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in the presence of dephasing
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An exact analytic solution is presented for a two-state quantum system driven by a time-dependent external field
with an exponential temporal shape in the presence of dephasing. In the absence of dephasing the model reduces
to the well-known Demkov model originally introduced in slow atomic collisions. The solution is expressed in
terms of the generalized hypergeometric function 1F2(a; b1,b2; x). Various limiting cases are examined in the
limits of weak and strong dephasing, strong driving field, and exact resonance.
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I. INTRODUCTION

The two-state quantum system is a fundamental object
in time-dependent quantum mechanics. It is not only the
qubit in quantum information, but it is also the founda-
tion for understanding of a variety of phenomena in areas
ranging from nuclear magnetic resonance, quantum optics,
atomic collisions, and condensed matter to polarization optics,
waveguide optics, frequency conversion, and even neutrino
oscillations. Moreover, multistate quantum dynamics can often
be understood only if reduced to one or more two-state
problems via an appropriate transformation [1,2]. Besides
the simple case of exact resonance between the frequency
of the external driving field and the system frequency, the two-
state time-dependent Schrödinger equation (TDSE) has exact
analytic solutions for several off-resonant models [1]. These
include the Rabi [3], Landau-Zener-Stückelberg-Majorana
[4–7], Rosen-Zener [8], Demkov [9,10], Nikitin [11,12],
Allen-Eberly [13,14], Bambini-Berman [15], Demkov-Kunike
[16–19], and Carrol-Hioe [20] models, the recently solved
tanh model [21], etc. Because TDSE can be cast into a
second-order ordinary differential equation vs time, all of these
models but the Rabi model express the respective solution
in terms of a special function, which solves a second-order
ordinary differential equation: the Weber parabolic cylinder
function (Landau-Zener-Stückelberg-Majorana model), the
Bessel function (Demkov model), the Gauss hypergeomet-
ric function (Rosen-Zener, Allen-Eberly, Bambini-Bermann,
Demkov-Kunike, Carroll-Hioe models), the Kummer con-
fluent hypergeometric function (Nikitin model), associated
Legendre functions (tanh model), etc. A different approach
has been used by Barnes and Das Sarma [22], and recently
by Vitanov and Shore [23], who derived a variety of soluble
models by assuming that the solution is known and considered
TDSE as an equation for the field.

All these analytic solutions assume coherent excitation,
i.e., any decoherence is completely absent. In other words,
they apply to cases when the interaction duration is much
shorter than the decoherence times of the system. In the
presence of decoherence effects, such as spontaneous emission
and collisional dephasing, TDSE is replaced by the three
coupled Bloch equations [1,13,24,25]. Hence the inclusion
of decoherence requires the solution of a differential equation
of third order, which is far more demanding. Therefore, exact

analytic solutions in the presence of decoherence are nearly
absent. A notable exception is the Rabi model, which assumes
a driving field of rectangular shape and a constant detuning;
hence it is described by a differential equation with constant
coefficients that is readily solved even with decoherence [1].
Another exact solution is the on-resonance Rosen-Zener model
with dephasing [26], in which, due to the resonance (zero
detuning), one of the Bloch equations decouples and we are
left with only two coupled Bloch equations that result in a
single second-order differential equation.

We note that the Bloch equations can be solved ap-
proximately in the limits of weak and strong dephasing
rates [27–29]. These approximate analytic solutions apply
to rather general temporal dependences of the Hamiltonian
elements and provide reasonable approximations to the exact
solutions.

In this paper, we consider the simplest form of
decoherence—pure dephasing (also known as transverse
relaxation)—which is described by the T ∗

2 time in the Bloch
equations. We derive an exact analytical solution for a model
with a nonzero detuning and a coupling of exponential time
dependence in the presence of dephasing. This is possible
because the Bloch equations for this model can be cast into a
third-order ordinary differential equation that is satisfied by a
generalized hypergeometric function [30,31]. In the absence
of dephasing this model reduces to the Demkov model for non-
crossing energy levels, which has been introduced in the theory
of slow atomic collisions [9,10]. This exponential model still
remains a popular model for effective two-level problems in
quantum metrology [32,33] and quantum simulations [34–36]
because the exponentially decreasing pulse shape allows one
to gradually decrease the field and pass through a quantum
phase transition. Here we report the effects of dephasing on the
transition probabilities, which are highly relevant to quantum
protocols insofar as the latter often have to account for a noisy
environment.

This paper is organized as follows. In Sec. II we define the
dissipative exponential model. In Sec. III we derive the exact
solution of this model in terms of generalized hypergeometric
functions and explore various limiting cases of weak and strong
dephasing and strong field. In Sec. IV we derive and examine
the solution in the case of exact resonance. Finally, in Sec. V
we present a summary.

1050-2947/2015/92(4)/043404(7) 043404-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.043404


ZLATANOV, VASILEV, IVANOV, AND VITANOV PHYSICAL REVIEW A 92, 043404 (2015)

II. DISSIPATIVE EXPONENTIAL MODEL

To be specific, among the variety of two-state systems in
quantum physics we consider a two-state atom with internal
states |1〉 and |2〉 and transition frequency ω0, which interacts
with a laser field with a carrier frequency ωl . We shall use the
language of laser-atom excitation although the results are valid
for any two-level system driven by an external field. There
are many situations when pure dephasing, without population
redistribution (e.g., by spontaneous emission), takes place. An
immediate example is the collective dephasing experienced
by an inhomogeneously broadened atomic ensemble. Such
dephasing takes place in doped solids on the microsecond
scale, while the population lifetimes of metastable levels
used for optical data storage are on the minute scale [37].
Another example is collisional dephasing in atomic vapors,
which is not accompanied by population changes. Yet another
example is the phase fluctuations of the driving field (laser or
microwave), which cause dephasing of the atomic coherence
but no population changes.

In the rotating-wave approximation, the Hamiltonian de-
scribing the laser-atom interaction is given by [1,13]

H(t) = ��(t)

2
σ z + ��(t)

2
σ x, (1)

where σ k (k = x,y,z) are the Pauli matrices, and �(t) = ω0 −
ωl is the system-field detuning. �(t) is the time-dependent
Rabi frequency, which is proportional to the laser-atom
interaction, �(t) = −d · E(t)/�, with d being the transition
electric dipole moment and E(t) the electric field envelope.

We model the time evolution of the density operator ρ

for the two-state system in the presence of dephasing by the
following master equation:

d

dt
ρ(t) = −i[H,ρ] + �

2
(σ zρσ z − ρ), (2)

where � is the constant dephasing rate (� � 0) and T ∗
2 =

1/� is the decoherence time. It is convenient to treat the
dissipative dynamics in terms of the Bloch vector B(t) =
[u(t),v(t),w(t)]T , where

u(t) = 2 Reρ12(t), (3a)

v(t) = 2 Imρ12(t), (3b)

w(t) = ρ22(t) − ρ11(t), (3c)

with ρij (t) = 〈i|ρ(t)|j 〉. The Bloch vector components obey
the Bloch equations [1,13],

d

dt

⎡
⎢⎣

u(t)

v(t)

w(t)

⎤
⎥⎦ =

⎡
⎢⎣

−� −� 0

� −� −�(t)

0 �(t) 0

⎤
⎥⎦

⎡
⎢⎣

u(t)

v(t)

w(t)

⎤
⎥⎦. (4)

Due to its significance in practical applications we consider
only the interval t ∈ [0, + ∞). The Rabi frequency in this
interval and the detuning for the Demkov model are given by

�(t) = �0e
−t/T , � = const. (5)

Here �0 is the peak Rabi frequency, which we assume positive
without loss of generality and T is the characteristic pulse
width. For � = 0, the Bloch equation (4) is solved exactly

and the solution represents the well known Demkov model
[9] introduced in the theory of slow atomic collisions over
50 years ago.

Our objective is to find the population inversion w(+∞) at
t → ∞ for the most common initial conditions at t = 0: the
system initially in the ground state |1〉, or in an equal coherent
superposition of states |1〉 and |2〉.

III. EXACT SOLUTION

A. General solution

We begin by decoupling the equation for the population
inversion w(t) from the Bloch equations (4) by repeated
differentiation and substitution. The result is the linear third-
order ordinary differential equation

...
w + 2(T −1 + �)ẅ + [

(T −1 + �)2 + �2 + �2
0e

−2t/T
]
ẇ

+ �2
0(� − T −1)e−2t/T w = 0, (6)

where an overdot denotes a time derivative. We introduce the
dimensionless parameters

γ = �T

2
, δ = �T

2
, α = �0T

2
, (7)

and we change the independent variable from t to

x(t) = −�(t)2T 2/4 = −α2e−2t/T . (8)

Note that x(0) = −α2 = x0 and x(+∞) = 0. In terms of x,
Eq. (6) is transformed into the generalized hypergeometric
equation [30,31],

x2W ′′′(x) + (b1 + b2 + 1)xW ′′(x)

+ (b1b2 − x)W ′(x) − aW (x) = 0, (9)

with ′ ≡ d/dx, W (x) = w(t(x)), and

a = 1
2 − γ, b1 = 1

2 − γ + iδ, b2 = 1
2 − γ − iδ. (10)

The solution of Eq. (9) is expressed in terms of the
generalized hypergeometric function (GHF) 1F2(a; b1,b2; x)
[not to be confused with the Gauss hypergeometric function
2F1(a1,a2; b; x), which satisfies a second-order differential
equation]. This equation possesses three independent solu-
tions,

f1(x) = 1F2
(

1
2 − γ ; 1

2 − γ − iδ, 1
2 − γ + iδ; x

)
, (11a)

f2(x) = x
1
2 +γ+iδ

1F2
(
1 + iδ; 1 + 2iδ, 3

2 + γ + iδ; x
)
, (11b)

f3(x) = x
1
2 +γ−iδ

1F2
(
1 − iδ; 1 − 2iδ, 3

2 + γ − iδ; x
)
. (11c)

Hence the general solution for the population inversion is

W (x) = Af1(x) + Bf2(x) + Cf3(x), (12)

where A, B, and C are integration constants. We determine
them from the initial conditions,

A = 1

W

∣∣∣∣∣∣∣
W f2 f3

W ′ f ′
2 f ′

3

W ′′ f ′′
2 f ′′

3

∣∣∣∣∣∣∣
, B = 1

W

∣∣∣∣∣∣∣
f1 W f3

f ′
1 W ′ f ′

3

f ′′
1 W ′′ f ′′

3

∣∣∣∣∣∣∣
,

C = 1

W

∣∣∣∣∣∣∣
f1 f2 W

f ′
1 f ′

2 W ′

f ′′
1 f ′′

2 W ′′

∣∣∣∣∣∣∣
, (13)
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where all functions are evaluated at x = x0 = −α2. The
denominator W of the expressions for A, B, and C is the
Wronskian of the three solutions f1, f2, and f3, which is
(see the Appendix)

W{f1(x),f2(x),f3(x)} = −2iδx2(γ−1)[(γ + 1
2 )2 + δ2]. (14)

Of special interest is the value of the population inversion
at t → ∞. Because x(∞) = 0, and in view of Eq. (A5) and
γ � 0, we find that two of the independent solutions vanish in
this limit: f2(0) = f3(0) = 0, while f1(0) = 1. Therefore, at
the end of the interaction (t → ∞) we have

w(∞) = W (0) = A. (15)

This equation is valid for any initial condition. However, the
initial conditions still influence the final population inversion
through the values of W (x) and its derivatives at x0 that are
contained in the coefficient A; see Eq. (13). The values of
the derivatives are readily found from the initial values of the
Bloch vector components U (x0), V (x0), and W (x0), taking into
account the relation ẋ = −2x/T ,

W ′(x0) = V (x0)

α
, (16a)

W ′′(x0) = δU (x0) + (
1
2 − γ

)
V (x0) − αW (x0)

α3
. (16b)

B. System initially in state |1〉
When the system starts in state |1〉 at time t = 0, the Bloch

variables have the initial values U (x0) = V (x0) = 0, W (x0) =
−1. Then, looking back at Eqs. (16), we find W ′(x0) = 0
and W ′′(x0) = 1/α2. We are interested in the population
inversion w(∞) = W (0) at t → ∞ (meaning x = 0); hence
all asymptotics below are derived at this limit. Equations (13),
(14), and (15) give

W (0) = ix
2(1−γ )
0

2δ
[(

γ + 1
2

)2 + δ2
]
∣∣∣∣∣∣∣

−1 f2 f3

0 f ′
2 f ′

3

1/α2 f ′′
2 f ′′

3

∣∣∣∣∣∣∣
x0

, (17)

where the functions f2(x) and f3(x) and their derivatives are
taken at the initial point x0 = −α2.

Now we turn our attention to several limiting cases of
the exact formula (17), which allow us to derive simpler
approximate expressions.

1. Asymptotics for γ � 1

The straightforward way of deriving the asymptotic solution
in the weak-dephasing limit is by expanding Eq. (15) in Taylor
series around γ = 0,

w(∞) ∼ w0(∞) + γ

(
dA

dγ

)
γ=0

+ O(γ 2). (18)

The first term on the right-hand side, w0(∞) = (A)γ=0, gives
the exact solution obtained for zero dephasing [38],

w0(∞) ∼ πα

2 cosh(πδ)

[|J 1
2 −iδ(α)|2 − |J− 1

2 +iδ(α)|2]. (19)

The second term in Eq. (18) does not have a simple compact
form due to the cumbersome derivatives of the GHF with
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FIG. 1. (Color online) Population inversion vs the scaled dephas-
ing rate γ = �T/2 in the weak-dephasing regime, γ � 1. The
interaction parameters are δ = 0.35 and α = 20. The asymptotic
solution (18) is plotted by the dashed curve and the exact solution
(17) is plotted by the solid curve.

respect to its parameters (see the Appendix); it can be
computed by using Eq. (A1).

Figure 1 compares the asymptotic formula (18) to the exact
solution (17) at t → ∞. As expected, the asymptotic formula
is very accurate for small values of γ .

2. Asymptotics for γ � 1

In the limit γ � 1, we first simplify the exact formula (17).
This formula involves the functions f2(x) and f3(x) as well
as their first and second derivatives, all estimated at the initial
point x0 = −α2. In the limit γ � 1 we retain only the leading
terms in γ in the derivatives,

f ′
2(x0) ∼ (

1
2 + γ + iδ

)
x

− 1
2 +γ+iδ

0

× 1F2
(
1 + iδ; 1 + 2iδ, 3

2 + γ + iδ; x0
)
, (20a)

f ′
3(x0) ∼ (

1
2 + γ − iδ

)
x

− 1
2 +γ−iδ

0

× 1F2
(
1 − iδ; 1 − 2iδ, 3

2 + γ − iδ; x0
)
, (20b)

f ′′
2 (x0) ∼ (

1
2 + γ + iδ

)(− 1
2 + γ + iδ

)
x

− 3
2 +γ+iδ

0

× 1F2
(
1 + iδ; 1 + 2iδ, 3

2 + γ + iδ; x0
)
, (20c)

f ′′
3 (x0) ∼ (

1
2 + γ − iδ

)(− 1
2 + γ − iδ

)
x

− 3
2 +γ−iδ

0

× 1F2
(
1 − iδ; 1 − 2iδ, 3

2 + γ − iδ; x0
)
. (20d)

Furthermore, we neglect the term 1/α2 in the determinant
in Eq. (17) because it is associated with products of HGFs,
which have large-γ asymptotics of higher order compared to
the ones associated with the term −1. We thereby obtain

w(∞) ∼ i
f ′′

2 (x0)f ′
3(x0) − f ′′

3 (x0)f ′
2(x0)

2δx
2(γ−1)
0

[(
γ + 1

2

)2 + δ2
] , (21)

and after a simple algebra we find

w(∞) ∼ −∣∣
1F2

(
1 + iδ; 1 + 2iδ, 3

2 + γ + iδ; x0
)∣∣2

. (22)
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FIG. 2. (Color online) Population inversion vs scaled dephasing
rate γ = �T/2 in the strong-dephasing regime (γ � 1). The inter-
action parameters are δ = 0.75 and α = 25. The asymptotic solution
(22) is plotted by the dashed curve and the exact solution (17) is
plotted by the solid curve.

It follows immediately that for large γ the inversion cannot be
positive: w � 0.

A further approximation can be derived from here by using
the power series expansion versus x0 of the HGF involved; it
reads

w(∞) ∼ −1 + α2

γ
− α4

2γ 2
+ α6

6γ 3
− α8

24γ 4
+ · · · . (23)

This expansion is useful for α2 � γ . Not surprisingly, this is
exactly the expansion of the function

w(∞) ∼ −e−α2/γ . (24)

This has to be expected from the general formulas for an
arbitrary Hamiltonian [28,29].

Figure 2 shows a comparison between the asymptotic and
numerical solutions of Eq. (6). The analytic approximation
(22) matches the exact result (17) very closely. As evident,
increasing of the dephasing after a certain value decouples
the system and returns it to the ground state, which is a
manifestation of quantum overdamping [39].

3. Asymptotics for α � 1

In the limit α � 1, we replace the GHFs in Eq. (17) with
their large-argument asymptotics (A8), and find

w(∞) ∼ −α−γ cos
(
2α − 1

2πγ
) ∣∣�(

1
2 + γ + iδ

)∣∣2

√
π�

(
1
2 + γ

) . (25)

In the limit γ → 0 we obtain

w(∞) ∼ − cos(2α)

cosh(πδ)
. (26)

Figure 3 shows a comparison of the asymptotic expansion
(25) and the exact formula (17) in this regime. A nearly perfect
agrement is observed, with the asymptotic and exact results
barely discernible.
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FIG. 3. (Color online) Population inversion vs scaled Rabi fre-
quency α = �0T/2 in the strong-coupling regime (α � 1). The
interaction parameters are δ = 0.1 and γ = 0.3. The asymptotic
solution (25) is plotted by the dashed curve and the exact solution (17)
is plotted by the solid curve; the two curves are nearly indiscernible.

C. System initially in a maximally coherent
superposition of states

Another interesting case, which is of potential significance
in quantum metrology [32], is when the system is prepared
initially in a coherent superposition of the two states. When the
system starts its evolution in the equal coherent superposition
(|1〉 + |2〉)/√2 at time t = 0, the Bloch variables have the
initial values U (x0) = 1, V (x0) = W (x0) = 0. Then Eq. (16)
gives W ′(x0) = 0 and W ′′(x0) = δ/α3. Therefore, Eqs. (13),
(14), and (15) give

w(∞) = i
f2(x0)f ′

3(x0) − f ′
2(x0)f3(x0)

2α3x
2(γ−1)
0

[(
γ + 1

2

)2 + δ2
] . (27)

The asymptotic behavior of this expression for large values of
|x0| = α2 is found from the respective asymptotic expansions
of the GHF f2(x0) and f3(x0) involved; it reads

w(∞) ∼ − sinh(πδ)

πα2γ

∣∣�(
1
2 + γ + iδ

)∣∣2
(α � 1). (28)

For small and large values of the dephasing rate γ this
expression is further simplified to

w(∞) ∼ − tanh(πδ)

α2γ

[
1 + 2γ Re ψ

(
1
2 + iδ

)]
(γ � 1),

(29a)

w(∞) ∼ −2e−2γ

(
γ

α

)2γ

sinh(πδ) (γ � 1). (29b)

Here ψ(z) is Euler’s ψ (digamma) function.
Figure 4 shows a comparison between the asymptotic

formula (28) and the exact formula (27). With the exception of
the small-amplitude oscillations, the asymptotic formula (28)
is very accurate across the range.

IV. EXACT RESONANCE

It is now instructive to investigate the resonant regime of
the dissipative Demkov model, as has been done earlier for the
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FIG. 4. (Color online) Population inversion vs scaled Rabi fre-
quency α = �0T/2 in the range α � 1 in the case when the system
is initially in a coherent superposition of states, w(0) = 0. The other
parameters are γ = 0.3 and δ = 0.2. The asymptotic solution (28) is
plotted by the dashed curve and the exact solution (27) is plotted by
the solid curve.

dissipative Rosen-Zener model [26]. In this simplified case the
Bloch equations take the form

d

dt
u(t) = −�u(t), (30a)

d

dt

[
v(t)

w(t)

]
=

[ −� −�(t)
�(t) 0

][
v(t)

w(t)

]
. (30b)

Now the Bloch equations factorize into a single equation
for the coherence u(t), and a system of two equations for
the remaining components of the Bloch vector v(t) and w(t).
The solution can be derived by reducing Eq. (30b) to a single
second-order differential equation for w(t). However, it can
also be obtained from the general solution in the off-resonance
case derived above.

By setting δ = 0 in Eqs. (11) we find

g1(x) = f1(x)
∣∣
δ=0 = 1F2

(
1
2 − γ ; 1

2 − γ, 1
2 − γ ; x

)
= 0F1

(
; 1

2 − γ ; x
)

= (−x)( 1
2 +γ )/2�

(
1
2 − γ

)
J− 1

2 −γ (2
√−x), (31a)

g2(x) = f2(x)
∣∣
δ=0 = x

1
2 +γ

1F2
(
1; 1, 3

2 + γ ; x
)

= x
1
2 +γ

0F1
(
; 3

2 + γ ; x
)

= (−x)( 1
2 +γ )/2�

(
3
2 + γ

)
J 1

2 +γ (2
√−x). (31b)

Here we have used the relations [30]

1F2(a; a,b; x) = 0F1(b; x) = �(b)(−x)
1−b

2 Jb−1(2
√−x),

(32)

with Jν(z) being the Bessel function of the first kind. At the
initial moment x0 = −α2 we find

g1(x0) = α
1
2 +γ �

(
1
2 − γ

)
J− 1

2 −γ (2α), (33a)

g2(x0) = α− 1
2 −γ �

(
3
2 + γ

)
J 1

2 +γ (2α), (33b)

while at the final moment x = 0 we have

g1(0) = 1, g2(0) = 0, (34)

where we have used the property 0F1(; b; 0) = 1. Therefore,
the solution on resonance reads

W (x) = Dg1(x) + Eg2(x), (35)

with

D =

∣∣∣W (x0) g2(x0)
W ′(x0) g′

2(x0)

∣∣∣
W[g1(x0),g2(x0)]

, (36a)

E =

∣∣∣g1(x0) W (x0)
g′

1(x0) W ′(x0)

∣∣∣
W[g1(x0),g2(x0)]

. (36b)

The Wronskian has the exact value

W[g1(x),g2(x)] = (
γ + 1

2

)
xγ− 1

2 . (37)

In the end on the interaction, at x = 0, the final population
inversion reads

W (0) = Dg1(0) + Eg2(0) = D = x
1
2 −γ

0

γ + 1
2

∣∣∣∣W (x0) g2(x0)

W ′(x0) g′
2(x0)

∣∣∣∣.
(38)

When the system starts its evolution in the ground state |1〉,
we have, according to Eq. (16), W (x0) = −1 and W ′(x0) = 0.
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FIG. 5. (Color online) Population inversion vs scaled dephasing
γ = �T/2 in the weak-dephasing regime (γ � 1) on exact resonance
(δ = 0). The asymptotic solution (40) is plotted by the dashed curve
and the exact solution (39) is plotted by the solid curve. The scaled
Rabi frequency is α = 25.
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FIG. 6. (Color online) Population inversion vs scaled Rabi fre-
quency α = �0T/2 in the large-coupling regime (α � 1) on exact
resonance (δ = 0). The asymptotic solution (42) is plotted by the
dashed curve and the exact solution (39) is plotted by the solid curve.
The two curves are almost indiscernible. The scaled dephasing rate
is γ = 0.6.

Hence

w(∞) = −g′
2(x0)x

1
2 −γ

0

γ + 1
2

= −0F1
(
; 1

2 + γ ; −α2)

= −�
(
γ + 1

2

)
α

1
2 −γ Jγ− 1

2
(2α). (39)

1. Asymptotic behavior for γ � 1

The asymptotics for γ � 1 is derived by using Eq. (39),
and expanding the Bessel function and the pre-factors in Taylor
series versus γ . The result is

w(∞) ∼ − cos(2α) + {cos(2α)[C − Ci(4α) + log(4α)]

− sin(2α)Si(4α}γ. (40)

Here Ci(4α) and Si(4α) are the cosine and sine integrals, while
C = 0.5772 . . . is the Euler’s constant. Figure 5 compares this
approximation with the exact values in this weak-dephasing
regime.

2. Asymptotic behavior for γ � 1

For large γ we expand the HGF in Eq. (39) in power series
versus α, which is rapidly converging for γ � 1 because in
this limit the series turns into a series in α2/γ . The result is
the same as in the nonresonant case, Eqs. (23) and (24).

3. Asymptotic behavior for α � 1

In the limit of large α, we use the well-known asymptotics
of the Bessel function [30] in Eq. (39),

Jν(z) ∼
√

2

πz
cos[z − (2ν + 1)π/4]

(| arg(z)| < π, |z| → ∞). (41)

The asymptotics of the population inversion reads

w(∞) ∼ −�
(
γ + 1

2

)α−γ

√
π

cos(2α − γπ/2). (42)

This approximate formula is compared to the exact values
in Fig. 6. A perfect agreement is observed throughout the entire
range α � 1: the two curves are indiscernible.

V. CONCLUSIONS

In this paper, we have derived and studied the exact
analytic solution of the Bloch equations for a two-state
quantum system driven by an external field of exponential
time dependence in the presence of dephasing process. In the
absence of dephasing this model is the well-known Demkov
model originally introduced in the theory of slow atomic
collisions. Contrary to previous solutions for other models
that considered only the case of exact resonance between the
carrier frequency of the driving field and the Bohr transition
frequency of the system, here we derived the solution in the
general case of arbitrary nonzero detuning. The implication
is that we had to deal with all three Bloch equations that
result in a third-order differential equation for the population
inversion. The solution is expressed in terms of the generalized
hypergeometric function 1F2(a; b1,b2; x). By using the series
expansions and the asymptotics of this function versus its
parameters we have derived the behavior of the population
inversion in various limiting cases of physical interest, such
as weak and strong dephasing, strong driving field, and exact
resonance. The results are of potential interest to a variety of
physical problems involving qubits driven by an external field
in a noisy environment, e.g., in quantum metrology [32,33]
and quantum simulations [34–36].
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APPENDIX: RELEVANT PROPERTIES OF 1 F2(a; b1,b2; x)

For the sake of readers convenience we summarize here
some relevant properties of the generalized hypergeometric
function 1F2(a; b1,b2; x). Further details can be found else-
where [30,31]. The function 1F2(a; b1,b2; x) is introduced as
the power series

1F2(a; b1,b2; x) =
∞∑

k=0

(a)k
(b1)k(b2)k

xk

k!
, (A1)

where it is assumed that none of the parameters b1 and
b2 is a nonpositive integer. Here (a)k , (b1)k , and (b2)k are
Pochhammer symbols defined as (μ)0 = 1 and (μ)k = μ(μ +
1) · · · (μ + k − 1) = (μ + k − 1)!/(μ − 1)!. The power series
of Eq. (A1) converges for all finite values of x and defines
an entire function. The generalized hypergeometric function
1F2(a; b1,b2; x) satisfies the differential equation (9). In the
neighborhood of the origin there are three linearly independent
solutions to this equation. When neither of b1, b2 or b1 − b2

is an integer a fundamental set of solutions to Eq. (9) is given
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by

f1(x) = 1F2(a; b1,b2; x), (A2a)

f2(x) = x1−b1
1F2(a − b1 + 1; 2 − b1,b2 − b1 + 1; x),

(A2b)

f3(x) = x1−b2
1F2(a − b2 + 1; b1 − b2 + 1,2 − b2; x).

(A2c)

In this case, the general solution of Eq. (9) is given by

w(x) = Af1(x) + Bf2(x) + Cf3(x). (A3)

It can be shown [30,31] that the Wronskian of these solutions
is given by

W [f1(x),f2(x),f3(x)] = (b1 − 1)(b2 − 1)(b1 − b2)x−b1−b2−1.

(A4)
Some useful and important formulas could be derived from
the definition (A1). For example,

1F2(a; b1,b2; 0) = 1. (A5)

The derivative of GHF with respect to the independent variable
x reads

dn

dxn 1F2(a; b1,b2; x) = (a)n
(b1)n(b2)n

1F2(a + n; b1 + n,b2 + n; x).

(A6)

The derivatives of GHF with respect to the parameters are
given by

d

da
1F2(a; b1,b2,x)

= −ψ(a)1F2(a; b1,b2,x) +
∞∑

k=0

(a)kψ(k + a)xk

(b1)k(b2)kk!
, (A7a)

d

dbj
1F2(a; b1,b2,x)

= ψ(bj )1F2(a; b1,b2,x) −
∞∑

k=0

(a)kψ(k + bj )xk

(b1)k(b2)kk!
(j = 1,2).

(A7b)

The asymptotic expansion of GHF for |x| � 1 reads

1F2(a; b1,b2; x) ∼ α−2a�(b1)�(b2)

�(b1 − a)�(b2 − a)
[1 + O(α−2)]

+ α2χ�(b1)�(b2)

2
√

π�(a)
cos(πχ + 2α)[1 + O(α−1)], (A8)

where x = −α2 and χ = 1
2 (a − b1 − b2 + 1

2 ).
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