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Influence of the Coulomb potential on above-threshold ionization:
A quantum-orbit analysis beyond the strong-field approximation
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We perform a detailed analysis of how the interplay between the residual binding potential and a strong laser
field influences above-threshold ionization (ATI), employing a semianalytical, Coulomb-corrected strong-field
approximation (SFA) in which the Coulomb potential is incorporated in the electron propagation in the continuum.
We find that the Coulomb interaction lifts the degeneracy of some SFA trajectories and we identify a set of orbits
that, for high enough photoelectron energies, may be associated with rescattering. Furthermore, by performing
a direct comparison with the standard SFA, we show that several features in the ATI spectra can be traced back
to the influence of the Coulomb potential on different electron trajectories. These features include a decrease
in the contrast, a shift towards lower energies in the interference substructure, and an overall increase in the
photoelectron yield. All features encountered exhibit very good agreement with the ab initio solution of the

time-dependent Schrodinger equation.
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I. INTRODUCTION

When matter interacts with a strong laser field of peak
intensity around 10'* W/cm?, the outmost electron may be
freed by absorbing many more photons than necessary. This
very highly nonlinear process is known as above-threshold
ionization (ATT) and has attracted considerable attention since
the early work of Agostini ef al. [1]; for a review see Ref. [2].
For typical parameters employed in experiments, i.e., near-
infrared laser fields, it is commonly accepted that the electron
reaches the continuum by tunnel ionization. If the released
electron revisits the parent ion in the presence of the laser
field [3,4], this results in various additional highly nonlinear
phenomena, such as high-order ATI [5], high-order harmonic
generation (HHG) [6], and nonsequential double ionization
(NSDI) [7]. Recently, considerable progress has been made
in the study of these nonlinear strong-field phenomena. For
example, both ATI and HHG have been employed as an
important technique to explore the electron shell structure
and subfemtosecond dynamics [8—12] and NDSI has created
the opportunity for the study of strong-field electron-electron
correlation [13-16].

In order to uncover the underlying physics of these highly
nonlinear phenomena, many theories and models have been
proposed, such as the ab initio solution of the time-dependent
Schrodinger equation (TDSE) [17] and the quantum-orbit
theory within the strong-field approximation (SFA) [18-20].
Since the TDSE contains no physical approximation, its
outcome is widely taken as a benchmark to evaluate the data
in experiments and the calculations of other theories and mod-
els [21-23]. However, on many occasions the TDSE does not
provide a transparent physical picture. Furthermore, since the
numerical effort involved in ab initio computations increases
exponentially with the degrees of freedom, its implementation
is impractical for strongly correlated multielectron systems. In
contrast, the quantum-orbit theory provides very clear physical
insight in terms of distinct electron ionization trajectories and
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its outcome is qualitatively consistent with the experimental
data. Therefore, it has been widely and successfully used in
the modeling of strong-field phenomena [18,24-26].

One should note, however, that the validity of the conven-
tional quantum-orbit theory is limited. In fact, the use of the
SFA before the application of the saddle-point approximation
implies that a considerable amount of physics is left out for the
sake of a clear and intuitive picture [2]. In particular, the SFA
fully neglects the effect of the Coulomb potential of the parent
ion on the ionized electrons, approximating the continuum
states by field-dressed plane waves [27]. For singly charged
negative ions, this approximation is justified as the Coulomb
interaction between the neutral core and the freed electron is
absent. However, for atoms and molecules, this interaction is
present, so the SFA only works qualitatively. Furthermore, in
recent years, several features have been observed that clearly
highlight the influence of the Coulomb potential. Examples
are the so-called low-energy structure in ATI spectra [28-30],
fan-shaped structures in photoelectron momentum distribu-
tions [31-35], and the violation of the fourfold symmetry
in angular electron distributions for elliptically polarized
fields [36,37].

Motivated by these observations, many methods have been
developed in the past few years in order to account for the
Coulomb potential in orbit-based methods. These include
(1) using Coulomb-Volkov functions to describe the electron
continuum states in the SFA [38—40]; (ii) incorporating the
binding potential in the electron propagation using the eikonal
Volkov approximation [41,42]; (iii) a Coulomb-corrected SFA
(CCSFA), which takes the trajectories from the SFA theory as
a zeroth-order approximation and accounts for the Coulomb
field perturbatively [35,43,44]; (iv) a quantum-trajectory
Monte Carlo method, which is based on classical-trajectory
Monte Carlo simulations, but considers the phase of each
trajectory [45]; (v) initial-value representations such as the
Herman-Kluk propagator [46—49] and the coupled coherent
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states method [50-52]; and (vi) a time-dependent analytical
R-matrix approach [53], which divides the space into inner
and outer regions and has been successfully used to study
many-electron systems [54].

Most of the above-mentioned approaches have been applied
to and tested on direct ATI. This phenomenon is a particularly
good testing ground for Coulomb corrections for two main
reasons. First, the momentum range involved is relatively low,
so the influence of the Coulomb potential is expected to be sig-
nificant. Second, in contrast to high-order ATI, hard collisions
are expected to be absent, so the Coulomb corrections are
in principle easier to implement. In particular, the influence
of the Coulomb potential on quantum-interference patterns
has attracted a great deal of attention [35]. Furthermore, it
has been shown that the presence of the Coulomb potential
considerably alters the topology of the orbits, giving rise
to types of trajectories that are absent in the SFA [44]. In
particular, in Ref. [35] it has been shown that subbarrier
corrections are necessary in order to obtain the correct phases
in the ATT electron momentum distributions.

In this work we develop a quantum-orbit theory with
Coulomb interactions that, besides the effect on the phase,
also accounts for the influence of the interactions on the semi-
classical amplitudes. We find that the amplitude is significantly
modified both via the atomic dipole moment at ionization and
due to the altered stability of the trajectories during the electron
propagation through the continuum. This Coulomb-corrected
method is then employed to study the influence of the Coulomb
potential on the direct AT ionization spectrum of hydrogen.
We perform a systematic investigation of how the Coulomb
coupling changes the topology of the trajectories, which are
either decelerated or accelerated with regard to their SFA
counterparts. This leads to a decrease in the phase difference
between the contributions from different types of trajectories,
which influences the interference patterns in the spectra.
We also discuss how momentum nonconservation lifts the
degeneracy of certain SFA trajectories. Furthermore, we verify
that the distinction between direct and rescattered trajectories
is blurred by the presence of the binding potential, which
causes a set of trajectories to go around the core.

Our results show that the spectrum calculated with this
method is in much better agreement with the ab initio TDSE
result than the predictions of the standard SFA. In particular,
the Coulomb-corrected theory recovers the much weaker
contrast in the interference substructure observed in the TDSE
and relates this effect to the unequal semiclassical weights
of the electron trajectories in the presence of the Coulomb
interactions. Similarly to what has been encountered in [35],
we also observe that the positions of the interference maxima in
the spectrum from the quantum-orbit theory and TDSE result
are shifted with respect to the SFA simulations. However, our
model indicates that these shifts mainly stem from the modified
electron propagation in the continuum.

This article is organized as follows. In Sec. II we describe
the theoretical models employed in this paper, namely, the
standard SFA and the SFA with Coulomb corrections, starting
from the TDSE. In Sec. III we apply the theories to direct ATI
and discuss the consequences of the Coulomb interactions, first
in terms of the individual trajectories and then for the resulting
ionization spectrum. Finally, in Sec. IV we summarize the
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main conclusions to be drawn from this work. We use atomic
units throughout.

II. THEORETICAL MODELS

The underlying framework for the subsequent discussions
is the TDSE

10;| (1)) = HO|Y (1)) (D

In the ionization problems considered in this work, the
Hamiltonian separates into two parts H(t) = H, + H,(t).
Here

)

H, = 5 + V(£) (2)
denotes the field-free one-electron atomic Hamiltonian and
the carets denote operators. In the problem addressed here, we
consider a Coulomb-type potential

. C
V(r) NS 3)
where 0 < C < 1 is an effective coupling, which we vary
in a continuous fashion in order to assess the influence of
the Coulomb potential. For hydrogen, C = 1. Furthermore,
H;(t) describes the interaction with the laser field. In the
velocity and length gauges, this interaction is given by H;(t) =
p - A(t) + A%(t)/2 and H;(t) = —t - E(t), respectively, where
A(r) denotes the vector potential and E(r) = —dA(t)/dt is the
external laser field. The length gauge provides us with the
physical picture of ionization as a tunneling process driven
by an effective time-dependent potential. This gauge will be
employed throughout.

The time-evolution operator
Hamiltonian is of the general form

associated with this

Ul(t,tp) =T exp [1/ H(t/)dt/i|, 4)

where 7 denotes time ordering. This operator takes a wave
function from atime fy to atime ¢, i.e., [ (¢)) = U(¢,10)|v (%)),
and satisfies

i0;U(t,ty) = HOU(t,tp),
—i0,U(t,t0) = U(t,t9)H (to). (5)

Employing the Dyson equation, the time-evolution operator
may be written as

t
U(t,tg) = Uy(t,tg) — i f U@, tYH (Ut 10)dt’,  (6)
to

where U,(t,ty) is the time-evolution operator associated with
the field-free Hamiltonian.

For above-threshold ionization, the initial state is a bound
state |1/o), while the final state is a continuum state |1/, (¢)) with
drift momentum p. This gives the ionization amplitude [2]

M(p)=—itlirgO/ dt' (rpOIU @, 1V H () [Yo(1)), - (7)

which is formally exact.
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A. Strong-field approximation

Equation (7) cannot be solved in closed form, so approx-
imations are required in order to compute the ATI transition
amplitude via analytical methods. A popular approximation
is to replace U(z,t’) by the Volkov time-evolution operator
UY)(t,t') in Eq. (7). This implies that the continuum has been
approximated by Volkov states, i.e., by field-dressed plane

waves |¢1§V)(t)) , where

t A 2
(el (0)) = (r|p(@)) exp [—i/ d’@] ®

with
explip(?) - r]
(2m)3/2

Here p(¢) = p + A(?) in the length gauge and p(#) = p in the
velocity gauge, so UY)(t,1")| (1)) = |5 (1))." This is the
key idea behind the strong-field approximation or Keldysh-
Faisal-Reiss theory [27,55,56]. For detailed discussions see,
e.g., [57,58] and the recent tutorials [59]. Within the SFA, the
amplitude (7) is then given by [2,27,55,56]

(r[p(0)) = 9

M(p) = —i / dt'(p + A H ()| o) S® . (10)

o]

Here
l o0
S(p,t) = —5 / [p+ A(r)]zdr + I,,t’ (11)
o

is the semiclassical action, where I, gives the ionization
potential. In Eq. (10) we have also employed the relation
[Yo(t)) = e |ro).

For sufficiently high intensity and low frequency of the laser
field, the temporal integration in Eq. (10) can be evaluated by
the saddle-point method [19,20], which seeks solutions such
that the action (11) is stationary. The corresponding saddle-
point equation reads

[p + A"
2

Physically, Eq. (12) ensures the conservation of energy at the
ionization time ¢’, which leads to complex solutions z;. In terms
of these solutions, the transition amplitude (10) can then be
written as

M(p) ~ ) C(t)(p + Alt) Hy (1) [yo)e ™, (13)

+1,=0. (12)

where the prefactors

2mi
92S(p.t;) /91

are expected to vary much more slowly than the action for
the saddle-point approximation to hold. Since each solution
t, represents a distinct trajectory of the electron in the laser
field, the sum in Eq. (13) denotes the interference between
different quantum paths, which has been extensively studied

Cy) = (14)

!"The phase exp[—iA(¢) - r] associated with the gauge transforma-
tion will cancel out that in the Volkov state.
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in the literature (for reviews see, e.g., [2,60]). One should note
that in the SFA, the field-dressed momentum is conserved.

B. Coulomb quantum-orbit strong-field approximation

Within the SFA, an electron no longer experiences the
atomic potential after it has been promoted into the continuum
at the time t,, resulting in the considerable deviations between
this model and experimental results. In this section we
describe a Coulomb quantum-orbit strong-field approxima-
tion (CQSFA), which resolves this shortcoming of the SFA
(for similar approaches see [37,41-43,61]).

1. General considerations and derivation

In the presence of the Coulomb potential,the field-dressed
momentum is no longer conserved and the time evolution op-
erator depends on both  and p. As a result, the time-evolution
operator cannot be diagonalized by the Volkov states (8) to
compute the transition amplitude (7). First, it is useful to
introduce the closure relation f dpolpo)(Pol = 1, where |po)
are asymptotic scattering states, so Eq. (7) is rewritten as

M) =i tim [ at’ [ dpotp 1U@IBo
x (Pol Hi (") o(1")), 15)

where |p/(1)) = [¥p(#)) and Po = po + A(t') denotes the
velocity of the electron at the initial time #’. Similarly, the
final electron velocity is given by ps(z) = ps + A(¢). One
should note that the bound states of the system have been
neglected in the above-stated closure relation. Physically, this
approximation means that we are excluding the processes
involving the excited bound states at the instant ¢’ and focusing
on the bound-continuum transitions.

The momentum-space matrix element (p (#)|U(¢,1")|Po)
will now be rewritten by employing the Feynman path-
integral formalism [62]. This means that the time-evolution
operator U(t,t') is sliced into N + 1 time-evolution operators
with an infinitesimal time slice of width ¢ =¢, — 1, =
(r— l‘/)/(N + 1), where f)_f(l‘) = PnN+1, IN+1 =t and fH = t.
This gives

i pas dr, .

n=1 n=1
where

N+1
Av =) =@n = Bo1) - ta — &[Br/2 414 - Et) + V().

n=1
(17)
In the continuous limit,

Pr(t)

BrOIU.1)Po) = /

D e
D'p / B0 (18)
. @)

with

AP,r) = / dr[—p - r(v) — HP,r,7)] (19)
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and

H(p.r,7) = p*/2 +r(z) - E(z) — (20)

C
V@) r(@)’
where p(t) = p + A(7), ¥’ < t < 1, is the intermediate veloc-
ity of the electron and D’ expresses the fact that there are fewer
integrals in p,, [see Eq. (16)]. Physically, Eq. (18) denotes the
integration over all paths from pg to p /(7).

Therefore, the Coulomb-corrected transition amplitude
becomes

. e, L Dr
M(pf):—ztlirglo/ooalt/‘dpo/f)n D'p m
x eS®TLD o | Hy ()| Yo, @
where the action is given by
SP.r,t',1) = I,t' + AP.r). (22)
This gives,

SP.r,t', 1) =1,t" — / [p(7) - r(z) + H(x(z),p(t),rldt

(23)

and

1
H(r(z).p(r).7) = 5p(r) + A@) - (24)

C
Vr(T) - x(7)
One should note that the problem is solved in the length gauge
and Eq. (24) can be obtained from the standard length-gauge
Hamiltonian by a partial integration. This issue has also been
discussed in detail in Ref. [63].

Following the same procedure as for the SFA, we can
now obtain the Coulomb-corrected transition amplitude by
applying the saddle-point approximation. By construction, the
saddle-point equation on ¢’ leads to the condition

[po + A())?
2
The Coulomb-corrected transition amplitude is then given by

. L Dr
M(py) = —i tlggo/dpo /ﬁo DP/ 2n ) ;C(Is)

x e SBrL (00 A1) Hy (1) Wo), (26)

where ¢, are the solutions of the saddle-point equation (25),
which are again complex, and we consider the initial momen-
tum py = p(#,;) in Eq. (14). We then use the semiclassical path-
integral theory developed by Van Vleck and Gutzwiller [64]
on the paths [p(7)] and [r(z)]. The associated saddle-point
equations take the form of classical equations of motion for
the trajectories

+ 1,4 V@) =0. 25)

p(r) = =V VIr(r)], 27
(1) = p(r) + A(), (28)

whose solutions are r;(7) and p;(7). In terms of such solutions,
the Coulomb-corrected transition amplitude finally reads

L " PSPy Tty 1)
M) o —i lim Z det ) C(ty)e > et

X (Ps(ts) + Ats) | H  (t5)|¥0) - (29)
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The sum is over the classical trajectories that begin at position
r(t,) at time #; and end at momentum p(¢) at time t — oo (sum
over multiple solutions with identical ¢, is implied) and the
action S(Py,ry,%,1) is given by Eq. (22). Throughout, we have
considered the principal branch. In practice, ¢ should be taken
to be sufficiently long so that the electron is far away from the
core.

Due to the presence of the binding potential, the above-
stated equation exhibits branch cuts for Re[r,(7) - r;(r)] <0
and Im[r(7) - ry(7r)] = 0. For vanishing transverse momenta,
the branching points turn into first-order poles and this problem
is absent (for details on these branch cuts see Ref. [65]).
These branch cuts can be avoided if one takes the integration
contour along the real time axis once the electron is in the
continuum. More specifically, the time-integration contour is
taken first parallel to the imaginary-time axis and then along
the real-time axis. This is the procedure taken by most groups
when implementing Coulomb-corrected strong-field theories
(see, e.g., Refs. [35,60]).

Furthermore, besides the SFA factor (14) and the tunnel
matrix element (p; (%) + A(%)| Hy(¢;)|0), the amplitude now
involves the stability gf((t’)) of the trajectories. In the limit of
vanishing binding potential, the usual SFA is recovered [67].
However, as we will see, this happens in a nontrivial fashion
when the degeneracy breaking of trajectories is taken into
account.

2. Practical implementation

In order to simplify the calculation and isolate the main
effects of the potential on the trajectories, we assume that the
electron is ionized by tunneling from the time 7, to tf = Ref,
at a fixed momentum p;(#,) and then moves to the detector
with the real time and coordinate according to the classical
equations of motion (27) and (28). This is the most widely
used assumption for the contour and has been employed
in [35,43,44] (for a review see [63]). Because we assume that
the momentum of the electron is fixed during the tunneling
ionization, it is a reasonable approximation to neglect the
Coulomb potential in Eq. (25), which thus reduces to Eq. (12).
The point in space for which the time becomes real is widely
known as the tunnel exit. Physically, this also gives the point in
space at which the electron tunnels out of the potential barrier.

The tunneling exit at the time 7 is given by

z0 = a(tf) —Rea(), (30)

where a(t) = f "A(t)d7 [68]. We use the tunnel exit approx-
imation (30) to split the action into a part inside the barrier

o
SGura) == [ Heepoodn GD
I

with the tunneling trajectory ry(t) = f; [ps(t) + A(r)]dt [43]
and a part outside the barrier ‘

T,

P

80 Bt t) = / de[=ps(v) - xy() = H{r.pe. o)l (32)

1f

with the ionization trajectory determined as described in the
previous section. Note that, in Eq. (31), the term in p; is
vanishing as the drift momentum inside the barrier is taken
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to be constant. Furthermore, real variables outside the barrier
will lead to real stability factors, so phase differences in the
continuum stem exclusively from the action. The part inside
the barrier is starting from the origin up to the tunnel exit. In
practice, because of the singularity of the Coulomb potential
at the origin, the tunneling time is shifted along the contour
by a very small value, so the trajectory of the electron begins
not exactly at the origin. However, the initial coordinate is
still sufficiently close to it, so the transformation below can be
used. The same procedure is also performed in Ref. [66]. In this
work we have also considered the same shift for the imaginary
part of the tunneling time as in [66], namely, iw/21,.

Within the CQSFA, we calculate the stability of the trajec-
tories numerically. In practice, instead of using op,(¢)/0r;(z)
in Eq. (29) we employ op,(7)/9p,(2s). The latter stability factor
is easier to implement and can be obtained using a Legendre
transformation in the transition amplitude (26). Upon this
transformation, the action will remain the same as long as
the electron starts from the origin. For details on Legendre
transformations see, e.g., [69]. The normalization constants
in the above-stated equations are such that, in the limit of
vanishing binding potential, the SFA transition amplitude is
recovered.

Our method is closely related, but different from the
existing CCSFA [35,43,44] and the eikonal Volkov approx-
imation [41,42]. Conceptually, our derivation is based on the
Feynman path-integral approximation, which is applied to
the time-evolution operation in the presence of the Coulomb
potential. This is a different starting point from the derivations
in [35,41-44]. The eikonal Volkov approximation starts from
a laser-dressed WKB-type approximation and requires small
scattering angles. The CCSFA theory takes the Coulomb-free
trajectories as a zeroth-order approximation and accounts for
the Coulomb field perturbatively via corrections to the classical
action. It is noteworthy that neither method leads to the extra
term Py (7) - r,(7), which is obtained in our computations. This
term is necessary to obtain the correct phases and contrast and
keep the trajectories real in the continuum. Furthermore, we
solve the inverse problem, i.e., for a given a final momentum,
we compute the initial momentum, while in the CCSFA direct
propagation with a shooting method is employed.

III. RESULTS AND DISCUSSION

In the results that follow, we use the monochromatic laser
field

E(t) = 2E, sin o, (33)

where E| is the peak electric-field amplitude. For this type of
field, the vector potential of the laser field is A(r) o cos(wt?)Z.
Hence, whenever there is a zero crossing for A(¢) there will be
a crest for E(¢). In a practical calculation, however, one must
consider a pulse of finite duration. In our work the electron is
ionized at the time near ¢t = 0, i.e., —7/2 < wt; < /2, and
then the ionized electron moves in the presence of the laser field
and the Coulomb potential until the time T, = 15.25 cycles,
with A(T),) =0 and |E(T,)| = Ey. In the SFA theory, for a
given final momentum p, there are two solutions #; of Eq. (12)
per cycle of the laser field. In [44] these solutions have been
related to orbits I and II, depending on whether the electron
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leaves in the direction the same as or opposite to the detector.
In the results that follow we will consider this classification
and its extension to the Coulomb-corrected case.

The initial states are taken as the ground state of hydro-
gen, i.e., Yo(r) = (r|) = e /+/m. In this case, the tunnel
matrix element in Eq. (29) becomes related to the atomic
dipole moment and can be simplified as (p,(#;) + A(t;)| —r -
E(t)|¥o) ~ E(1)poz, where po = p(ty) + A(zy) [70]. Unless
otherwise stated, we will consider C = 1 in V(r).

A. Coulomb-corrected saddle-point solutions
and their physical implications

In comparison with the SFA, the canonical momentum
p of the electron is time dependent according to Eq. (27)
if the Coulomb interaction is incorporated. Therefore, in
the CQSFA theory, the greatest challenge is to solve the
saddle-point equations for the tunneling time 7 and the
canonical momentum py for any given final momentum p.
One should also bear in mind that, in experiments, the
measured photoelectron spectrum is a function of the final mo-
mentum. Therefore, if for a given final momentum the initial
conditions for the corresponding electron trajectories could be
obtained reversely, it would be easier to understand how these
trajectories were influenced by the Coulomb potential.

Figure 1 depicts four types of trajectories in the zx plane for
an electron with a given final momentum p ;. For trajectories of
type I, the tunneling exit zo > 0 and the electron moves directly
towards the detector without returning to its parent core. For
type-1II and -1III trajectories, the tunneling exit zg < 0, meaning
that the initial motion carries the electron away from the
detector before it turns around and ends up with the stipulated
momentum p¢. A closer inspection shows that they are similar
to Kepler hyperbolas to which a drift motion caused by the field
is superimposed [33,44]. Trajectory types I and II are similar
to the so-called short and long trajectories in the SFA theory.
The type III is not found in the SFA and can be observed after

Polarization
800 T T T T T T T T
VA% v p

600- QT 1

~ 400- II I -
3
T

N 200 E

0- /\/l\m T

30 25 20 15 10 -5 0 5 10
X (a.u.)

FIG. 1. (Color online) Illustration of the four types of CQSFA
trajectories in the zx plane for electrons with fixed final momentum
p;, computed using a linearly polarized square pulse that ends at
the time T, = 15.25 cycles, of intensity / =2x10'*W/cm?* and
frequency w = 0.057 a.u., and a Coulomb potential (3) with C = 1.
The ionization potential has been taken as I, = 0.5 a.u. The black
circle denotes the position of the nucleus. The inset shows the region
near the core.
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FIG. 2. (Color online) Emergence of the two distinct trajectories
[T and I11. (a) For ionization parallel to the field, the trajectories are part
of a torus, respecting the rotational invariance of the system. In the
SFA, this torus would contract to a point as momentum conservation
then dictates that the initial momentum vanishes. At a finite tilt angle
of the final momentum (here 2°), however, the torus splits into two
distinct solutions II and III (red and green). (b) As the Coulomb
interaction strength C is then reduced, trajectories II and III merge
and remain distinct from trajectory I (here the tilt angle of the final
momentum is 1°). The remaining parameters are the same as in Fig. 1.

the Coulomb potential is considered, which is consistent with
earlier work [44].

As we show in Fig. 2(a), the emergence of the new trajectory
is directly related to the momentum nonconservation. It is
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FIG. 3. (Color online) Behavior of type-IV orbits for increasing
photoelectron energy. The field and atomic parameters are the same
as in Fig. 1 and the energy is indicated in the legend. The inset shows
the trajectories approaching the origin, which is marked by a black
circle. The field and atomic parameters are given in Fig. 1.

instructive to start with the case of ionization parallel to the
field, where the final momentum p is along the polarization
direction. On first inspection, the type-II and -III trajectories
are symmetric with respective to the polarization direction.
As a matter of fact, trajectories II and III then degenerate
into a torus, with a finite initial transverse momentum. In
the SFA, the torus contracts onto a single trajectory with
a vanishing initial transverse momentum, as dictated by
momentum conservation. At a finite tilt angle, the torus splits
in analogy to the Poincaré-Birkhoff scenario in Kolmogorov-
Arnold-Moser theory, leaving two clearly distinct trajectories.
As we change the effective Coulomb interaction strength C
from C = 1 (hydrogen) to C = 0, the situation from the SFA
is again recovered [Fig. 2(b)].

It is noteworthy that our numerics uncover an additional
trajectory type, denoted by I'V. Although the tunnel exit points
towards the detector, the electron is driven back to the core by
the laser field, then goes around the core, and finally moves
towards to the detector. With increasing photoelectron final
momentum, the shortest distance between the electron and
the core decreases. This distance can be smaller than the
tunnel exit. In this case, this type of trajectory corresponds
to a rescattering event. This behavior is shown in Fig. 3.

Since the contribution of events involving rescattering
to the low-energy photoelectron spectra is small, it can be
safely neglected, so we only need to consider the type-I to
type-III trajectories. However, it is encouraging to see that
rescattering contributions already show up within a framework
that is formally tailored for direct ATI, even though they
eventually may require a more accurate treatment including
rescattering form factors that account for the inherently
diffractive, nonclassical nature of these events [19,24].

B. Photoelectron spectrum

Based on the trajectories described in the previous section,
we now study the photoelectron spectrum within the CQSFA
theory and compare the result with the standard SFA, while
taking the ab initio TDSE -calculation as a benchmark.
The standard SFA is implemented according to Eq. (13).
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FIG. 4. (Color online) Photoelectron spectra for ionization along
the laser polarization direction, with the standard SFA, the Coulomb-
corrected CQSFA, and from the ab initio TDSE calculation. The blue
(dash-dotted) solid curve is the envelope of the TDSE calculation. In
order to perform a clearer comparison, the TDSE spectrum has been
shifted upward around one order of magnitude. The laser-field and
atomic parameters are given in Fig. 1.

The TDSE has been computed using the freely available
software Qprop [71]. In the TDSE calculation, the initial state
is the ground state of the Coulomb potential (3), which is
obtained with imaginary-time propagation and is subjected to
a long laser pulse E(r) = 2E sin(wt) f (t) with a trapezoidal
profile f(¢) (up- and down-ramped over two cycles, constant
over ten cycles). In practice, the electron wave functions are
expanded in spherical harmonics and the range of the radial
space is from 0 to 6000 a.u. with grid spacing Ar = 0.1 a.u.
During the real-time propagation, the time step is At = 0.025
a.u. and the maximal angular momentum is 30.

The resulting photoelectron spectra in the direction along
the laser polarization are shown in Fig. 4. Since the SFA and
CQSFA only account for the interference of the electrons
ionized in one optical cycle, the spectra correspond to an
envelope, without the sharp ATI peaks shown in the ab initio
calculation. We therefore also show the envelope of the spec-
trum from the ab initio method. Clear interference structures
are observed in all spectra. A closer inspection shows that
the interference contrast in the spectra from the TDSE and
the CQSFA theory is much weaker than that from the SFA
theory. Moreover, the positions of the interference maxima in
the CQSFA spectrum are in a better agreement with the TDSE
result than the SFA.

The mechanisms leading to these improvements are ex-
plained in the following sections. For reference, it is useful
to inspect how the Coulomb corrections are established when
one changes the effective interaction strength C, so for C = 0
the SFA is recovered. Figure 5 shows the photoelectron spectra
for different values of C.

1. Interference contrast

First, we consider the effect of the Coulomb potential on the
interference contrast. According to the discussion above, the
type-I to type-III trajectories are dominant for the electrons
with low kinetic energy. For the photoelectron spectrum
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FIG. 5. (Color online) Photoelectron spectra from the CQSFA
theory with different strengths C of the rescaled Coulomb potential
given by Eq. (3). For C = 0 the spectrum coincides with that of
the SFA theory. The remaining laser-field and atomic parameters are
given in Fig. 1.

along the laser polarization, type-II and -III trajectories are
symmetric with respect to the polarization direction and have
the same phase and amplitude. Therefore, the interference
pattern in the spectrum arises from the beating between the
type-I trajectory and type-II and -III trajectories. In Fig. 6
we present the amplitude related to each orbit as a function
of the photoelectron energy with and without Coulomb
corrections, respectively.

In the SFA theory, the amplitudes associated with the
type-I and the type-II trajectories are the same. This holds
because in the SFA the electron’s final momentum is solely
determined by the ionization time, which for trajectories I and
IT are displaced by half a cycle. This means that the absolute
values of the electric field, and hence the ionization probability,
are the same. Therefore, in the SFA the interference contrast
will be maximal. If the Coulomb potential is included, the
amplitudes of the type-I and type-II or -III trajectories differ
slightly. Furthermore, the joint amplitude of the type-II and

7 4 (a) SFA
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35
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g
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FIG. 6. (Color online) Amplitude of each trajectory type as a
function of the photoelectron energy within (a) the SFA theory and (b)
the CQSFA theory. The laser-field and atomic parameters are given
in Fig. 1.
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FIG. 7. (Color online) Time of tunneling as a function of the
photoelectron energy for (a) the type-I orbit and (b) the type-II orbit.
The time is separated into two parts: the real part and the imaginary
part. The black curves are for the SFA calculation and the gray (red)
curves are from the CQSFA. To more easily compare the changes in
time with that in (a), we plot —Re[#] instead of Re[#] in (b). The
laser-field and atomic parameters are given in Fig. 1.

-III trajectories exceeds that of type I significantly. All this
leads to a much reduced contrast of the interference pattern.?

Phenomenological insight into the amplitude difference be-
tween the type-I and type-II or -III trajectories can be obtained
by considering the tunneling time and initial momentum as
a function of the photoelectron energy. The imaginary part
Im[#,] can be interpreted as the time it takes the electron to
tunnel through the potential barrier [74]. The larger Im[#] is,
the lower the ionization rate. Figure 7 exhibits the time of
tunneling as a function of the photoelectron energy for the
type-I orbit and the type-II orbit, respectively. For the type-I
orbit, Im[#,] increases when the Coulomb potential is taken into
account. In contrast, for type-II and -III trajectories, Im[z]
is smaller in the CQSFA than in the SFA. Therefore, if the
Coulomb corrections are present, the amplitude of type I will
be smaller than that of type II. These features are consistent
with the changes in Re[#,], which for orbit I move towards the
field crossing and for orbits I and III is displaced towards the
times for which the field amplitude is maximal. This implies
that the effective potential barrier will be wider for the former
orbits and narrower for the latter.

According to the Ammosov-Delone-Krainov (ADK) theory
[75], these observations can be linked to the initial momentum,
with a large momentum translating into a reduced ionization
rate. Figure 8(a) shows that for trajectories of type I, the initial
momentum from the CQSFA theory is indeed larger than that
from the SFA calculation. This can be understood from the
fact that the electron needs to compensate for the deceleration
in the Coulomb potential as it moves towards the detector.
In contrast, for type-II and -III trajectories, the initial parallel
momentum from the CQSFA theory is smaller than in the SFA.

2In principle, the Poincaré-Birkhoff-type scenario has implications
for the saddle-point treatment [72,73], in analogy to the uniform
approximations needed close to orbit bifurcation scenarios [19,24],
but as we do not encounter any divergence and in view of providing
a simple picture, we did not find it necessary to employ it here.
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FIG. 8. (Color online) Initial momentum for trajectories of (a)
type I and (b) type-II as a function of the photoelectron energy.
The momentum is separated into the parallel and perpendicular
components. The blue (dash-dotted) curve in (b) denotes the total
momentum from the CQSFA theory. The laser-field and atomic
parameters are given in Fig. 1. The subscripts || and L refer to the
components of the initial momentum p, parallel and perpendicular to
the laser-field polarization.

Although there is a nonvanishing perpendicular momentum
from the CQSFA theory, the total initial momentum [blue
curve in Fig. 8(b)] is still lower than that from the SFA theory.
This indicates that the electron accelerates significantly due to
the interplay of the Coulomb potential and the laser field as it
passes near the core. We conclude that the amplitude difference
between the different types of trajectories is generally consis-
tent with the phenomenological picture of the ADK theory.

Physically, the above-mentioned behavior can be attributed
to the fact that the Coulomb potential decelerates the electron
for orbit I, which hinders ionization. In contrast, for orbits II
and II1, the Coulomb potential accelerates the electron. Hence,
the electron acquires an additional pull and may escape moving
along laser-dressed Kepler hyperbolas.

2. Positions of interference maxima

We turn to the positions of interference maxima in the
spectra. Figure 4 shows that the positions of the interference
maxima in the spectra from the CQSFA theory are shifted when
compared with the SFA. Since the positions of interference
maxima are determined by the phase difference between
different types of trajectories, we study how this is affected
by the Coulomb potential. In Fig. 9 we show the phase
difference between type-I and type-II trajectories as a function
of the photoelectron energy. After considering the Coulomb
potential, the dynamical phase difference from the CQSFA
becomes smaller than that from the SFA. This can be traced
back to the fact that the type-II trajectory accumulates a larger
negative phase contribution from the Coulomb potential as it
passes by the core. Overall, this reduces the phase difference
to trajectory I. A similar analysis has been employed in our
previous publication [26], in the context of ATI with elliptically
polarized fields.
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FIG. 9. (Color online) Phase difference A® = dy; — &y (in units
of m) between trajectories of type I and II as a function of
the photoelectron energy. The arrows denote the positions of the
interference maxima, where A® = 2km,k = 1,2, ....Thelaser-field
and atomic parameters are given in Fig. 1.

Note that the reduction of the phase difference approaches
2m, so by neglecting multiples of 27 one can also interpret
the large shift towards lower energies as a small shift towards
larger energies. This ambiguity is resolved when we consider
the effect of the continuously rescaled Coulomb potential in
Fig. 5, which shows how a large shift towards smaller energies
is established as C increases. These results are also consistent
with the recent TDSE simulations in [76] and with the outcome
of similar Coulomb corrected approaches [35,43].

3. Overall ionization amplitude

Finally, we turn to the overall ionization amplitude of
the spectra. As we can see from Fig. 4, the ionization
amplitude from the Coulomb-corrected theory is much larger
than that from the SFA. Enhanced tunnel ionization is a well-
known effect caused by Coulomb corrections to the effective
potential barrier. It was first predicted in [77] and subsequently
observed in several Coulomb-corrected strong-field calcula-
tions [41,78]. Furthermore, in the 1980s the Coulomb-induced
orders-of-magnitude enhancement of tunnel ionization rates
of atoms and positive ions was well documented in experi-
ments [79]. Intuitively, it can be understood that compared
to the SFA theory, the barrier for a Coulomb potential is
smoother and lower, making it easier for the electron to
tunnel through. Within the CQSFA, this enhancement of the
ionization amplitude mainly originates from the Coulomb term

I =— j;tfR V[r(r)]dt in the subbarrier action (31). Figure 10
shows the result if this term is neglected. The overall magnitude
of the spectrum is then comparable to the SFA. In the CQSFA
this term contributes with a negative imaginary part Im/ < 0
and thus increases the ionization amplitude.

One should note, however, that the overall probability in the
CQSFA simulation depends on the shift of the tunneling time
performed in this computation in order to avoid the Coulomb
singularity at the origin. The CQSFA simulation shows that the
smaller the shift of the tunneling time is, the larger the ioniza-
tion yield will be. Hence, another method must be applied in
order to overcome this problem, in order to make a definitive
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FIG. 10. (Color online) Photoelectron spectra from the CQSFA
theory and the SFA theory. The red (solid) curve is the spec-
trum from the CQSFA, but without the subbarrier Coulomb term
I =— f,?R VIr(r)ldz. The laser-field and atomic parameters are
given in Fig. 1.

statement about a quantitative agreement with the TDSE. We
have also verified that the contrast and the position of the intra-
cycle interference structure are not altered by this parameter.

IV. CONCLUSION

In this work we have developed and used a path-integral
formulation to assess the influence of the residual Coulomb
potential in above-threshold ionization. We focused on the
direct transition amplitude, in which hard collisions with the
core are not incorporated. In general, the photoelectron spec-
trum obtained with the Coulomb-corrected method presented
in this paper exhibits agreement with the ab initio solution
of the time-dependent Schrodinger equation superior to that
encountered for the plain strong-field approximation. This is
especially true for the interference substructure in the spectra.
As far as the overall ionization probability is concerned,
however, a definitive statement cannot yet be made, as it
depends on the initial shift in time employed in the subbarrier
part of the contour to avoid the Coulomb singularity. We have
evidence, however, that the presence of the Coulomb potential
leads to an increase in the overall ionization yield, which is in
line with other Coulomb-corrected strong-field theories.

We also performed a systematic analysis of how the
Coulomb potential modifies the orbits along which the electron
may leave its parent ion and reach the detector. We compared
our results with those of the SFA and made an assessment of
how, in the limit of vanishing Coulomb coupling, the SFA
is recovered. The present formulation is closely related to
the concept of quantum orbits widely employed in semian-
alytical strong-field approaches with and without Coulomb
corrections.

We have built upon the existing knowledge that the
Coulomb potential introduces a richer topology in the electron
motion [44], with four distinct sets of orbits, and have related
these orbits to those in the SFA in a more systematic way.
Throughout, we have employed the same classification as
in [44], which specify these four sets as orbits of types I to
IV. In particular, we have found that, for electron emission
along the polarization axis, due to the rotational symmetry
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with regard to the field axis, orbits of types II and III will
be located on a torus. This torus will contract for decreasing
Coulomb coupling, until it becomes a point. Physically, this
means that for the SFA, orbits of types II and III will merge
into a single degenerate orbit if the final electron momentum
is parallel to the laser-field polarization. For nonvanishing
emission angle, the above-mentioned torus will break down
and there will be two discrete solutions. This behavior indicates
that, strictly speaking, orbits of types II and III should not
be treated independently in an asymptotic expansion when
computing photoelectron spectra and momentum distributions.
Indeed, a rigorous treatment would require solving the integral
around the manifold exactly for a final momentum along the
axis and a uniform approximation for nonvanishing emission
angle [72,73]. This strongly suggests that the cusps observed
in [35,44] close to the so-called ATI low-energy structure are
related to this effect. It is indeed noteworthy that very good
agreement between the TDSE and the Coulomb-corrected SFA
in [35,44] was obtained throughout, except in this region (see
also the discussion of this cusp in the review [63]). We have not
studied, however, the above-mentioned cusp systematically.
Within the standard SFA, low-energy structures are only
obtained if the rescattered ATI transition amplitude is taken
into consideration [80].

Furthermore, our results indicate that if the Coulomb
potential is accounted for, the concepts of direct and rescattered
electrons are not very clear-cut. These concepts are very clear
in the SFA, as there are either hard collisions with the core
or no collisions at all. If the Coulomb corrections are present,
however, the Coulomb potential strongly deflects orbits of
type IV. These orbits go around the core and there is a marked
decrease in the electron’s shortest distance from the origin
as the photoelectron momentum increases. For high enough
momentum, this distance is located in a region in which
the binding potential is dominant. This behavior could be
interpreted as a type of recollision, which is absent in the SFA.
The amplitude associated with this type of trajectory, however,
is very small and hence not relevant to the computation of ATI
spectra in the parameter range of interest.

In addition to that, we have investigated the influence of the
Coulomb potential on the ATI spectra, with emphasis on the
interference contrast and position of the maxima. This influ-
ence has been traced back to particular sets of orbits. First, the
contrast in the interference structure decreases in comparison
with the SFA. This happens because, in the SFA, orbits I and
IT are equivalent and displaced by half a cycle, while, if the
Coulomb potential is included, this no longer holds. In fact,
the Coulomb potential will decelerate the electron if it reaches
the continuum along orbit I and will accelerate the electron
if it is ionized along orbits II and III. This will lead to an
increase in the amplitudes associated with orbits II and IIT and
to a decrease in the amplitude related to orbit I. Furthermore,
there is the joint effect of orbits II and III, which will weaken
the fringes. Recently, the influence of orbit III on interference
effects has also been investigated in a different context, namely,
sidelobes in ATI electron momentum distributions, and it has
been found to be significant [81].

The suppression of orbit I and the enhancement of orbits
Il and III has been confirmed by a systematic analysis of
the initial momenta and ionization times. For orbit I the
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initial momentum increases when the Coulomb potential
is considered, while for type-II and -III orbits the initial
momentum decreases. Physically, this means that the Coulomb
potential hinders ionization along orbit I, as the electron will
require a larger momentum to escape. For orbits II and III the
Coulomb potential accelerates the electron after the tunneling
ionization, so a lower escape momentum is required. An
increase in the initial momentum for type-I orbits also implies
that the electron ionization time has moved away from the
field maximum towards the field crossing. This means that the
effective potential barrier through which it must tunnel will
widen. Hence, there is also an increase in Im|[#,]. In contrast, for
type-1I and -III orbits, the tunneling time moves to the crest of
the laser field and thus the effective potential barrier becomes
narrower. These observations are consistent with the changes
in the real parts Re[z;] of these times, as shown in Fig. 7.

Similarly to the results reported in [35,43,66], we also
found that there is a phase shift towards lower energies in
the interference maxima. In our model this phase difference
occurs due to Coulomb effects in the continuum propagation,
while subbarrier corrections mainly influence the overall yield.
In contrast, in [35,43] this phase difference is attributed to
subbarrier corrections instead. While the contour taken by
us and the assumption that all variables are real outside the
barrier are also employed in [35,43], the term py(7) - ry(7) is
absent in their action. Equation (27) shows that this term is
proportional to the gradient of the binding potential. Its value
is small for orbit I, which moves towards the detector directly,
while it is large for orbits II and III, which are deflected by
the core before reaching the detector. We have indeed verified
that the phase from this term plays an important role in our
formulation. Indeed, if this term is removed from the action,
there is significant deviation between the TDSE and CQSFA
results. The stability factors employed here are also different
from those in [35,43,44], but they influence mainly the contrast
and not the position of the maxima. They are, however, very im-
portant for good agreement with the full TDSE computations.
This term is also absent in [66], in which the eikonal Volkov
approximation is employed and the phase differences are
obtained along propagation by using a complex intermediate
coordinate. Since, however, in [66] circularly polarized light is
used, it is expected to be vanishingly small as the electron never
returns to the core after tunneling ionization. We expect that
the present analysis will contribute to a better understanding
of cusps and the ATI low-energy structure in the future.
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