the surface of a cone and with the polarization vectors

ekλ = −λ√
2

⎛
⎝cos θk cos φk − iλ sin φk

cos θk sin φk + iλ cos φk

− sin θk

⎞
⎠, (19)

respectively. In Eq. (19), moreover, we have introduced the
so-called opening angle θk with tan θk = �/kz to characterize
the ratio of the transverse to the longitudinal momenta of the
photons in the Bessel beam [18].

The integration over k⊥ in Eq. (16) can be carried out
explicitly for Bessel beams and gives rise to a vector potential
in the form

Atw
�mkzλ

(r) =
∑

ms=0,±1

Cms
(θk)Jm−ms

(�r⊥)ei(m−ms )φeikzz, (20)

where the vectors Cms
(θk) were defined in Eq. (25) of Ref. [15],

and the Jn(�r⊥) denote Bessel functions of the first kind.
Equation (20) implies that, in contrast to an incident plane
wave, the Bessel light always has an inhomogeneous intensity
distribution perpendicular to its propagation direction, i.e.,
in the xy plane for the given geometry. In Ref. [15] it
was furthermore shown that this profile has a concentric
ring structure and that, consequently, the photoionization will
depend on the position of the H+

2 molecular ion with regard to
the beam axis. We use here the impact parameter b in order to
designate the origin of the molecular coordinates with regard
to the beam axis (cf. Fig. 2). With this notation, the initial wave
function of the electron can be written also as

ψi(r; b) = 1√
2
[ψ1s(r − R/2 − b) + ψ1s(r + R/2 − b)].

(21)

Using this wave function and the vector potential (16), we can
express the transition amplitude for the ionization of the H+

2
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molecular ions by twisted Bessel light as

M tw
f i (k; b) = −i

∫
a�m(k⊥)

d2k⊥
(2π )2

∫
ψ∗

f (r)eik·r ekλ

·∇ψi(r; b)d3r. (22)

This amplitude can be evaluated quite similarly to the plane-
wave case [cf. Eqs. (7)–(11)]

M tw
f i (k; b) = − 4

π

∫
a�m(k⊥)ei(k− pf )·b ekλ · pf

[(k − pf )2 + 1]2

× cos

[
(k − pf ) · R

2

]
d2k⊥
(2π )2

=
∫

a�m(k⊥)ei(k− pf )·bMpl
f i(k)

d2k⊥
(2π )2

(23)

and hence finally in terms of the plane-wave transition
amplitude M

pl
f i(k) from Eq. (11).

2. Differential photoionization cross section

We can apply the amplitude (23) to evaluate the differential
photoionization cross section. In contrast to an incident plane
wave with a constant flux (per unit area), however, the
cross section now depends on the particular geometry under
which the incident beam interacts with the target molecules.
For instance, if we assume a macroscopic target of initially
aligned molecules that are uniformly distributed in their impact
parameter b over the extent of the Bessel beam with radius
Rtw, the angle-differential cross section can be determined
explicitly by calculating the integral for just b < Rtw,

dσ tw

d	f

= 2πpf

j tw

∫ ∣∣M tw
f i (k; b)

∣∣2 d2b

πR2
tw

= 4π4αpf Rtw

ω cos θk

∫
ei(k⊥−k′

⊥)·ba�m(k⊥)a∗
�m(k′

⊥)

×M
pl
f i(k)Mpl∗

f i (k′)
d2k⊥
(2π )2

d2k′
⊥

(2π )2

d2b

πR2
tw

, (24)

where j tw = ω cos θk/(2π3Rtwα) denotes the flux of the
incident twisted-wave radiation [18].

As can be seen from Eq. (24), the integral over the impact
parameter b is proportional to the δ function δ(k′

⊥ − k⊥) due
to the factor exp[i(k⊥ − k′

⊥) · b] in the integrant. Moreover,
by carrying out the trivial integration over k′

⊥ and by making
use of Eqs. (11) and (17), we find

dσ tw

d	f

= 32πapf

ω cos θkRtw

∫
δ2(k⊥ − �)

�

|ekλ · pf |2
[(k − pf )2 + 1]4

×{1 + cos[(k − pf ) · R]}d
2k⊥
2π

. (25)

Furthermore, since we can treat the square of the δ function as
[18]

δ2(k⊥ − �) = Rtw

π
δ(k⊥ − �), (26)

the integration over k⊥ in Eq. (25) gives rise to k⊥ = �, and
the angle-differential cross section for the photoionization of

aligned H+
2 molecular ions becomes

dσ tw

d	f

= 32αpf

ω cos θk

∫ 2π

0

|ekλ · pf |2
[(k − pf )2 + 1]4

×{1 + cos[(k − pf ) · R]}dφk

2π
. (27)

If, in addition, we assume the emitted electron to be fast but still
nonrelativistic [cf. Eq. (4)], we can rewrite (k − pf )2 + 1 ≈
p2

f + 1 in the denominator of Eq. (27) and apply the integral
representation of the Bessel function [30]

Jn(ξ ) = 1

2π

∫ 2π+μ

μ

ei(nφk−ξ sin φk )dφk (28)

in order to perform the integration over the angle φk in the cross
section (27). With these substitutions, the angle-differential
cross section for the photoionization of H+

2 ions by a Bessel
beam can be expressed in good approximation as

dσ tw

d	f

≈ 8αp3
f

ω cos θk

1[
p2

f + 1
]4 {[2 sin2 ϑf + 2 sin2 θk

− 3 sin2 ϑf sin2 θk][1 + J0(R� sin γ ) cos η(kz)]

+ sin(2θk) sin(2ϑf ) cos ϕf J1(R� sin γ ) sin η(kz)

+ sin2 ϑf sin2 θk cos(2ϑf )J2(R� sin γ ) cos η(kz)},
(29)

where η(kz) is given by Eq. (15) with k = kz. We here note
that, for � = 0 or zero opening angle θk = 0◦, the expression
(27) simply becomes the cross section for the ionization of
H+

2 ions by plane-wave radiation (14) in agreement with the
formal limit of a Bessel beam for θk = 0◦, i.e., for k ‖ z.

III. RESULTS AND DISCUSSION

In the previous section we found that the angle-differential
cross section for the photoionization of an macroscopic target
of aligned but randomly distributed H+

2 molecular ions by a
Bessel beam is independent of the TAM projection m of the
twisted light. However, the cross section dσ tw/d	f obviously
depends on the opening angle θk . This can be seen in Fig. 3,
in which the angle-differential cross section (27) is displayed
as a function of the photon energy. Results for an incident
plane-wave radiation (12) along the z axis are compared
with Bessel beams with opening angles θk = 5◦ and 30◦,
respectively. Cross sections are shown for three selected pairs
of angles (ϑf ,ϕf ) of the emitted photoelectrons (cf. the rows
of Fig. 3). In these computations, moreover, the H+

2 molecular
ions were assumed to be initially aligned along three different
angles γ = 0◦ (left column), γ = 45◦ (middle column), and
γ = 90◦ (right column) with regard to the z axis.

In the left column of Fig. 3, in particular, the H+
2 molecular

ions are aligned along the direction of the incident light
(γ = 0◦). For this alignment, the plane-wave and twisted
cross sections both oscillate and exhibit in general a rather
similar behavior as a function of the photon energy. These
oscillations in the angle-differential cross sections, if taken as a
function of the photon energy, arise from the interference of the
quantum amplitudes due to the photoionization of the electron
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FIG. 3. (Color online) Angle-differential photoionization cross sections as a function of the photon energy of the incident light. Results
are presented for selected angles (ϑf ,ϕf ) of the emitted electrons as well as for different orientations of the molecules. Cross sections (12) for
incident plane waves (black solid lines) are compared with those for Bessel beams (27) with opening angles θk = 5◦ (red dashed lines) and
θk = 30◦ (blue dash-dotted lines), respectively.

from the two nuclear centers of the molecules. A destructive
interference (in the paths of the outgoing electron) leads to
the pronounced minima in the cross sections as discussed
previously [7]. For twisted Bessel light, the positions of these
minima are shifted in general and now also depend on the
opening angle θk of the beams.

More pronounced differences between the angle-
differential cross sections dσ pl/d	f and dσ tw/d	f are found
if the molecular axis is tilted by some angle γ �= 0◦ with regard
to the z axis. In the middle (γ = 45◦) and right (γ = 90◦)
columns of Fig. 3, for example, the differential cross sections
for the ionization by twisted light oscillate (much) less than for
the plane-wave ionization, especially at high photon energies
as well as for the large opening angles θk . An almost monotonic
decrease of dσ tw/d	f as a function of energy is found for
θk = 30◦ and ϑf = ϕf = 90◦. For plane waves, in contrast, a
clear minimum in the cross section at �ω = 6.5 keV is still
found for the same alignment of the molecules (γ = 45◦).

This qualitative change in the angle-differential cross
sections can be explained by the intensity profile of the
Bessel beam due to its longitudinal component of the Poynting
vector Pz(r⊥) = c2

+1J
2
m−1(�r⊥) − c2

−1J
2
m+1(�r⊥), where the

coefficients c±1 were defined in Eq. (33) of Ref. [15]. Such
an intensity profile is obviously not constant but exhibits a
ringlike pattern as shown in Fig. 4. In this figure, the orange
and blue rings refer to high and low intensity in line with the
maxima and zeros of the Bessel functions Jm±1(�r⊥) of the
first kind. For sufficiently small photon energy, the size of these
rings is (much) larger than the internuclear distance R (cf. the
left panel of Fig. 4) and hence the atomic centers of the H+

2 ions
are effectively exposed to the same intensity of the incident

radiation, like for plane waves also. The angle-differential
cross sections therefore show for both plane-wave and twisted
Bessel beams a quite similar energy behavior for all photon
energies �ω < 3 keV. At higher photon energies, in contrast,

R

x

y 5 keV 10 keV

FIG. 4. (Color online) Transverse intensity profile of a Bessel
beam with opening angle θk = 30◦, projection of the TAM m = 3,
helicity λ = 1, and for the two photon energies �ω = 5 keV (left)
and �ω = 10 keV (right). For comparison, we also display the size
of a H+

2 molecular ion; see the text for further discussion.
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FIG. 5. (Color online) Angle-differential photoionization cross
section as a function of the polar angle ϑf (of the detector) for
H+

2 molecular ions, aligned under the angle γ = 45◦, and if the
photoelectrons are observed in the xz plane (ϕf = 0◦). Plane-wave
results (black solid lines) are compared with the photoionization
by means of a Bessel beam with opening angle θk = 30◦ (blue
dash-dotted lines) and are shown for the photon energies �ω = 1 keV
(top) and �ω = 3 keV (bottom).

the ringlike intensity varies over a smaller spatial extent and in
particular for rather large opening angles θk , and the different
nuclei are thus exposed to a different strength (intensity) of the
radiation field. For this reason then, the interference pattern
gradually disappear, similar to Young’s experiment for double
slits of nonequal widths.

So far, we have discussed the (angle-)differential cross
section for the photoionization of H+

2 ions as a function
of the photon energy but for fixed angles (ϑf ,ϕf ) of the
emitted electrons. To analyze also the angular dependence of
dσ tw/d	f , Fig. 5 displays the cross sections as a function of
polar angle ϑf of the photoelectrons for two different photon
energies. In these computations, both the alignment (γ = 45◦)
and azimuthal angle of the emitted electrons (ϕf = 0◦) are
fixed. As can be seen from Fig. 5, the differential cross section
dσ tw/d	f does not longer vanish for ϑf = 0◦, in contrast
to an incident plane wave. This effect can be explained by
the polarization (vector) of the twisted light, since the dif-
ferential cross sections dσ pl,tw/d	f ∼ |ekλ · pf |2 are always
proportional to the scalar product of the polarization vector
and the propagation direction of the emitted electrons. For
plane waves with k ‖ ez, the polarization vector (13) is always
perpendicular to the z axis and thus |ekλ · pf |2 ∼ sin2 ϑf or
dσ pl/d	f |ϑf =0◦ � 0. For twisted light (19), in contrast, the
polarization vector also has a nonzero z component in the
forward direction ϑf = 0◦ and dσ tw/d	f �= 0 in this case.
For similar reasons, moreover, the cross section for twisted
light is generally larger than for plane waves if ϑf = 1◦, as
can be seen from the top row of Fig. 3.

Finally, we can consider the angle-differential cross sec-
tions dσ tw/d	f also as a function of the azimuthal angle
ϕf of the emitted photoelectrons. In Fig. 6 we compare the
corresponding angular distributions as functions of ϕf for

FIG. 6. (Color online) Comparison of the photoelectron angular
distribution as a function of the angle ϕf for incident plane waves
(black solid lines) and Bessel beams with opening angle θk = 30◦

(blue dash-dotted lines). The H+
2 molecular ions are assumed to be

aligned again under the angle γ = 45◦ with regard to the z axis.
Results in arbitrary units are shown for four different photon energies:
(a) �ω = 0.5 keV, (b) �ω = 3 keV, (c) �ω = 7 keV, and (d) �ω =
10 keV. The polar angle of emitted electrons ϑf = 20◦ is fixed.

plane waves (black solid lines) with those of Bessel beams
with opening angle θk = 30◦ (blue dash-dotted lines). Here
the H+

2 molecular ions are assumed to be aligned again
under the angle γ = 45◦ with regard to the z axis. As can
be seen from this figure, the two cross sections dσ tw/d	f

and dσ pl/d	f exhibit a quite similar ϕf dependence at small
photon energies. For �ω = 0.5 keV, for example, the shapes of
the angular distribution are almost identical at the given polar
angle ϑf = 20◦, apart from their absolute values [cf. Fig. 6(a)].
In particular, the electron emission vanishes for ϕf = 90◦ for
incident plane-wave radiation as well as for the Bessel beam.
However, these (two) relative distributions start to deviate from
each other if either the photon energy or the opening angle θk

(not shown here in this figure) increases. For a photon energy
of �ω = 10 keV, the Bessel beam results in a quite isotropic ϕf

distribution of the emitted photoelectrons and in contrast to the
well-defined lobes for plane-wave radiation of the same energy
[cf. Fig. 6(d)]. Again, these modifications in the ϕf angular
distribution can be understood from the intensity pattern of
the corresponding Bessel beams, relative to the size of the H+

2
molecular ions.

IV. SUMMARY AND OUTLOOK

A theoretical study has been performed for the photoion-
ization of H+

2 molecular ions by twisted Bessel light. The
nonrelativistic first-order perturbation theory was applied to
derive and analyze the angle-differential photoionization cross
sections for photon energies for which the emitted electrons
can be described in the first-order Born approximation. In
this analysis, a macroscopic target of randomly distributed
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but aligned H+
2 molecular ions was assumed throughout the

derivations. For such a target, it was shown that the angle-
differential cross section dσ tw/d	f is sensitive to the ratio
of the transverse to the longitudinal momenta of the incident
Bessel beam tan θk = �/kz, while it remains independent of
the projection m of the TAM. Detailed calculations of the
angle-differential cross sections have been carried out for a
different alignment γ of the H+

2 ions and for different photon
energies of the incident Bessel light to see how these properties
affect the oscillations in the cross sections as known for
incident plane-wave radiation. The main modifications in the
angular distribution of the photoelectrons hereby arise due
to the (ringlike) pattern of Bessel beams and their intensity
variation relative to the size of the H+

2 molecular ions. Hence,
the photoionization of diatomic molecules by twisted radiation
opens up different possibilities for the investigation of atomic

double-slit phenomena. The use of twisted photons will allow
one to perform a molecular analog of Young’s experiment with
two slits of unequal widths.

While the angle-differential photoionization cross sections
occur to be insensitive with regard to (the projection of the)
TAM m for any macroscopic target, even if the molecular
ions are supposed to be aligned, such an m dependence
is expected if the size of the target becomes comparable
to the variations in the transverse intensity pattern of the
Bessel beams. The analysis of the Young-type interference
behavior of the energy and angular distribution of emitted
photoelectrons can therefore provide accurate information
about the twisted nature of the photon beams. The investigation
of photoionization of H+

2 molecular ions from the localized
targets, displaced relative to the beam axis of the incident
radiation, is left for future work.
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