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Coherent control of multiphoton resonance dynamics in high-order-harmonic
generation driven by two frequency-comb fields

Di Zhao,* Chen-Wei Jiang, and Fu-li Li
Department of Applied Physics, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
(Received 18 May 2015; revised manuscript received 1 August 2015; published 14 October 2015)

We present a theoretical investigation of the multiphoton resonance dynamics in the high-order-harmonic
generation (HHG) process driven by two frequency-comb fields with the carrier frequencies of fundamental and
second harmonics, respectively. The many-mode Floquet theorem is employed to provide a nonperturbative and
exact treatment of the interaction between a quantum system and frequency-comb laser fields. The coupling of
the weak second-harmonic control frequency-comb laser field promises more routes to coherently optimize the
multiphoton resonance dynamics and HHG power spectra. First, even-order harmonics are generated due to the
coupling of the second-harmonic frequency-comb field. Second, the HHG power spectra can be greatly enhanced
via multiphoton resonance, which can be achieved by tuning the carrier-envelope-phase (CEP) shifts and the
peak intensities of both frequency-comb fields. Furthermore, besides the multiphoton transitions involving only
fundamental-harmonic photons, additional multiphoton transitions involving both fundamental- and second-
harmonic photons occur, resulting in the generation of combs with frequencies dependent on CEP shifts of both
fields. Different multiphoton transition paths can interfere with each other when the two CEP shifts are matching,
and the interference of paths allows one to coherently control the HHG power spectra by varying the relative
phase between the fields.
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I. INTRODUCTION

Advancements of the phase-stabilized optical frequency
comb from a femtosecond laser have remarkably impacted
on high-precision optical frequency spectroscopy [1–5], deter-
mination of fundamental constants [6,7], testing of quantum
electrodynamics [8–11], and development of an optical atomic
clock [12–17]. The optical frequency comb can precisely
and directly link optical and microwave frequencies [18,19],
providing a “ruler” with which an unknown optical frequency
can be measured. Generation of frequency combs in the
extreme ultraviolet (XUV) and vacuum ultraviolet (VUV)
spectral region is highly desirable due to the lack of powerful
continuous-wave lasers in those spectral regions.

Coherent XUV [20] and VUV [21] radiations at a repetition
frequency of more than 100 MHz have been generated
via high-order-harmonic generation (HHG) with a 1000-fold
improvement over previous experiments. Additionally, Cingöz
et al. [22] reported the generation of XUV frequency combs up
to the 27th harmonic order (wavelength of 40 nm) by coupling
a high-power near-infrared frequency comb to a robust fem-
tosecond enhancement cavity. Theoretical and experimental
works [9,22–25] indicate that the frequency-comb structure
and coherence can indeed survive in very high-order harmonics
and in the presence of substantial ionization. In detail,
Son and Chu [26] presented a theoretical nonperturbative
investigation for the coherent control of multiphoton resonance
dynamics driven by intense frequency-comb laser fields by
employing an extension of the many-mode Floquet theory
(MMFT) [27–31]. They showed that HHG driven by an intense
frequency-comb laser field has a comb structure with the same
repetition frequency and different offset frequencies for each
harmonic.
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The potential applications of frequency-comb structure
require the optimization and coherent control of the mul-
tiphoton resonance dynamics in the HHG process. One of
the optimization goals is the extension of the frequency-
comb structure in the HHG power spectra. When only one
fundamental frequency-comb laser field is employed, the
generated frequency-comb structure is limited to odd-order
harmonics due to the inversion symmetry. The generation
of frequency-comb structure in even-order harmonics would
be valuable for potential applications, such as high-precision
optical frequency spectroscopy [1–5]. Another optimization
goal is the enhancement of frequency-comb elements in
harmonics. Son and Chu have shown that HHG of a two-level
system driven by a frequency-comb field can be enhanced
via multiphoton resonance by tuning the carrier-envelope
phase (CEP) shift of the driving field [26]. Additionally, this
multiphoton-resonant-enhancement method has been demon-
strated by an ab initio theoretical investigation of atomic
hydrogen driven by an intense frequency-comb laser field [32],
whereas the generation and coherent control of combs with
the power per comb element as high as possible are always
desired.

In this paper, we present a theoretical investigation of
the multiphoton resonance dynamics driven by an intense
fundamental-harmonic driving frequency-comb field com-
bined with a weak second-harmonic control frequency-comb
field. In the combination field, there are two types of multipho-
ton transition processes: the one involving only fundamental-
harmonic photons gives rise to comb elements in odd-order
harmonics; and the other one involving both fundamental-
and second-harmonic photons gives rise to comb elements,
whose absolute frequencies are dependent on CEP shifts of
both fields, in odd- and even-order harmonics. The coupling
of the weak control field not only promises the extension of
frequency-comb structure to even-order harmonics but also
provides more routes to coherently control the multiphoton-
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resonance processes for the enhancement of frequency-comb
elements in the HHG power spectrum. Our investigation shows
that, besides tuning the CEP shift of the fundamental driving
field, the multiphoton resonant enhancement of HHG power
spectra can be alternatively achieved by varying the peak
intensity and CEP shift of the weak control frequency-comb
field. In particular, different multiphoton transition paths can
be superpositioned via matching CEP shifts of the fields,
and the interference of paths allows the coherent control of
multiphoton resonance dynamics by varying the relative phase
between the fields.

The paper is organized as follows. In Sec. II, we present the
MMFT for the treatment of the interaction between finite-level
quantum systems and two frequency-comb laser fields with
different carrier frequencies and the same repetition frequency.
In Sec. III, we apply the MMFT to study the coherent control
of multiphoton-resonant dynamics and HHG power spectra
of two-level systems. This is followed by the conclusion in
Sec. IV.

II. MMFT TREATMENT OF MULTIPHOTON
EXCITATION DRIVEN BY INTENSE
FREQUENCY-COMB LASER FIELDS

A frequency-comb laser field can be generated by a train of
equal-spacing laser pulses, which is written in the form

Ef (t) =
∑

n

f (t − nτ )ei(ωct−nωcτ+n�φ) + c.c., (1)

where ωc is the carrier frequency, τ is the time interval
between pulses, �φ is the carrier-envelope-phase shift from
pulse to pulse, f (t) = f0e

−t2/2σ 2
is the envelope function for

each pulse, f0 is the peak amplitude, and σ is the standard
deviation of a Gaussian function. Equation (1) can be rewritten
as the summation of components of discrete comb frequencies
[26,32,33]:

Ef (t) =
∞∑

k=−∞
Eke

iωkt + c.c. �
N∑

k=−N

Eke
iωkt + c.c. (2)

In Eq. (2), the comb frequencies ωk can be expressed as [26]

ωk = ω0 + kωr (3)

with the repetition frequency ωr = 2π/τ and the main angular
frequency

ω0 =
[
ωc − ωδ

ωr

]
ωr + ωδ, (4)

where [ ] is the round function and ωδ = �φ/τ is the offset
frequency. Individual amplitudes of frequencies ωk are given
by

Ek = f0σωr√
2π

e−σ 2(ω0−ωc+kωr )/2. (5)

A finite integer number N is chosen to approximately repro-
duce the frequency-comb field to make sure the calculation
is accessible and convergent. In our calculation, N is chosen
such that Ek < 1 × 10−15 a.u. (corresponding to peak intensity
3.51 × 10−14 W cm−2) when |k| > N .

We consider a quantum system driven by two frequency-
comb laser fields, which have the same repetition frequency
ωr . The carrier frequency, main angular frequency, and offset
frequency of the first frequency-comb field are ωc, ω0, and ωδ ,
respectively. And those of the second frequency-comb field
are 	c, 	0, and ω′

δ , respectively. The total electric field can be
expressed as

Et (t) =
N∑

k=−N

Eke
iωkt +

N ′∑
k=−N ′

E′
ke

i	kt + c.c., (6)

in which Ek and E′
k are the amplitudes of frequency compo-

nents ωk = ω0 + kωr and 	k = 	0 + kωr , respectively. Then
the Hamiltonian is given by

Ĥ (r,t) = Ĥ0(r) −
N∑

k=−N

μ(r) · Ek cos ωkt

−
N ′∑

k=−N ′
μ(r) · E′

k cos 	kt

= Ĥ0(r) −
N∑

k=−N

1

2
μzEk[ei(ω0+kωr )t + e−i(ω0+kωr )t ]

−
N ′∑

k=−N ′

1

2
μzE

′
k[ei(	0+kωr )t + e−i(	0+kωr )t ], (7)

where Ĥ0(r) is the unperturbed Hamiltonian of the atomic or
molecular system, μ(r) is the electric dipole moment operator,
and μz is the component parallel to the polarization axis.
Note that the time-dependent Hamiltonian is trichromatic,
containing three independent frequencies ω0, 	0, and ωr .

The many-mode Floquet theory [27–29] can be applied
to solve the polychromatic or quasiperiodic time-dependent
Schrödinger equation with the Hamiltonian (7), which is
converted into an equivalent time-independent generalized
Floquet matrix eigenvalue problem. Since all the comb
frequencies can be represented by three variables, ω0, 	0,
and ωr , the basis vectors in the three-mode Floquet formalism

|αlnm〉 = |α〉 ⊗ |l〉 ⊗ |n〉 ⊗ |m〉 (8)

are employed. α is the system index, while l, m, and
n correspond to Fourier components of ω0, 	0, and ωr ,
respectively. Then the time-independent generalized Floquet
matrix, in the representation spanned by the basis vectors
{|αlnm〉}, has the following explicit form:
∑

β

∑
l′

∑
n′

∑
m′

〈αlnm|HF |βl′n′m′〉〈βl′n′m′|λ〉=λ〈αlnm|λ〉,

(9)
where λ is the quasienergy eigenvalue and |λ〉 is the corre-
sponding eigenvector.

The Floquet matrix HF is constructed by

〈αlnm|HF |βl′n′m′〉
= H

[l−l′,n−n′,m−m′]
αβ + (lω0+n	0+mωr )δα,βδl,l′δn,n′δm,m′ ,

(10)
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where

H
[l−l′,n−n′,m−m′]
α,β = εαδα,βδl,l′δn,n′δm,m′+

N∑
k=−N

V
(k)
α,βδn,n′ (δl+1,l′δm+k,m′+δl−1,l′δm−k,m′ )

+
N ′∑

k=−N ′
U

(k)
α,βδl,l′ (δn+1,n′δm+k,m′ + δn−1,n′δm−k,m′ ), (11)

and εα = 〈α|Ĥ0|α〉, V
(k)
α,β = − 1

2Ek〈α|μz|β〉, and U
(k)
α,β = − 1

2E′
k〈α|μz|β〉. Note that the energy εα + lω0 + n	 + mωr for each

diagonal element in the Floquet matrix HF is unique, to make sure the issue of degeneracy is avoided. The structure of HF for
the linearly polarized case is as follows:

HF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

A + 2	0I B 0 0 0 . . .

BT A + 	0I B 0 0

0 BT A B 0

0 0 BT A − 	0I B

. . . 0 0 0 BT A − 2	0I

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

C + 2ω0I X 0 0 0 . . .

X C + ω0I X 0 0
0 X C X 0
0 0 X C − ω0I X

. . . 0 0 0 X C − 2ω0I
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

X′ 0 0 0 0 . . .

0 X′ 0 0 0
0 0 X′ 0 0
0 0 0 X′ 0

. . . 0 0 0 0 X′
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

Z + 2ωrI 0 0 0 0 . . .

0 Z + ωrI 0 0 0
0 0 Z 0 0
0 0 0 Z − ωrI 0

. . . 0 0 0 0 Z − 2ωrI
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

Y0 Y1 Y2 Y3 Y4 . . .

Y−1 Y0 Y1 Y2 Y3

Y−2 Y−1 Y0 Y1 Y2

Y−3 Y−2 Y−1 Y0 Y1

. . . Y−4 Y−3 Y−2 Y−1 Y0
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)
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X′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

Y ′
0 Y ′

1 Y ′
2 Y ′

3 Y ′
4 . . .

Y ′
−1 Y ′

0 Y ′
1 Y ′

2 Y ′
3

Y ′
−2 Y ′

−1 Y ′
0 Y ′

1 Y ′
2

Y ′
−3 Y ′

−2 Y ′
−1 Y ′

0 Y ′
1

. . . Y ′
−4 Y ′

−3 Y ′
−2 Y ′

−1 Y ′
0

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

The matrices of Yk , Y ′
k , and Z have the following forms:

Yk =

⎛
⎜⎜⎜⎜⎜⎝

0 V
(k)
αβ V (k)

αγ . . .

V
(k)
βα 0 V

(k)
βγ

V (k)
γα V

(k)
γβ 0

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

, (18)

Y ′
k =

⎛
⎜⎜⎜⎜⎜⎝

0 U
(k)
αβ U (k)

αγ . . .

U
(k)
βα 0 U

(k)
βγ

U (k)
γα U

(k)
γβ 0

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

, (19)

Z =

⎛
⎜⎜⎝

εα 0 0 . . .

0 εβ 0
0 0 εγ

...
. . .

⎞
⎟⎟⎠. (20)

After solving the eigenvalue problem (9), the time-averaged
transition probability between the levels can be computed from
the quasienergy eigenvectors:

P α→β =
∑
l,n,m

∑
γ

∑
l′,n′,m′

|〈βlnm|λγ l′n′m′ 〉〈λγ l′n′m′ |α000〉|2.
(21)

The maximum values of 1/2 are reached at the avoided
crossings of quasienergies that are associated with multiphoton
resonance transitions [26,29,32], and the induced dipole
moment can be expanded:

d(t) =
∑
l,n,m

dl,n,me−i(lω0+n	0+mωr )t . (22)

Given values of l, n, and m, the angular frequency ω is deter-
mined by ω = lω0 + n	0 + mωr . The harmonic generation
spectra in the length form can be expressed by

S(ω) = 4

6πc3
|dl,n,m|2

= 4

6πc3
|
∑
α,β

∑
l′,n′,m′

〈λα,l′−l,n′−n,m′−m|μz|λβ,l′,n′,m′ 〉|2.

(23)

III. RESULTS AND DISCUSSIONS

In this section, we present a case study of the
multiphoton resonance enhancement of a two-level sys-
tem driven by two frequency-comb laser fields. The

parameters of the fundamental frequency-comb field
are peak intensity 2.5 × 1015 W cm−2, carrier fre-
quency 374.7 THz (corresponding to ωc = 0.056954 a.u.
and wavelength 800 nm), and repetition frequency
10 THz (corresponding to ωr = 1.51983 × 10−3 a.u.
and pulse separation τ = 0.1 ps) generated from a train
of Gaussian pulses with 20-fs full width at half maximum
(FWHM). The control frequency-comb field is with the peak
intensity 1 × 1014 W cm−2, which is 4% of the fundamental
field, and its carrier frequency is 749.4 THz, i.e., the second
harmonic of the fundamental field. The control field is also
generated from a train of Gaussian pulses with 20-fs FWHM,
which has repetition frequency 10 THz. For the two-level
system, the energy separation between levels is �ωαβ = εβ −
εα = 0.28 a.u., corresponding to the five-photon dominant
resonance regime of the fundamental field (5ωc ≈ ωαβ), and
the transition dipole moment 〈α|μz|β〉 = 0.1 a.u. is used.

The quasiperiodic structure of the quasienergy levels can
be represented by

λγ lnm = λγ + lω0 + n	0 + mωr, (24)

where λγ are the eigenvalues of Eq. (9) and l, n, and m

are integers. Since ω0 = ωδ + m1ωr and 	0 = ω′
δ + m2ωr ,

Eq. (24) can be rewritten as

λγ lnm = λγ + lωδ + nω′
δ + kωr, (25)

where k = lm1 + nm2 + m. The harmonic radiation can be
understood as the dipole transition between quasienergy levels.
Then the dipole transition between λγ lnm and λγ l′n′m′ can give
rise to the harmonic photon with frequency

ω = (l − l′)ωδ + (n − n′)ω′
δ + (m − m′)ωr, (26)

where (l − l′) + (n − n′) is odd obeying the dipole transition
rule. When the two-level system is driven by the fundamental
field alone, only odd harmonics are produced due to the
inversion symmetry (red dashed line in Fig. 1). After the
employment of the second-harmonic control field, both even
and odd harmonics are produced and the intensities of
higher-order harmonics are greatly enhanced, as presented in
Fig. 1.

Now we explore the optimization of the multiphoton
resonance processes by tuning the CEP shifts, �φ and �φ′.
When the two-level system is driven by the fundamental
field alone, the multiphoton resonance can be achieved five
times by varying �φ, and these five peaks are separated
by 2π/5 exactly, as presented by the red dotted line in
Fig. 2(a), while for the case of the two-level system driven
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FIG. 1. (Color online) HHG power spectra of the two-level sys-
tem driven by two fields (black solid line) and the fundamental field
alone (red dashed line). Each harmonic has a nested comb structure
and all comb peaks are connected by a line. The parameters of
the fundamental frequency-comb field are peak intensity If = 2.5 ×
1015 W cm−2, carrier frequency 374.7 THz, and repetition frequency
10 THz of 20-fs FWHM Gaussian pulses. The parameters of the con-
trol frequency-comb field are peak intensity Ic = 1 × 1014 W cm−2,
carrier frequency 749.4 THz, and repetition frequency 10 THz of
20-fs FWHM Gaussian pulses. For the case with two driving fields,
the CEP shifts are set as �φ/2π = �φ′/4π = 0.099675, and for
the case with the fundamental fields alone the CEP shift is set as
�φ/2π = 0.098575.

FIG. 2. (Color online) (a) and (b) Time-averaged transition prob-
abilities for the two-level system driven by two frequency-comb laser
fields as a function of the CEP shift of the fundamental and control
fields, �φ and �φ′, respectively. In (a) �φ is varied with fixed
�φ′/2π = 0.15, and in (b) �φ′ is varied with fixed �φ/2π = 0. As
a comparison, the transition probabilities for the two-level systems
driven by the fundamental field alone are presented with a red dotted
line in (a). Inset: The enlarged plot of the transition probabilities
around �φ/2π = 0.1. The other laser parameters are the same as
those in Fig. 1.

by both the fundamental and control fields Fig. 2(a) shows the
time-averaged transition probabilities as a function of �φ with
fixed �φ′/2π = 0.15. With the coupling of the control field,
the five resonant peaks are shifted due to the ac Stark effect,
and one more resonance peak appears around �φ/2π = 0.2.
Meanwhile, Fig. 2(b) presents the time-averaged transition
probabilities of the two-level system driven by two fields as
a function of �φ′ with fixed �φ/2π = 0, the multiphoton
resonance is achieved two times by varying �φ′, and the two
resonance peaks are separated by π exactly. The additional
resonance peak in Fig. 2(a) and the two peaks in Fig. 2(b)
indicate the existence of the three-photon-resonant transition
paths involving one fundamental-field photon and two control-
field photons.

The n-photon resonance condition for the case of the system
driven by two frequency-comb fields shall be recast as

ωres ≡ n1ωδ + n2ω
′
δ (mod ωr ), (27)

where ωres is the resonance frequency, ωδ = �φ/τ , and
ω′

δ = �φ′/τ are offsets of the fundamental and control fields,
respectively. Equation (27) means the remainders of ωres

and n1ωδ + n2ω
′
δ are the same when divided by ωr . If no

control-field photon is involved in the multiphoton transition
process, i.e., n2 = 0, Eq. (27) is recovered to

ωres ≡ nωδ (mod ωr ), (28)

which is the n-photon resonance condition for one driving
frequency-comb field [26,32,33]. Odd n equal-spacing mul-
tiphoton resonance peaks are reached by tuning �φ. On the
other hand, if control-field photons are involved, the resonance
condition (27) can be satisfied by tuning �φ (�φ′) with fixed
�φ′ (�φ). For instance, with fixed �φ′/2π = 0.15, Eq. (27)
is satisfied when n1 = 1, n2 = 2, and �φ/2π = 0.204570,
while with fixed �φ/2π = 0 Eq. (27) is satisfied when n1 = 1,
n2 = 2, and �φ′/2π = 0.252383 and 0.752383, agreeing with
the additional peak in Fig. 2(a) and the two peaks in Fig. 2(b).

Generally, each quasienergy level is populated via a single
multiphoton-transition path, and the level energy is dependent
on the offset frequencies of the two frequency-comb fields.
As a result, dipole transitions between quasienergy levels
produce harmonic-comb elements with different absolute
frequencies which are dependent on the offset frequencies.
In particular, different combinations of frequencies can lead
to the final quasienergy levels with the same energy, i.e., the
same final quasienergy level, when the two CEP shifts fulfill
the specific matching condition. Then the quasienergy level
can be populated via different multiphoton transition paths,
and the superposition of these paths provides an approach to
coherently control the quasienergy level, as well as the HHG
spectra [34]. In our case of the two-level system driven by
the fundamental- and second-harmonic fields, the matching
condition for the superposition of paths is

ω′
δ = 2ωδ, or �φ′ = 2�φ. (29)

Then the frequency

	0 = m2ωr + ω′
δ

= (m2 − 2m1)ωr + 2(m1ωr + ωδ)

= 2ω0 + mδωr (30)
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with mδ = m2 − 2m1 is dependent on ω0 and ωr . The number
of independent frequencies is reduced from 3 to 2, and the
total Hamiltonian can be rewritten as

H (r,t) = Ĥ0(r) −
N∑

k=−N

1

2
μzEk[ei(ω0+kωr )t + e−i(ω0+kωr )t ]

−
N ′∑

k=−N ′

1

2
μzE

′
k[ei(2ω0+k′ωr )t + e−i(2ω0+k′ωr )t ],

(31)

in which k′ = k + mδ . The Floquet matrix HF can be recon-
structed by

〈αlm|HF |βl′m′〉 = H
[l−l′,m−m′]
αβ + (lω0 + mωr )δα,βδl,l′δm,m′ ,

(32)

with

H
[l−l′,m−m′]
α,β = εαδα,βδl,l′δm,m′

+
N∑

k=−N

V
(k)
α,β (δl+1,l′δm+k,m′ + δl−1,l′δm−k,m′ )

+
N ′∑

k=−N ′
U

(k)
α,β(δl+2,l′δm+k′,m′ + δl−2,l′δm−k′,m′ ).

(33)

The harmonic generation spectra can be recast by

S(ω) = 4

6πc3
|dl,m|2

= 4

6πc3

∣∣∣∣∣∣
∑
α,β

∑
l′,m′

〈λα,l′−l,m′−m|μz|λβ,l′,m′ 〉
∣∣∣∣∣∣
2

, (34)

in which ω = lω0 + mωr .
Under the matching condition, we first investigate the en-

hancement of HHG power spectra via multiphoton resonance
by tuning the CEP shifts and peak intensities of the frequency-
comb fields. In Fig. 3(a), we present the time-averaged
transition probabilities as a function of �φ with �φ′ = 2�φ

and peak intensities of the fundamental and control fields, If =
2.5 × 1015 W cm−2 and Ic = 1 × 1014 W cm−2, respectively.
Resonance peaks of different multiphoton transition paths
are coincident due to the superposition of transition paths.
As a result, there are only five resonance peaks in the plot.
Figure 3(b) shows the enhancement of HHG by varying
�φ/2π = �φ′/4π = 0 (off resonance), 0.09, and 0.099675
(near resonance). Both even and odd harmonics can be
enhanced via multiphoton resonance which can be achieved by
varying CEP shifts. Table I lists the power spectrum values of
the maximum peak for the near- and off-resonance cases with
several control-field peak intensities. For the case of control-
field peak intensity Ic = 1 × 1012 W cm−2, the HHG power
spectra are enhanced by about 108 times when the multiphoton
resonance is achieved. For the case of Ic = 1 × 1013 W cm−2,
the enhancement factor via multiphoton resonance is about
107 times, while for the case of Ic = 1 × 1014 W cm−2 it is
about 106 times. On the other hand, the HHG power spectra

FIG. 3. (Color online) (a) Time-averaged transition probabilities
for the two-level system driven by two frequency-comb laser fields
as a function of the CEP shift of the fundamental field, �φ, while
keeping �φ′ = 2�φ. (b) Enhancement of HHG by varying the CEP
shifts. For clarity, HHG peaks of the comb structure are connected by
a line. The laser parameters are the same as those in Fig. 1.

can be enhanced by increasing Ic. For instance, with the
increase of Ic from 1 × 1012 to 1 × 1014 W cm−2, the harmonic
orders n > 8 are enhanced by about 103 times for both off-
and near-resonance cases. Note that the multiphoton resonant
condition is dependent on the peak intensity of the control
frequency-comb field. Thus it provides a route to achieve
multiphoton resonance with fixed absolute comb frequencies,
by varying the peak intensity of the control field.

When the matching condition is satisfied, the same final
quasienergy level can be populated via different multiphoton
transition paths. For example, the quasienergy level λγ,l′,m′ =
λγ + l′ω0 + m′ωr can be populated from λγ,l′−1,m′−k = λγ +
(l′ − 1)ω0 + (m′ − k)ωr by absorbing a fundamental-field
photon ω0 + kωr , as well as from λγ,l′−2,m′−k = λγ + (l′ −
2)ω0 + (m′ − k)ωr by absorbing a second-field photon 	0 +
(k − mδ)ωr . Thus the quasienergy level, as well as the HHG
power spectra, can be coherently modulated via destructive
or constructive interference of multiphoton-transition paths.
The interference can be controlled by varying the relative
phase ϕ between fields, with which the fundamental- and
second-harmonic fields are defined as

E(t) =
∑

n

f (t − nτ )ei(ωct−nωcτ+n�φ) + c.c. (35)

and

E′(t) =
∑

n

f ′(t − nτ )ei(	ct−n	cτ+n�φ′+ϕ) + c.c., (36)

respectively. Consequently the total electric field shall be
written as

Et (t) =
N∑

k=−N

Eke
iωkt +

N ′∑
k=−N ′

E′
ke

i	kt eiϕ + c.c., (37)
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TABLE I. Effects on the power spectra by varying the CEP shifts �φ′ = 2�φ under different control-field peak intensities. n is the
harmonic order of the maximum peak for each harmonic and S(nωc) is the corresponding HHG power spectrum values at ω = nωc. The
label A indicates the near-resonance cases: �φ/2π = �φ′/4π = 0.098586, 0.098685, and 0.099675 corresponding to the control-field peak
intensities Ic = 1 × 1012, 1 × 1013, and 1 × 1014 W cm−2, respectively, while B indicates the off-resonance cases with �φ/2π = 0. The
numbers in brackets indicate the power of 10. The other laser parameters are the same as those in Fig. 1.

1 × 1012 W/cm2 1 × 1013 W/cm2 1 × 1014 W/cm2

A B A B A B

n S(nωc) n S(nωc) n S(nωc) n S(nωc) n S(nωc) n S(nωc)

4.92 2.15[−03] 4.91 1.04[−10] 4.92 2.15[−03] 4.94 3.13[−12] 4.92 2.14[−03] 4.91 3.23[−09]
5.94 1.40[−11] 5.95 9.24[−17] 5.94 1.40[−11] 5.92 8.94[−16] 5.94 1.40[−09] 5.87 8.37[−15]
6.93 3.41[−9] 6.86 6.19[−17] 6.93 3.41[−9] 7.02 1.65[−15] 6.93 3.41[−09] 6.86 2.42[−15]
7.92 7.41[−13] 7.98 1.42[−20] 7.92 7.41[−13] 7.98 7.62[−20] 7.92 7.41[−11] 7.85 4.77[−17]
8.91 2.22[−14] 8.81 3.13[−22] 8.91 2.22[−14] 8.99 2.62[−22] 8.91 3.08[−13] 8.83 2.33[−19]
9.90 1.69[−17] 9.79 1.75[−25] 9.90 1.69[−17] 9.98 1.23[−24] 9.90 1.78[−15] 9.82 1.11[−21]
10.89 8.76[−20] 10.75 9.99[−28] 10.89 8.76[−20] 10.97 4.23[−27] 10.89 2.41[−17] 10.78 1.31[−23]
11.88 1.14[−22] 11.74 1.10[−30] 11.88 1.14[−22] 11.95 1.27[−29] 11.88 1.27[−19] 11.77 7.18[−26]

the total Hamiltonian (31) can be rewritten as

H (r,t) =Ĥ0(r) −
N∑

k=−N

1

2
μzEk[ei(ω0+kωr )t + e−i(ω0+kωr )t ]

−
N ′∑

k=−N ′

1

2
μzE

′
k[ei(2ω0+k′ωr )t eiϕ+e−i(2ω0+k′ωr )t e−iϕ],

(38)

and the Floquet matrix HF is constructed by

〈αlm|HF |βl′m′〉 = H
[l−l′,m−m′]
αβ + (lω0 + mωr )δα,βδl,l′δm,m′ ,

(39)

with

H
[l−l′,m−m′]
α,β

= εαδα,βδl,l′δm,m′+
N∑

k=−N

V
(k)
α,β(δl+1,l′δm+k,m′+δl−1,l′δm−k,m′ )

+
N ′∑

k=−N ′
U

(k)
α,β(δl+2,l′δm+k′,m′eiϕ + δl−2,l′δm−k′,m′e−iϕ).

(40)

Then the eigenvectors and induced dipole moment matrix
elements dl,m are complex; they can be modulated by tuning
the relative phase ϕ between fields, resulting in the coherent
control of the harmonic spectrum. In the near-resonance case
of the two-level system driven by fundamental and control
fields with CEP shifts �φ/2π = �φ′/4π = 0.099675 and
peak intensities 2.5 × 1015 and 1 × 1014 W cm−2, respectively,
we calculate the HHG spectra as a function of the relative
phase ϕ between fields and take the peak elements for the
fifth and eighth harmonics as examples to investigate the
coherent control of HHG power spectra. In Fig. 4(a), we plot
the normalized intensities of the peak elements for the fifth
and eighth harmonics as a function of the relative phase ϕ.
Interference between different multiphoton resonant-transition
paths occurs and both intensities oscillate with a modulation

period of π . On the other hand, Fig. 4(b) shows that the
phases of the peak elements present quite different modulation
behaviors while varying the relative phase ϕ. For the peak in
the fifth harmonic, the phase of dl,m oscillates around π , while
for the peak in the eighth harmonic the phase of dl,m oscillates
from π to −π . The calculation results of all comb elements in
odd and even harmonics, which are not presented in the paper,
oscillate with the same modulation period, and their oscillation
features are similar to those of the peak elements in fifth and
eighth harmonics, respectively.

IV. CONCLUSION

In conclusion, we present a theoretical investigation of
multiphoton resonance dynamics of a two-level system driven
by two frequency-comb fields with carrier frequencies ωc

FIG. 4. (Color online) (a) The normalized intensities and (b) the
phases of the peak elements for the fifth (black solid line) and eighth
(red dashed line) harmonics as a function of the relative phase
ϕ between fundamental- and second-harmonic fields. �φ/2π =
�φ′/4π = 0.099675 are set for the achievement of multiphoton
resonance. Other parameters are the same as those in Fig. 1.
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and 	c = 2ωc. Many-mode Floquet theory is employed for
accurate treatment of the interaction between a quantum
system and the frequency-comb fields. With the coupling of
the second-harmonic control frequency-comb field, even-order
harmonics are generated due to the coupling of the second-
harmonic frequency-comb field. Our calculation shows that the
HHG power spectra can be multiphoton-resonantly enhanced
by tuning the CEP shifts and peak intensities of the frequency-
comb fields. Furthermore, additional multiphoton transitions
involving photons from both of the two fields occur, leading to
the emission of the harmonic comb element with frequency
dependent on both �φ and �φ′. We found that different
multiphoton transition paths can interfere with each other
when the matching condition is fulfilled, and the superposition
of paths allows the coherent control of the frequency-comb
structure in harmonics by varying the relative phase between
two fields.

This two-frequency-comb-fields approach provides alter-
native routes for the optimal control of the frequency-
comb structures. For instance, with fixed peak intensities
of the frequency-comb fields, the HHG power spectra can
be enhanced via multiphoton resonance by tuning the CEP
shifts, while for the achievement of comb elements with

desired absolute frequencies the CEP shifts are fixed and
the multiphoton-resonant enhancement can be achieved by
tuning peak intensities of the frequency-comb fields. At the
same time, the CEP shifts of driving and control fields can be
matched to realize the superposition of different multiphoton-
transition paths, without the break of resonant conditions.
The superposition allows us to coherently control the HHG
power spectra via destructive or constructive interference of
multiphoton-transition paths. In addition, it also provides a
possible way to study the multiphoton transition processes,
by observing the amplitudes of comb elements generated via
different multiphoton-transition paths, and the multiphoton-
transition paths can be identified by the absolute frequencies
of comb elements, with the help of the known CEP shifts of
fields.
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