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Masataka Ohmi,1 Oleg I. Tolstikhin,2 and Toru Morishita1,3

1Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofu-ga-oka, Chofu-shi, Tokyo 182-8585, Japan
2Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia

3Institute for Advanced Science, The University of Electro-Communications, 1-5-1 Chofu-ga-oka, Chofu-shi, Tokyo 182-8585, Japan
(Received 2 July 2015; published 2 October 2015)

We investigate a shift of the maximum of photoelectron momentum distributions (PEMDs) produced in
the ionization of a model atom by intense half-cycle and one-cycle circularly polarized pulses. Our analysis
approaches the problem from two complementary directions: by solving the time-dependent Schrödinger equation
(TDSE) and by using the adiabatic theory. The TDSE results show that the maximum is shifted along the ridge
of the PEMD in the polarization plane from the position corresponding to the maximum of the ionizing field
to a later ionization moment. The direction of this longitudinal shift agrees with that observed and discussed
in relation to the attoclock technique. In addition, we found a transverse shift of the maximum resulting from
the fact that the ridge expands in the radial direction from the position predicted by classical mechanics. The
PEMDs obtained from the adiabatic theory are in quantitative agreement with the TDSE results. In particular,
the uniform adiabatic asymptotics closely reproduces the transverse shift of the ridge and partially reproduces
the longitudinal shift of the maximum of the PEMD. The adiabatic theory also yields a simple analytic formula
describing the transverse shift.
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I. INTRODUCTION

Circularly polarized laser pulses complement linearly po-
larized pulses as a tool to generate strong-field phenomena,
providing an alternative perspective to study the underlying
dynamics. One of the main differences stems from the fact
that electrons ionized and driven by a circularly polarized
field do not return to the parent ion, and hence there is no
rescattering [1]. This enables one to observe processes that
otherwise would be masked or contaminated by a signal caused
by rescattering. For example, circular polarization is essential
for accurate measurements of the orientation dependence
of tunneling ionization rates of molecules [2,3]. Circularly
polarized pulses also suggest new experimental schemes for
molecular imaging [4] and new theoretical techniques [5] to
extract molecular structure information from the observable
photoelectron momentum distribution (PEMD). The PEMD
in this case has a donutlike shape [6]. One of the most
striking achievements with circularly polarized pulses in
recent years is the demonstration of an attoclock [7]. The
possibility of improving the time resolution down to a fraction
of the laser period (2.7 fs for λ = 800 nm) results from the
nonuniformity of PEMDs generated by ultrashort few-cycle
pulses in the toroidal direction. Classical mechanics maps the
angular coordinate in this direction to the ionization moment.
In a related experiment [8] a shift of the maximum of the
PEMD from the position corresponding to the maximum of
the ionizing field was observed. Since this feature is important
for the attoclock operation, it has attracted much theoretical
attention [9–12].

In this paper we calculate and analyze PEMDs produced in
the ionization of an atom by intense half-cycle and one-cycle
circularly polarized pulses. The goal and virtue of the work
is threefold. First, we introduce and demonstrate an efficient
scheme to solve the time-dependent Schrödinger equation
(TDSE) capable of treating arbitrary polarization of the laser

field. Our approach is based on a combination of the Lanczos
propagator [13,14] in time, partial-wave expansion in angular
variables, and a finite-element discrete variable representation
(FEDVR) [15–17] in radial coordinate. We believe that this
approach may have advantages over other methods [9,18–20]
in extending calculations for pulses with general elliptic
polarization to stronger fields and lower frequencies. Second,
we compare the TDSE results with the predictions of the
adiabatic theory [21]. The asymptotic formulas for the PEMD
obtained in Ref. [21] apply to any polarization. So far, they
were implemented and validated by calculations only for
linearly polarized pulses. The present work illustrates the
performance of the adiabatic theory in the circular polarization
case. Third, armed by the numerical results and analytical
approximations based on the adiabatic theory we investigate
the topography of the PEMD in the polarization plane. We
focus on the positions of a nearly circular ridge of the PEMD
and its global maximum along the ridge. The very short
duration of the pulses considered (in terms of the number of
optical cycles) is explained by the wish to make these features
distinct and avoid their distortion by interference structures.
We find that in addition to a longitudinal shift of the maximum
along the ridge similar to the one observed in Ref. [8], there is
also a transverse shift caused by the fact that the ridge expands
in the radial direction with respect to its position predicted by
classical mechanics. There exist controversial opinions [9–12]
regarding the effect of the Coulomb tail of the atomic potential
on the longitudinal shift. For definiteness, in this work we
exclude this effect by considering a model atom described by
a finite-range potential. The adiabatic theory analysis of the
shifts of the maximum of the PEMD yields the main physical
results of this work.

The paper is organized as follows. Section II introduces
our model. In Sec. III we outline our numerical method to
solve the TDSE. Only the general scheme of the method
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is discussed in the main text, more technical details are
deferred to the appendixes. Appendix A defines the Radau and
Lobatto quadratures. Appendix B describes the construction
of the FEDVR radial basis. Appendix C details the present
implementation of the R-matrix method to construct scattering
states conjugate with the procedure to solve the TDSE. In
Sec. IV the problem is treated in the framework of the
adiabatic theory [21]. Here we summarize basic equations
of the theory needed to calculate the PEMD in the present
model (Sec. IV A), discuss some aspects of their numerical
implementation (Sec. IV B), and develop analytical approxi-
mations describing the main features of the PEMD in focus
here (Sec. IV C). In Sec. V, we present and discuss illustrative
numerical results. Section VI concludes the paper.

II. MODEL

We consider an electron interacting with a spherically
symmetric atomic potential V (r) and an electric field F(t) of
an intense low-frequency laser pulse. The TDSE in the dipole
approximation and length gauge reads (atomic units are used
throughout)

i
∂ψ(r,t)

∂t
= H (t)ψ(r,t), (1)

where

H (t) = − 1
2� + V (r) + F(t)r. (2)

To exclude the effect of the Coulomb tail of the potential on
the features of the PEMD discussed below, in this paper we
consider a screened Coulomb potential,

V (r) = −exp[−(r/10)2]

r
. (3)

The same model was used to illustrate the adiabatic theory in
Ref. [21]. This potential supports three s and two p bound
states; the lowest d state appears as a narrow resonance. The
electron is assumed to be initially in the ground 1s state whose
energy E0 = −0.485 483 is slightly higher than that in the
purely Coulomb potential. The corresponding eigenfunction
is denoted by φ0(r), so the initial condition for Eq. (1) is

ψ(r,t → −∞) = φ0(r)e−iE0t . (4)

The field is presented in the form F(t) = F (t)e(t), where
F (t) � 0 is the field strength and e(t) is the polarization vector
satisfying e2(t) = 1. We consider pulses propagating along the
y axis with circular polarization in the (x,z) plane,

e(t) = ex sin ωt + ez cos ωt. (5)

The function F (t) is modeled by

F (t) = F0 exp[−(2t/T )2]. (6)

Thus a pulse is characterized by its amplitude F0, angular
frequency ω, and duration T . The PEMD is defined by

P (k) = |I (k)|2, I (k) = 〈ψ (−)
k |ψ(t → ∞)〉, (7)

where I (k) is the ionization amplitude and ψ
(−)
k (r) is the

scattering out eigenstate of the field-free Hamiltonian with
the asymptotic momentum k normalized by 〈ψ (−)

k |ψ (−)
k′ 〉 =

(2π )3δ(k − k′) [22,23].

III. NUMERICAL SOLUTION OF THE TIME-DEPENDENT
SCHRÖDINGER EQUATION

We have developed an efficient numerical scheme to solve
Eq. (1) for arbitrary polarization of the laser field. Our
approach is based on a combination of the Lanczos method
for propagation in time, partial-wave expansion in angular
variables, and a FEDVR for treating the radial coordinate.
The main advantage of this approach is that it ensures fast
convergence and thus enables one to control the accuracy of
the results. Here we briefly outline the scheme; more technical
details are given in Appendixes A–C.

The time propagator is constructed by the Lanczos method
[13,14]. The propagation of the state vector from t to t + δt

through a small time step δt is approximated by

|ψ(t + δt)〉 ≈ exp [−iH (t)δt]|ψ(t)〉. (8)

The error of this approximation scales as δt2, but for prop-
agation through the whole time interval it becomes of order
δt3, provided that F(t → ±∞) = 0. To evaluate the right-hand
side of Eq. (8), we introduce a Krylov subspace spanned by
the states

|Qi(t)〉 = Hi−1(t)|ψ(t)〉, i = 1, . . . ,K, (9)

and an orthonormal basis in this subspace |qi(t)〉 generated by
the Gram-Schmidt process,

|Q′
i(t)〉 = |Qi(t)〉 −

i−1∑
j=1

|qj (t)〉〈qj (t)|Qi(t)〉, (10a)

|qi(t)〉 = |Q′
i(t)〉√〈Q′

i(t)|Q′
i(t)〉

. (10b)

The right-hand side of Eq. (8) is approximated by its projection
onto the Krylov subspace and expanded in terms of the basis,

exp [−iH (t)δt]|ψ(t)〉 ≈
K∑

i=1

Ai(t,δt)|qi(t)〉. (11)

The error of this approximation scales as δtK . To find the
expansion coefficients, we diagonalize the Hamiltonian in the
Krylov subspace by solving the eigenvalue problem

K∑
j=1

[〈qi(t)|H (t)|qj (t)〉 − λk(t)δij ]Zjk(t) = 0. (12)

The coefficients in Eq. (11) are given in terms of the
eigenvalues λk(t) and the eigenvectors Zjk(t) by

Ai(t,δt) =
K∑

k=1

Zik(t)e−iλk(t)δtZk1(t). (13)

We have analyzed the convergence of this procedure with
respect to the time step δt and the dimension of the Krylov
subspace K . Our strategy is to maximize δt under the condition
that the error incurred by Eq. (8) remains negligible, and then
to achieve convergence in Eq. (11) by increasing K . One could
expect that this can be done with K ∼ 2, since in this case the
error terms in Eqs. (8) and (11) have the same order in δt , but
our calculations show that the convergence of Eq. (11) requires
K 	 1. In this situation there is no sense in trying to reduce
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the error term in Eq. (8) by increasing its order in δt , which
justifies our use of the simplest form of the time propagator
in this equation. The Hamiltonian matrix in Eq. (12) is real
and tridiagonal [13,14], so even for large K this equation can
be easily solved by using standard linear algebra packages.
The most time consuming part in implementing Eq. (11) is the
construction of the states (9).

To facilitate the calculations in Eq. (9), we adopt a matrix-
vector representation for the operators and states involved
provided by the partial-wave expansion and the radial FEDVR
based on the Radau and Lobatto quadratures [15–17] (see
Appendixes A and B). Equation (1) is solved in a spherical
box of radius rm. The time-dependent wave function ψ(r,t) =
〈r|ψ(t)〉 is sought in the form

ψ(r,t) =
N∑

n=1

L∑
l=0

l∑
m=−l

Cnlm(t)
n(r)Ylm(r̂), (14)

where 
n(r), n = 1, . . . ,N , are the FEDVR basis functions
orthonormal in the interval r ∈ [0,rm], Ylm(r̂) are the spher-
ical harmonics, and L is the maximum angular momentum
included in the calculations. Substituting Eq. (14) into Eq. (9),
we arrive at simple algebraic equations defining the states
|Qi(t)〉 in terms of the coefficients Cnlm(t). For example, for
i = 2 we obtain

〈
nYlm|Q2(t)〉 =
∑
n′l′m′

Hnlm,n′l′m′ (t)Cn′l′m′(t), (15)

where the Hamiltonian matrix is

Hnlm,n′l′m′(t) = 〈
nYlm|H (t)|
n′Yl′m′ 〉. (16)

The explicit form of this matrix is given in Appendix B. The
FEDVR provides a high rate of convergence with respect to the
dimension N of the radial basis. An additional advantage of
this representation is that the Hamiltonian matrix is nearly
block diagonal and very sparse with only a few percent
of nonzero elements, so the matrix-vector multiplications in
Eq. (9) can be efficiently implemented.

The initial state φ0(r) in Eq. (4) is obtained by diagonalizing
the field-free Hamiltonian in the same FEDVR basis. The
scattering states ψ

(−)
k (r) are given by [22,23]

ψ
(−)
k (r) = 4π

L∑
l=0

l∑
m=−l

ile−iδl fkl(r)Y ∗
lm(k̂)Ylm(r̂). (17)

Here fkl(r) is the regular solution of the radial equation
[

− 1

2r2

d

dr
r2 d

dr
+ l(l + 1)

2r2
+ V (r) − k2

2

]
fkl(r) = 0 (18)

satisfying the asymptotic boundary condition

fkl(r � rm) = jl(kr) cos δl − yl(kr) sin δl, (19)

where jl(x) and yl(x) are the spherical Bessel functions [24]
and δl is the partial-wave phase shift. We solve Eq. (18) using
the R-matrix method; for further details see Appendix C.
The scattering states are thus obtained at the same FEDVR
radial quadrature points rn as used in solving Eq. (1), so the
integration in Eq. (7) can be easily carried out. The working

formula for calculating the PEMD is

P (k) =
∣∣∣∣4π

N∑
n=1

L∑
l=0

l∑
m=−l

i−leiδl

×
√

�nCnlm(t → ∞)fkl(rn)Ylm(k̂)

∣∣∣∣
2

, (20)

where �n are the FEDVR quadrature weights and the values
of fkl(rn) are given in Eq. (C12).

This numerical scheme is characterized by relatively few
parameters, namely, the time step δt , the dimension of the
Krylov subspace K , the radius of the spherical box rm,
and the numbers of partial waves L and the FEDVR basis
functions N in the expansion (14). For each laser pulse
considered below, we have varied all the parameters to achieve
convergence of the PEMD. Their typical values used in the
calculations are δt = 0.01, K = 1000, rm = 300, N = 700,
and L = 120. We mention that this scheme can be readily
generalized to potentials with a Coulomb tail as well as to
molecular potentials without spherical symmetry, provided
that the partial-wave expansion converges.

IV. ADIABATIC THEORY

Let T0 be the characteristic time of the laser field in
Eq. (1). For pulses defined by Eqs. (5) and (6) we have T0 =
min(T ,2π/ω). Let �E be the energy spacing between the
initial state and the nearest eigenstate of the unperturbed atom.
In the present model �E is close to the ionization potential
|E0| = �2/2. Then the adiabatic parameter ε = 2π/�ET0

gives the ratio of the atomic and laser field time scales.
Small values of this parameter correspond to the adiabatic
regime. The adiabatic theory amounts to the asymptotic
solution of Eq. (1) for ε → 0. This theory was developed for
finite-range potentials and arbitrary polarization of the laser
field in Ref. [21]. The second key parameter of the theory
ξ = F0�/�E characterizes the strength of the laser field. The
adiabatic approximation holds under the condition

ε � min(ξ 2,1). (21)

Thus the asymptotics is uniform in ξ , that is, the theory applies
to weak (underbarrier, ξ � 1) as well as strong (overbarrier,
ξ � 1) fields, provided that ε is sufficiently small.

The adiabatic theory as the asymptotics defined above can
be compared with other theories in the field that rely on
the adiabatic approximation. These are the Keldysh theory
[25] and its developments in Refs. [26,27], modifications
of the Keldysh theory proposed by Faisal [28] and Reiss
[29] and known as the strong-field approximation (SFA),
and some further extensions of the SFA in Refs. [30,31].
Let us mention three main differences; for more details see
Refs. [21,32]. First, in contrast to the Keldysh theory and
SFA, the adiabatic theory takes into account the interaction
with the laser field in the initial state. This interaction leads to
the Stark shift and depletion of the initial state—the effects
that become important for sufficiently long and/or intense
pulses. Second, the adiabatic theory fully takes into account
the interaction with the atomic potential in the final state. This
leads to the appearance of the exact scattering amplitude in the
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asymptotics of the PEMD, while in the SFA the scattering
characteristics can appear only in the Born approximation
[30]. Third, the adiabatic theory can treat arbitrarily strong
fields under the condition (21), while the Keldysh theory and
SFA in the tunneling regime in spite of the name of the latter
approximation apply only to weak fields satisfying ε � ξ � 1
[21]. Thus the adiabatic theory is quite different from the
Keldysh theory and its extensions.

The adiabatic theory yields the asymptotic solution of
Eq. (1) from which all the observables can be deduced. In
particular, the PEMD was obtained in Ref. [21]. In this section
we summarize formulas needed to calculate the PEMD in
the present model (Sec. IV A), discuss their implementation
(Sec. IV B), and analyze the topography of the PEMD in the
polarization plane (Sec. IV C). The latter analysis yields results
that are in the focus of the present study.

A. Photoelectron momentum distribution

In the adiabatic theory [21] the ionization amplitude in
Eq. (7) is obtained in the form I (k) = Ia(k) + Ir (k), where
the two terms represent the adiabatic and rescattering parts,
respectively. The derivation of the adiabatic part is based
on the assumption that after ionization the electron does not
interact with the atomic potential V (r) and its further motion is
driven only by the field. The rescattering part accounts for this
interaction. Its contribution is appreciable (and even becomes
dominant in certain regions of the photoelectron momentum
space) only if the ionized electron returns back and hits the
region of localization of V (r). However, this does not happen
for circularly polarized pulses, so in the present study we
neglect Ir (k) and consider only Ia(k). This amplitude is given
by [21]

Ia(k) = eiπ/4(2π )1/2
∑

i

A0(�k+
⊥; t+i )

F 1/2(t+i )

× exp

[
iS(t+i ,k) − is0(t+i ) − i�k+3

‖
3F (t+i )

]
. (22)

The notation here are defined in terms of quantities of two
kinds, quantum and classical. The quantum quantities are the
properties of the Siegert state (SS) in a static electric field
F = F e [33–35] originating from the initial bound state of the
unperturbed atom. For spherically symmetric potentials they
are functions of the field strength F only and do not depend on
its direction e. Equation (22) involves the complex SS energy
eigenvalue E0(F ) and the transverse momentum distribution
(TMD) amplitude A0(k⊥; F ), where k⊥ is orthogonal to e.
These functions can be calculated for any complex F using
the program developed in Ref. [33]; their behavior for the
present potential (3) is discussed and illustrated in Ref. [21].
They should be taken at the instantaneous value of the field
F (t), and thus become functions of time denoted by E0(t) =
E0(F (t)) and A0(k⊥; t) = A0(k⊥; F (t)). From Eq. (6) we have
E0(t → ±∞) = E0. The quantum action in Eq. (22) is

s0(t) = E0t +
∫ t

−∞
[E0(t ′) − E0] dt ′. (23)

The second term here accounts for both the accumulation of
an additional phase by the initial state due to the Stark shift

and its depletion via tunneling or over-the-barrier ionization.
The classical quantities are expressed in terms of the velocity
for a reference classical electron trajectory in the field F(t),

v(t) = −
∫ t

−∞
F(t ′) dt ′, v(t → ∞) = v∞. (24)

The classical action in Eq. (22) is

S(t,k) = 1

2
k2t − 1

2

∫ ∞

t

[
u2

i (t ′,k) − k2
]
dt ′, (25)

where

ui(t,k) = k − ka(t) (26)

and

ka(t) = v∞ − v(t). (27)

The vector ui(t,k) gives the initial velocity with which an
electron driven by the field should start its motion at moment
t to have the final velocity at t → ∞ equal to k. This
velocity turns to zero at k = ka(t), therefore a curve Ka in
the photoelectron momentum space traced by the end of ka(t)
as t varies along the real axis represents the classical support of
the PEMD. Since dka(t) = F(t)dt , the field F(t) is tangential
to the curve Ka at the point k = ka(t). The quantum and
classical quantities meet in the saddle-point equation defining
the moments of ionization for a given k,

1
2 u2

i (t,k) − E0(t) = 0 → t = t±i (k), (28)

where the subscript i enumerates the solutions. The solutions
appear in pairs lying in the upper (+) and lower (−) halves of
the complex time plane [see Eq. (33) below]. The summation
over i in Eq. (22) includes all physically meaningful solutions
in the upper half plane; for brevity, we have omitted the
argument of t+i (k). In the adiabatic regime the length of Ka is
O(ε−1) and the PEMD P (k) is localized in a narrow pipelike
neighborhood Ka of Ka of width O(ε0). Then each k ∈ Ka

can be presented in the form

k = ka(t+i ) + �k+, �k+ = �k+
‖ e(t+i ) + �k+

⊥, (29)

where the parallel and perpendicular components of �k+ refer
to the direction of e(t+i ). From Eqs. (26) and (29) we have
ui(t

+
i ,k) = �k+, thus �k+

‖ and �k+
⊥ give the longitudinal and

transverse components of the initial velocity of an electron at
the moment of ionization t+i with respect to the instantaneous
direction of the electric field. Note that �k+ is generally
complex, since t+i is complex. This defines the remaining
notation in Eq. (22).

Equation (22) gives the asymptotics of Ia(k) for ε → 0 that
is uniform in ξ . If the limit ε → 0 is considered for a fixed ξ ,
then this asymptotics can be simplified and takes the form [21]

Ia(k) = eiπ/4(2π )1/2
∑

i

A0(�k⊥; ti)

F 1/2(ti)
exp [iS(ti ,k) − is0(ti)].

(30)
Here the moments of ionization are defined by

e(t)ui(t,k) = 0 → t = ti(k), (31)

and the summation runs over all physically meaningful
solutions to this equation. Similarly to Eq. (29), each k ∈ Ka
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can be presented in the form

k = ka(ti) + �k⊥. (32)

Now the initial velocity at the moment of ionization ui(ti ,k) =
�k⊥ is real and orthogonal to e(ti). In the adiabatic regime the
different solutions of Eq. (31) lie at a distance O(ε−1) from
each other. In this case there exists a correspondence between
the solutions of Eqs. (28) and (31) for the same i: t±i can be
found at a distance O(ε0) from ti and are given by [21]

t±i = ti ± i
[�k2

⊥ − 2E0(ti)]1/2

F (ti)
+ O(ε1). (33)

Equation (30) is the leading-order term in the expansion of
Eq. (22) in the difference t+i − ti (which amounts to the
expansion in ε; see Sec. IV C). As seen from Eq. (33), this
difference becomes large for sufficiently weak fields. In this
case the approximation employed in the step from Eq. (22)
to Eq. (30) does not hold, but Eq. (22) remains applicable,
provided that the condition (21) is satisfied. In the following,
we call Eqs. (22) and (30) the uniform and simple asymptotics
of Ia(k), respectively.

B. Saddle points

To implement Eqs. (22) and (30) one needs to solve the
saddle-point equations (28) and (31), respectively. It should
be understood that these equations generally have infinitely
many solutions in the complex t plane, but only few of them
are physically meaningful and should be included in the sums
in Eqs. (22) and (30). This issue deserves a discussion.

To find the physical saddle points for a given photoelectron
momentum k, one should consider only the real solutions of
Eq. (31). Such solutions can be easily found by plotting the
left-hand side of Eq. (31) as a function of t . For each solution
ti(k), one should try to find the corresponding solution t+i (k)
of Eq. (28). We do this by the Newton-Raphson method with
ti(k) used as the initial guess. Equation (33) approximately
predicts the location of t+i (k). To proceed by the Newton-
Raphson iterations from ti(k) to t+i (k) the left-hand side of
Eq. (28) should be analytically continued along the path. The
continuation of the first term does not cause any problems
since the field F(t) is known analytically and the velocity v(t)
defined by Eq. (24) is a single-valued function that can be easily
calculated for any complex t . The continuation of E0(t) is less
straightforward. As explained above, the SS energy eigenvalue
E0(F ) becomes a function of time E0(t) by substituting F =
F (t). The function E0(F ) is a branch of a multivalued function
E(F ) whose different branches correspond to the different
SSs. To select the branch corresponding to the given initial
state one has to cut the complex F plane along some lines
emanating from each branch point connecting the initial state
with other SSs. We found many such branch points for the
present model located in the fourth quadrant of the F plane;
similar branch points for the Coulomb potential were found
in Ref. [36]. The images of the branch cuts in the t plane
can be met in the analytic continuation of E0(t) from ti(k) to
t+i (k). If this happens, the Newton-Raphson iterations should
be terminated. Because if they are continued through the cut
and eventually converge to a solution of Eq. (28), this solution

FIG. 1. (Color online) The argument (in units of π ) of the left-
hand side of Eq. (28) as a function of complex time for a half-cycle
pulse with F0 = 0.07, ω = 0.063, and T = 50, hence v0 = 1.13,
calculated at (a) k/v0 = (−0.18, − 0.71), (b) k/v0 = (−0.58, −
0.89), and (c) k/v0 = (−0.89, − 0.71). The saddle points ti(k) and
t+
i (k) defined by Eqs. (31) and (28) are shown by solid and open

circles, respectively. Arrows connect the corresponding saddle points
according to Eq. (33). Hatched stripes indicate branch cut regions of
the Siegert-state energy E0(t), where −π/2 � arg F (t) � −π/3. In
all three cases, only t1(k) and t+

1 (k) are physical saddle points.

should be deemed unphysical, since it belongs to a different
branch of E(F ).

Let us illustrate this discussion by calculations for one of
the pulses treated in Sec. V. Figure 1 shows the argument of
the left-hand side of Eq. (28) as a function of complex time for
three representative values of the photoelectron momentum k.
The solutions of Eq. (28) can be clearly seen in the plot as
origins of the lines where the argument jumps by 2π . For this
pulse T = 50, so the field strength (6) as a function of real t

is well localized in the interval −40 � t � 40 considered in
Fig. 1. The number of the solutions of Eq. (31) in this interval
depends on k. Figure 2 shows regions in the k space where
Eq. (31) has one, two, and three solutions in the specified
interval.

Before we proceed, let us comment on the notation. For the
present polarization (5) the vectors (24) and (27), and hence
the classical support Ka of the PEMD, lie in the (kx,kz) plane
which is parallel to the polarization plane. In the calculations
reported below we set ky = 0 and consider PEMDs only in
this plane. Then it is convenient to omit the y component of all
the vectors and simply write k = (kx,kz), etc. In addition, to
bring PEMDs for the different pulses to a common scale in the
k space, it is convenient to measure momenta in units of the
characteristic velocity v0 = F0/ω. We thus have v∞ = (0,v∞),
where

v∞ = −
√

π

2
ωT exp

[
− ω2T 2

16

]
v0. (34)

The curve Ka is shown by the white line in Fig. 2; it begins at
k = v∞ (t → −∞, left end) and ends at k = (0,0) (t → +∞,
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FIG. 2. (Color online) For the same pulse as in Fig. 1, Eq. (31) has
one, two, and three real solutions ti(k) in the interval −40 � t � 40
in the blue, green, and red regions of the (kx,kz) plain, respectively.
The white line shows the classical support Ka of the PEMD given
by the trace of ka(t) as t varies along the real axis. The solid white
circle indicates the point ka(0) corresponding to the maximum of
the ionizing field. The shaded area indicates the region where the
condition |�k+

⊥/�k+
‖ | � 0.8 is satisfied [see Eqs. (29)]; only inside

this region the uniform adiabatic results are calculated. The PEMD
for this pulse is shown in Fig. 4.

right end). This explains the format of Fig. 2 and the PEMD
plots to follow.

Returning to Fig. 1, the values of E0(F ) at complex F

used to make this plot were calculated in two steps. First,
we calculate E0(F ) along the ray arg F = 0, by starting from
the energy E0 of the unperturbed initial state at F = 0 and
making small steps in |F |, thus ensuring the continuity of
the function E0(F ). Second, we continue E0(F ) from the
ray arg F = 0 by small steps in arg F to a given complex
point F . Only the sector | arg F | � π/2 is considered; further
continuation is accomplished by substituting F → −F , which
implies simultaneous change of the sign of e. Using this
procedure, the branch points discussed above are found in the
sector −π/2 � arg F � −π/3. The image of this sector in the
complex t plane calculated using Eq. (6) is shown by hatched
stripes in Fig. 1; these stripes are called the branch cut regions.
The upper panel in Fig. 1 illustrates the case when Eq. (31)
has three solutions in the interval −40 � t � 40. For t1 there
exists the corresponding solution of Eq. (28) belonging to the
same branch E0(F ) of the SS energy eigenvalue. For t2 and t3
there also exist the corresponding solutions of Eq. (28) near the
locations predicted by Eq. (33), but these solutions belong to
different SSs since they are separated from t2 and t3 by branch
cut regions. In this case there is only one pair of physical saddle
points, t1 and t+1 . The middle panel in Fig. 1 shows the case
when Eq. (31) has two solutions in the specified interval. The
pair t1 and t+1 is physical, while the pair t3 and t+3 is unphysical
and should not be included in the sums in Eqs. (30) and (22).
Note that in this case there exists another unphysical solution
t+2 of Eq. (28) that has no counterpart among the real solutions
of Eq. (31). The bottom panel in Fig. 1 shows the case when
Eq. (31) has one solution. Again, the saddle points t1 and t+1
are physical, while t+2 and t+3 are unphysical. In this way we
conclude that for the present pulse Eqs. (28) and (31) have
only one pair of physical solutions indicated by t1 and t+1 in
the figure for all values of k. Let the region adjacent to the real
time axis and bounded from above by the branch cut regions

be called the physical time sheet. Then the above discussion
can be simply summarized as follows: only the solutions of
Eqs. (28) and (31) that appear together with their counterpart
defined by Eq. (33) on the physical time sheet represent the
physically meaningful saddle points that should be included
in the sums in Eqs. (22) and (30).

There is an additional technical issue arising in the
calculations of the saddle points that should be mentioned.
As k moves away from Ka , the decomposition of �k+ in
Eqs. (29) into its parallel and perpendicular components with
respect to e(t+i ) loses its meaning. In other words, Eq. (22)
applies only in the vicinity of Ka . This is consistent with the
fact that in the adiabatic regime the PEMD P (k) is localized
near the curve Ka . In our calculations, we use the empirical
criterion |�k+

⊥/�k+
‖ | � 0.8 to define the region in the k space

where Eq. (22) applies. For the pulse discussed above, this
region is shown by the shaded area in Fig. 2; only in this
region the uniform asymptotics (22) is implemented. The
simple asymptotics (30) can be calculated for any �k⊥ in
Eq. (32).

C. Topography of the photoelectron momentum distribution

Here we investigate the structure of the distribution P (k)
characterized by the region of its localization and topography.
In particular, we analyze the positions of the ridge of the PEMD
in the (kx,kz) plane and its global maximum along the ridge. In
the adiabatic regime these features are essentially determined
by the TMD amplitude A0(k⊥; F ), the other factors in Eqs. (22)
and (30) are less important. The behavior of this function can
be understood from its weak-field asymptotics [37] which for
the present model is given by

A0(k⊥; F ) = eiπ/4 2πC

�1/2
exp

(
− �3

3F
− �k2

⊥
2F

)
, (35)

where C = re�rφ0(r)|r→∞ ≈ 3.832. The ionization rate
�0(F ) = −2 Im[E0(F )] in the same approximation is [37,38]

�0(F ) =
∫

|A0(k⊥; F )|2 dk⊥
(2π )2

= πC2F

�2
exp

(
− 2�3

3F

)
.

(36)
When Eq. (35) is substituted into Eqs. (22) and (30), its
exponent should be combined with the exponents in these
equations. We are not interested in the oscillatory structure of
P (k) that may result from an interference of the contributions
from the different saddle points, only in the shape of its
envelope. Then it is sufficient to consider only the real part
of the resulting exponent.

We begin with the simple asymptotics (30). In this case the
real part is

− �3

3F (ti)
− 1

2

∫ ti

−∞
�0(t) dt − ��k2

⊥
2F (ti)

, (37)

where �0(t) = �0(F (t)). It is convenient to consider the
moment of ionization ti and the initial electron velocity �k⊥
as “curvilinear coordinates” in the region of localization Ka

of the PEMD longitudinal and transverse with respect to its
classical support Ka . The last term in Eq. (37) shows that
P (k) as a function of �k⊥ attains a maximum at �k⊥ = 0,
that is, when k belongs to Ka . Thus P (k) has a ridge along
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Ka (see the white line in Fig. 2). The width of this ridge in
�k⊥ is determined by that of the TMD amplitude and in the
weak-field case is ∼√

F (ti)/�. The first and second terms
in Eq. (37) represent the instantaneous ionization rate and
survival probability, respectively. Their balance determines the
position of the global maximum of P (k) along the ridge. Let us
temporarily neglect depletion. Then the maximum is attained
when ti = 0, which corresponds to the maximum of the field
(6), and is located at k = ka(0). This point is shown by the
white circle in Fig. 2. Taking into account depletion shifts the
maximum to an earlier ionization moment ti < 0 defined by
Ḟ (ti)/F 2(ti) = 3�0(ti)/2�3 (here and in the following, dots
denote differentiation with respect to time), that is, to the left
of the white circle in Fig. 2 along the line Ka . If the shift of
the maximum in k space is small, it can be found analytically
and for the present pulse is given by

−3F 2
0 T 2�(F0)

16�3
ez. (38)

To see whether this shift is significant, the coefficient of ez

should be compared with v0. This coefficient grows with T

and may become ∼v0 for sufficiently strong fields and long
pulses. However, since �(F0) rapidly varies with F0 and is
exponentially small for weak fields, the actual value of the shift
is very sensitive to the field amplitude. A shift of the maximum
of the PEMD from the maximum of the ionizing field caused
by depletion was seen in calculations for circularly polarized
pulses [18]. A similar shift exists in the linear polarization case
[21].

We now turn to the uniform asymptotics (22). As mentioned
above, Eq. (30) gives the leading-order term in the expansion
of Eq. (22) for ε → 0. To analyze the difference between the
two asymptotics and its effect on the topography of the PEMD,
we extend the expansion to the first-order terms. To this end,
we need to extend the expansion (33),

t+i − ti = δ0 + δ1 + O(ε2), (39a)

δ0 = i
F (ti )

[�k2
⊥ − 2E0(ti)]1/2 = O(ε0), (39b)

δ1 = 1
F (ti )

[
Ė0(ti )
F (ti )

− 1
2δ2

0Ḟ (ti)+ 1
2δ0ė(ti)�k⊥

]
= O(ε1).

(39c)

The leading-order term δ0 here agrees with Eq. (33). Let
the exponents in Eqs. (22) and (30) (not including the TMD
amplitude) be denoted by iS+

i and iSi , respectively. We have

S+
i − Si =

∫ t+i

ti

[
1

2
u2

i (t,k) − E0(t)

]
dt − �k+3

‖
3F (t+i )

. (40)

Using Eqs. (39) we obtain

S+
i − Si = �1 + O(ε2), (41a)

�1 = F (ti)δ2
0

[
Ė0(ti )
2F (ti )

− 5
24δ2

0Ḟ (ti)− 2
3δ0ė(ti)�k⊥

]

= O(ε1). (41b)

Note that the terms O(ε0) in Eq. (41a) cancel, as expected.
To see the effect of this difference on the position of the ridge

of P (k), it should be expanded near Ka up to linear terms in
�k⊥. In addition, since the analytic expression for the TMD
amplitude (35) is available only in the weak-field case, the
weak-field approximation should be used also in Eq. (41b).
We thus obtain

�1 = �3

F 2(ti)

[
− 5�Ḟ (ti)

24F (ti)
+ 2i

3
ė(ti)�k⊥

]
. (42)

Similar expansion for the exponent from Eq. (35) in Eq. (22)
is

− �3

3F (t+i )
− ��k+2

⊥
2F (t+i )

=
[

− �3

3F (ti)
− ��k2

⊥
2F (ti)

]

+ i�4Ḟ (ti)

3F 3(ti)
+ �3

2F 2(ti)
ė(ti)�k⊥ + O(ε2). (43)

The bracket here is the exponent of the TMD amplitude in
Eq. (30), and the following terms represent the first-order
difference we seek. Combining together all these expansions,
for the real part of the resulting exponent in Eq. (22) we again
obtain Eq. (37) where, however, the �k⊥ in the last term is
replaced by

�k⊥ + �2ė(ti)

6F (ti)
. (44)

Note that the second term on the right-hand side cannot be
obtained simply by expanding �k+

⊥ from Eq. (29), since it
absorbed also the last term from Eq. (42). The ridge of P (k)
is now located where the vector (44) turns to zero. Let us
introduce

k+
a (t) = ka(t) − �2ė(t)

6F (t)
, (45)

and let K+
a denote a curve in the k space traced by the end

of k+
a (t). This curve gives the new position of the ridge.

For circularly polarized pulses ė(ti) is orthogonal to e(ti),
points inwards the curve Ka , and its length is equal to ω [see
Eq. (5)]. Thus K+

a is expanded from Ka in the radial direction
outwards by �2ω/6F (t). The first two terms in Eq. (37) remain
unchanged in the first order in ε, so there is no an additional
shift of the global maximum of P (k) along the ridge.

Summarizing, the simple asymptotics (30) predicts that
the PEMD has a ridge along the curve Ka and its global
maximum is shifted along the ridge from the momentum
ka(0) corresponding to the maximum of the field to earlier
ionization times. This longitudinal shift is caused by depletion
and approximately given by Eq. (38). The uniform asymptotics
(22) predicts that the ridge of the PEMD is shifted from Ka in
the transverse direction outwards and is located along the curve
K+

a . In the first order in ε, the transverse shift is described by
the second term in Eq. (45). No additional longitudinal shift
appears in this order.

V. RESULTS AND DISCUSSION

In this section we present numerical results for PEMDs
obtained from Eq. (7) by solving the TDSE (1) and by
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FIG. 3. (Color online) PEMD P (kx,ky = 0,kz) for a half-cycle
pulse with F0 = 0.07, ω = 0.079, and T = 40. For this pulse v0 =
0.90. Panel (a) and solid (black) lines in (d): TDSE results. Panel
(b) and dashed (red) lines in (d): uniform adiabatic approximation,
Eq. (22). Panel (c) and dotted (blue) lines in (d): simple adiabatic
approximation, Eq. (30). The uniform and simple adiabatic results
are multiplied by 1.39 and 1.78, respectively. Solid white lines in (a),
(b), and (c) show the classical support Ka of the PEMD given by the
trace of ka(t), Eq. (27). Solid white circles indicate the position of
ka(0) corresponding to the maximum of F (t). Dashed white lines in
(a) and (b) show the shifted ridge K+

a given by the trace of k+
a (t),

Eq. (45). Solid black circles indicate the actual position of the global
maximum of the distribution. Panel (d) shows cuts of the PEMDs
through the point ka(0); the vertical dotted lines in the left and right
subpanels indicate the position of kaz(0) and kax(0), respectively. The
survival probability is 0.990.

implementing the uniform (22) and simple (30) asymptotic
formulas of the adiabatic theory [21]. The PEMDs are
calculated for ky = 0 and considered in the (kx,kz) plain. To
avoid a distortion of the topography of the distribution P (k)
by interference effects, we consider ultrashort half-cycle and
one-cycle pulses defined by Eqs. (5) and (6) with frequencies
and durations related by ωT = π and 2π , respectively. In all
the cases, the saddle-point equations (28) and (31) have only
one physical solution, so the sums in Eqs. (22) and (30) contain
only one term. The peak pulse intensity is given in terms of the
field amplitude by I = cF 2

0 /4π . We consider pulses with two
amplitudes, F0 = 0.1/

√
2 ≈ 0.07 (I = 3.51 × 1014 W/cm2)

and F0 = 0.1 (I = 7.02 × 1014 W/cm2), both below the
critical field Fc ≈ 0.12 giving a boundary between tunneling
and over-the-barrier ionization for the present model [21].

We first consider half-cycle pulses with ωT = π . In this
case v∞/v0 ≈ −1.502 and ka(0)/v0 = (−0.832, − 0.751).
Two parameter sets are treated: T = 40, hence ω = π/40 ≈
0.079 (λ ≈ 580 nm), and T = 50, hence ω = π/50 ≈ 0.063
(λ ≈ 725 nm). The calculations are done for four pulses
obtained by combining these two frequencies with the two
field amplitudes indicated above. The results are presented in
Figs. 3–6. We are interested in both the absolute magnitude

and the shape of the distribution P (k). The magnitude is
characterized by the value of P (k) at its maximum. To facilitate
the comparison of the shapes of the different results for the
same pulse, the adiabatic results are multiplied by constant
factors to make their values at the maximum equal to that of
the TDSE results; these factors are given in captions to the
figures.

All the main features to be observed are seen already
in Fig. 3. The TDSE results are shown in Fig. 3(a). The
maximum (solid black circle) of the PEMD is shifted from
ka(0) (solid white circle). This shift can be decomposed into
the longitudinal and transverse components with respect to Ka

(solid white curve). In the longitudinal direction, the maximum
is shifted to the right, that is, to a later ionization moment with
respect to the maximum of the field. The direction of this
shift is opposite to that of the depletion shift (38) and agrees
with the direction of a shift observed in Ref. [8]. We mention
that the depletion shift is very small for all four pulses under
consideration; the TDSE results for the probability to survive
in the initial state are given in captions to the figures. The very
existence of the longitudinal shift for the present finite-range
potential is in contradiction with the conclusions of Ref. [12].
In addition to the longitudinal shift there exists a transverse
shift. The ridge of the PEMD in Fig. 3(a) is clearly shifted
from Ka outwards; its position is fairly well reproduced by K+

a

(dashed white curve). The open red circle seen in the upper
right corner of Fig. 3(a) is a true physical feature representing
a narrow 3d resonance supported by the potential (3); this
feature is beyond our current interest and we do not discuss it
here; for more details see Ref. [21]. The uniform and simple
adiabatic results are shown in Figs. 3(b) and 3(c), respectively.
The present pulse corresponds to the largest ω and the smallest
F0 among the four half-cycle pulses considered, which is
least favorable for the adiabatic approximation [see Eq. (21)].
The uniform and simple asymptotics underestimate the value
of P (k) at its maximum by 28% and 44%, respectively.
Thus the uniform asymptotics works better. It also gives a
better prediction for the shape of the distribution P (k). In
particular, the ridge of the PEMD in Fig. 3(b) is shifted from
Ka outwards and well described by K+

a . The maximum of
the PEMD has also a longitudinal shift in the right direction,
but its magnitude is noticeably smaller than the longitudinal
shift in Fig. 3(a). The ridge of the simple adiabatic results in
Fig. 3(c) coincides with Ka and the maximum of the PEMD
almost coincides with ka(0), since depletion is negligible.
Let us emphasize that Eq. (45) defining K+

a gives only an
approximation for the true position of the ridge of the uniform
adiabatic results valid up to terms of the first order in ε. The
accurate numerical implementation of the uniform asymptotics
(22) is in much better agreement with the TDSE results than
Eq. (45). This is seen in Fig. 3(d), which shows the horizontal
(left subpanel) and vertical (right subpanel) cuts of the three
PEMDs through the point ka(0). The longitudinal shifts of
the maxima of the TDSE (solid black lines) and uniform
adiabatic (dashed red lines) results can be clearly seen in the
left subpanel. The right subpanel shows a perfect agreement
between the corresponding transverse shifts. The cuts of the
simple adiabatic PEMD (dotted blue lines) peak at ka(0).

Figure 4 shows similar results for a pulse with the same
amplitude as in Fig. 3 but 20% lower frequency. All the
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FIG. 4. (Color online) Same as in Fig. 3, but for a half-cycle
pulse with F0 = 0.07, ω = 0.063, and T = 50, hence v0 = 1.13. The
uniform and simple adiabatic results are multiplied by 1.18 and 1.53,
respectively. The survival probability is 0.987.

features discussed above remain qualitatively unchanged, but
the quantitative agreement between the TDSE and adiabatic
results becomes better. The uniform and simple asymptotics
underestimate the value of P (k) at its maximum by 15%
and 35%, respectively. The longitudinal shift of the uniform
adiabatic results is now closer to that of the TDSE results.
The transverse shift seen in the right subpanel of Fig. 4(d)
is again perfectly reproduced. The ridges of the TDSE and
uniform adiabatic PEMDs are located closer to the curve K+

a .
Figure 5 shows results for a pulse with the same frequency as

FIG. 5. (Color online) Same as in Fig. 3, but for a half-cycle
pulse with F0 = 0.1, ω = 0.079, and T = 40, hence v0 = 1.27. The
uniform and simple adiabatic results are multiplied by 1.24 and 1.00,
respectively. The survival probability is 0.867.

FIG. 6. (Color online) Same as in Fig. 3, but for a half-cycle
pulse with F0 = 0.1, ω = 0.063, and T = 50, hence v0 = 1.59. The
uniform and simple adiabatic results are multiplied by 1.12 and 0.98,
respectively. The survival probability is 0.836.

in Fig. 3 but 41% larger amplitude. The uniform asymptotics
underestimates the value of P (k) at its maximum by 19%,
which is slightly larger than the error in Fig. 4, while the
simple asymptotics perfectly reproduces the correct value.
Such a difference in the behavior of the uniform and simple
adiabatic results is explained by the fact that although both
approximations converge to the TDSE results as ω → 0, the
rate of their convergence depends on F0 and is different for
the two asymptotics. The longitudinal shift in Fig. 5(b) is
smaller than that in Fig. 5(a). Figure 6 shows results for the last
half-cycle pulse considered. The field amplitude in this pulse
is larger and the frequency is smaller compared to Fig. 3, both
changes being favorable for the adiabatic approximation. The
uniform asymptotics underestimates the value of P (k) at its
maximum by 11%, while the simple asymptotics overestimates
it by 2%. The uniform asymptotics closely reproduces the
shape of the PEMD as well as the positions of its ridge and
maximum, as is seen from the cuts in Fig. 6(d). A small
longitudinal depletion shift (to the left in the figure) of the
maximum of the simple adiabatic results can be noticed in the
left subpanel.

In the half cycle pulses discussed above, we have varied
the amplitude and frequency of the pulse, keeping its shape
unchanged. To explore the modification of the reference
PEMD shown in Fig. 3 in one more direction, we consider
a one-cycle pulse with the same amplitude and frequency
as in Fig. 3, but with T = 80, hence ωT = 2π . For this
pulse v∞/v0 ≈ −0.472 and ka(0)/v0 = (−1.282, − 0.236).
The results are shown in Fig. 7. The uniform and simple
asymptotics underestimate the value of P (k) at its maximum
by 10% and 39%, respectively. Both the longitudinal and
transverse shifts are present in the TDSE and uniform adiabatic
results. The agreement between these results is almost as good
as in Fig. 6, better than for the half-cycle pulse in Fig. 3.
We recall that Fig. 7(a) is obtained by solving the TDSE,
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FIG. 7. (Color online) Same as in Fig. 3, but for a one-cycle
pulse with F0 = 0.07, ω = 0.079, and T = 80, hence v0 = 0.90. The
uniform and simple adiabatic results are multiplied by 1.11 and 1.64,
respectively. The survival probability is 0.979.

Eq. (1), while Fig. 7(b) is calculated by implementing an
analytical formula, Eq. (22). This level of agreement between
the TDSE and adiabatic results within 10% is consistent with
Ref. [21]. It illustrates the performance of the adiabatic theory
for circularly polarized pulses. We mention that the SFA is
known to reproduce, at best, only the shape of the PEMD, but
not its magnitude. For example, the TDSE and SFA results
for circularly polarized pulses reported in Ref. [9] differ by
orders of magnitude. Moreover, the SFA does not reproduce
any longitudinal or transverse shift.

To conclude the discussion of Figs. 3–7, we note that the
shifts of the maximum of the PEMD from ka(0) in both
directions with respect toKa seen in the TDSE results decrease
as F0 grows and/or ω decreases. Such a behavior of the
transverse shift is in agreement with Eq. (45). This observation
is also consistent with the general prediction of the adiabatic
theory that only the depletion shift survives in the limit ε → 0.

The extension of the present TDSE calculations to lower
frequencies is possible, but becomes rather time consuming.
On the other hand, the implementation of the uniform
asymptotics (22) becomes easier as ω decreases, because the
saddle points defined by Eq. (28) become better separated
and it is easier to find them. Taking into account the good
performance of Eq. (22) already for the pulses considered, this
equation can be used instead of the TDSE in calculations for
lower frequencies. In the deep adiabatic limit, when ω → 0
for a fixed value of ωT , the uniform asymptotics converges
to the simple asymptotics (30) whose implementation is even
easier. It is instructive to illustrate the convergence of the two
asymptotics. This is done in Figs. 8 and 9. Here we consider
half-cycle pulses with ω = π/100 ≈ 0.031 (λ ≈ 1450 nm)
and ω = π/200 ≈ 0.015 (λ ≈ 2900 nm), in both cases ωT =
π . The agreement between the uniform and simple adiabatic
results rapidly improves as ω decreases and for the pulse in
Fig. 9 it becomes virtually perfect. Note that, except for the
uniform results shown in Fig. 8(a), there appears a depletion
shift (to the left in the figures) of the maximum of the
PEMD, while the transverse shift becomes negligible, as seen
in the right subpanels in Figs. 8(c) and 9(c). Thus Eq. (30)
provides an ultimate theoretical tool for extending strong-field
physics from the near-infrared through mid-infrared [39] to
the terahertz [40] range.

VI. CONCLUSIONS

We have introduced and demonstrated an efficient method
to solve the TDSE for arbitrary polarization of the laser
field. The method has a high rate of convergence and ensures
high accuracy of the results. We believe this method may
be advantageous in extending the current calculations for
pulses with general elliptic polarization [9,18–20] to higher
intensities and lower frequencies. We have also implemented
the adiabatic theory [21] for circularly polarized pulses and
compared its predictions with the TDSE results. The uniform
and simple adiabatic asymptotics are shown to converge to
the TDSE results and to each other on the quantitative level
as the pulse frequency decreases. This validates both our
numerical method and the adiabatic theory for the circular
polarization case; for linearly polarized pulses, the theory

FIG. 8. (Color online) PEMD P (kx,ky = 0,kz) for a half-cycle pulse with F0 = 0.1, ω = 0.031, and T = 100, hence v0 = 3.18. Panel (a)
and dashed (red) lines in (c): uniform adiabatic approximation, Eq. (22). Panel (b) and dotted (blue) lines in (c): simple adiabatic approximation,
Eq. (30). The results are not multiplied by any factor. Solid white lines in (a) and (b) show the classical support Ka of the PEMD given by the
trace of ka(t), Eq. (27). Solid white circles indicate the position of ka(0) corresponding to the maximum of F (t). Solid black circles indicate
the actual position of the global maximum of the distribution. Panel (c) shows cuts of the PEMDs through the point ka(0); the vertical dotted
lines in the left and right subpanels indicate the position of kaz(0) and kax(0), respectively. The survival probability is 0.699.
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FIG. 9. (Color online) Same as in Fig. 8, but for a half-cycle pulse with F0 = 0.1, ω = 0.015, and T = 200, hence v0 = 6.37. The survival
probability is 0.488.

has been tested by calculations in Ref. [21]. On the basis
of these technical developments we investigated a shift of the
maximum of PEMDs generated by half-cycle and one-cycle
pulses. The shift in the TDSE results can be decomposed into
the longitudinal and transverse components with respect to the
ridge of the PEMD in the polarization plane. The longitudinal
component shifts the maximum from the position correspond-
ing to the maximum of the ionizing field to later ionization
times. This agrees with the direction of the longitudinal shift
observed in Ref. [8]. In addition, we found a transverse shift
that results from the fact that the ridge of the PEMD expands
in the radial direction outwards from its position determined
by classical mechanics. The uniform adiabatic approximation
closely reproduces the transverse shift. It also predicts some
longitudinal shift in the right direction whose magnitude,
however, is in less convincing agreement with the TDSE
results. The simple adiabatic approximation accounts only for
the depletion part of the longitudinal shift whose direction
is opposite to that observed in Ref. [8] and does not predict
any transverse shift. Only the depletion shift survives in the
deep adiabatic regime, all the other contributions to the shift
are caused by nonadiabatic effects. By expanding the uniform
asymptotics near the simple asymptotics up to terms of the first
order in the adiabatic parameter ε, we obtained an analytic
formula (45) describing the transverse shift which is shown
to be in good agreement with the numerical results. But no
new longitudinal shift in addition to that caused by depletion
appears in this order. The latter conclusion, although negative,
is a rigorous statement within the adiabatic theory.

The transverse shift of the ridge of the PEMD found in the
present numerical calculations and described by the adiabatic
theory is a feature that one should take into account in the
analysis of experimental results. Since the shift is inversely
proportional to the field amplitude, see Eq. (45), by measuring
it one can find the field intensity. The shift also depends on the
ionization potential, so tunneling ionization from inner orbitals
produces donutlike contributions to the PEMD of larger radii.
In principle, this may enable one to separate electrons ionized
from the different orbitals, which is not possible with linearly
polarized pulses, although averaging over the focal volume
may hinder such a separation.
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APPENDIX A: RADAU AND LOBATTO QUADRATURES

Similarly to the Gauss-Legendre quadrature, the Gauss-
Radau and Gauss-Lobatto quadratures [41] approximate the
integral of a smooth function f (x) over the interval x ∈
[−1,1],

∫ 1

−1
f (x)dx ≈

N∑
i=1

ωif (xi), (A1)

where xi and ωi are the quadrature points and weights,
respectively. In the Legendre case, the xi and ωi are defined
by the requirement that Eq. (A1) becomes exact when f (x) is
a polynomial of degree 2N − 1 or less. This approach can
be generalized to the case when n � N quadrature points
have fixed positions in the interval. The remaining N − n

quadrature points and all the weights can then be defined by
requiring that Eq. (A1) is exact for polynomials of degree not
higher than 2N − 1 − n. The Radau quadrature corresponds
to n = 1 with the fixed quadrature point at the right end of
the interval, xN = 1. The other quadrature points are the zeros
of [PN (x) − PN−1(x)]/(1 − x), where Pn(x) are the Legendre
polynomials [24]. The corresponding weights are given by

ωi = 1 + xi

N2P 2
N−1(xi)

. (A2)

The Lobatto quadrature corresponds to n = 2 with fixed
quadrature points at both ends of the interval, x1 = −1
and xN = 1. The other quadrature points are the zeros of
dPN−1(x)/dx and the corresponding weights are

ωi = 2

N (N − 1)P 2
N−1(xi)

. (A3)

For an arbitrary interval of integration x ∈ [a,b], these quadra-
ture points and weights are modified as

xi → b + a

2
+ b − a

2
xi, ωi → b − a

2
ωi. (A4)
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APPENDIX B: FINITE-ELEMENT DISCRETE VARIABLE
REPRESENTATION

The FEDVR approach amounts to the finite-element (FEM)
method [42] combined with a discrete variable representation
(DVR) [43–45] used inside the elements. Equation (1) is
considered in a finite spherical box of radius rm. To construct
the FEDVR radial basis, the interval r ∈ [0,rm] is divided
into Ns sectors, 0 = r̄0 � . . . r̄s � · · · � r̄Ns

= rm. Inside each
sector r ∈ [r̄s−1,r̄s], s = 1, . . . ,Ns , the Np-point DVR basis is
introduced,

πs
i (r) = 1√

ωs
i

Np∏
j=1
j �=i

r − rs
j

rs
i − rs

j

, (B1)

where rs
i and ωs

i , i = 1, . . . ,Np, are the corresponding quadra-
ture points and weights. The DVR basis functions have the
property

πs
i

(
rs
j

) = δij /

√
ωs

i . (B2)

To connect the neighboring sectors within the FEM method
they must have a quadrature point at their common boundary.
To satisfy this requirement, we use the Radau quadrature with a
quadrature point at the right end of the sector, in the first sector
(s = 1), and the Lobatto quadrature with quadrature points at
both ends of the sector, in subsequent sectors (s > 1). These
quadratures are defined in Appendix A. The collection of all
quadrature points rn is enumerated by

n = (s − 1)(Np − 1) + i; (B3)

their total number is N = Ns(Np − 1) + 1. The associated
weights �n and the global FEDVR basis functions 
n(r) are

defined as follows. For n = (s − 1)(Np − 1) + Np with s =
1, . . . ,Ns − 1, which corresponds to quadrature points at the
boundaries between sectors, we set �n = ωs

Np
+ ωs+1

1 and


n(r) = 1√
�n

⎧⎨
⎩

√
ωs

Np
πs

Np
(r), r ∈ [r̄s−1,r̄s],√

ωs+1
1 πs+1

1 (r), r ∈ [r̄s ,r̄s+1].
(B4)

This function bridges the sectors s and s + 1 and is continuous
through the boundary between them (but its derivative is not).
For the other values of n, corresponding to quadrature points
inside sectors and the one at the outer boundary rN = rm of
the box, we set �n = ωs

i and


n(r) = πs
i (r), r ∈ [r̄s−1,r̄s]. (B5)

Thus constructed FEDVR basis satisfies


n(rn′) = δnn′/
√

�n. (B6)

Using this property and the quadrature rn, �n, n = 1, . . . ,N ,
for any smooth function f (r) we obtain

∫ rm

0

n(r)f (r)
n′(r) dr ≈ f (rn)δnn′ . (B7)

In particular, this shows that the FEDVR basis is orthonormal
in the interval r ∈ [0,rm]. Thus the main properties of a DVR
[43–45] given by Eqs. (B6) and (B7) are preserved.

The functions 
n(r)Ylm(r̂) provide an orthonormal basis
in the spherical box r � rm. The matrix elements of the
Hamiltonian (2) in this basis defined by Eq. (16) are given by

Hnlm,n′l′m′ (t) =
[
Knn′ +

(
l(l + 1)

2r2
n

+ V (rn)

)
δnn′

]
δll′δmm′ + F (t)rnδnn′(Slm,l′m′ sin ωt + Clm,l′m′ cos ωt). (B8)

The radial kinetic energy matrix is

Knn′ = 1

2rnrn′

N∑
k=1

�k

d
n(r)

dr
r2 d
n′ (r)

dr

∣∣∣∣
r=rk

, (B9)

where the derivatives of the FEDVR basis functions can be found using

dπs
i (r)

dr

∣∣∣∣
r=rs

j

= 1√
ωs

i

⎧⎨
⎩

1
rs
i −rs

j

∏Np

k=1
k �=i,j

rs
j −rs

k

rs
i −rs

k

, i �= j,

1
2

([
πs

i

(
rs
Np

)]2 − [
πs

i

(
rs

1

)]2)
, i = j.

(B10)

The surface term arising from the integration by parts in the derivation of Eq. (B9) is omitted, which amounts to the R-matrix
boundary condition for the solution of Eq. (1) at r = rm. The matrices Clm,l′m′ and Slm,l′m′ in Eq. (B8) are given by angular
integrals and can be expressed in terms of the 3j symbols. For the present polarization (5) of the laser pulse we have

Slml′m′ = 〈Ylm| sin θ cos ϕ|Yl′m′ 〉

= (−1)m
√

(2l + 1)(2l′ + 1)

2

(
l 1 l′
0 0 0

)[(
l 1 l′

−m −1 m′

)
−

(
l 1 l′

−m 1 m′

)]
, (B11a)

Clml′m′ = 〈Ylm| cos θ |Yl′m′ 〉

= (−1)m
√

(2l + 1)(2l′ + 1)

(
l 1 l′
0 0 0

)(
l 1 l′

−m 0 m′

)
. (B11b)
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APPENDIX C: R-MATRIX METHOD FOR
SCATTERING STATES

To facilitate the calculation of the projection in Eq. (7), the
scattering states (17) must be calculated at the same radial
quadrature points as used in the solution of Eq. (1). This
can be achieved by using the R-matrix method [46] to solve
Eq. (18). Let us consider the eigenvalue problem in the sth
sector (r̄s−1 � r � r̄s),[

−1

2

d

dr
r2 d

dr
+ l(l + 1)

2
+ r2V (r) + Ls − r2Ēn

]
f̄nl(r) = 0,

(C1)

where the Bloch operator [47]

Ls = 1

2
r2[δ(r − r̄s) − δ(r − r̄s−1)]

d

dr
(C2)

is introduced to Hermitize the Hamiltonian within the sector.
The solutions are expanded in terms of the appropriate (Radau
or Lobatto) DVR basis in the sector,

f̄nl(r) =
Np∑
j=1

c
(l)s
jn πs

j (r), n = 1, . . . ,Np. (C3)

The expansion coefficients are obtained by solving the alge-
braic eigenvalue problem

Np∑
j=1

K̄ij c
(l)s
jn +

[
l(l + 1)

2
+ r2

i V (ri) − r2
i Ēn

]
c

(l)s
in = 0, (C4)

where the Hermitized kinetic energy operator (including the
Bloch operator) is given by

K̄ij = 1

2

Np∑
k=1

ωs
k

dπs
i (r)

dr
r2

dπs
j (r)

dr

∣∣∣∣
r=rs

k

. (C5)

The solutions of Eq. (18) can be obtained in the form of a
spectral expansion in terms of the eigensolutions of Eq. (C1),

fkl(r) = 1

r2

Np∑
n=1

f̄nl(r)

Ēn − E

∫ r̄s

r̄s−1

f̄nl(r)Lsfkl(r) dr

= 1

2r2

Np∑
n=1

f̄nl(r)

Ēn − E

[
f̄nl(r̄s)dkl(r̄s)r̄

2
s

− f̄nl(r̄s−1)dkl(r̄s−1)r̄2
s−1

]
, (C6)

where E = k2/2 and dkl(r) = dfkl(r)/dr . The R matrix
(which is a number for the present one-channel problem) is
defined by

fkl(r) = Rkl(r)dkl(r). (C7)

Its propagation from r̄s−1 to r̄s through the sth sector is carried
out by means of the relation [48]

Rkl(r̄s) = Rs,s − Rs,s−1[Rs−1,s−1 + Rkl(r̄s−1)]−1Rs−1,s ,

(C8)

where

Rs,s ′ = 1

2

Np∑
n=1

f̄nl(r̄s)f̄nl(r̄s ′)

Ēn − E
. (C9)

Starting with the initial condition Rkl(0) = 0 and propagating
the R matrix through Ns sectors, we obtain Rkl(rm) at the
matching radius. By matching the solution to the asymptotic
form Eq. (19) we find the scattering phase shift,

δl = arctan

[
jl(kr) − Rkl(r) djl (kr)

dr

yl(kr) − Rkl(r) dyl (kr)
dr

]
r=rm

. (C10)

Once δl is obtained, the derivatives dkl(r̄s) at the sector
boundaries are propagated backwards from r̄Ns

= rm to r̄0 = 0
using the relations

dkl(r̄Ns
) =

[
djl(kr)

dr
cos δl − dyl(kr)

dr
sin δl

]
r=rm

,

(C11a)

r̄2
s−1dkl(r̄s−1) = [Rkl(r̄s−1) + Rs−1,s−1]−1

×Rs−1,s r̄2
s dkl(r̄s). (C11b)

Using this together with Eqs. (C3) and (C6), we obtain the
normalized solutions of Eq. (18) at the FEDVR quadrature
points,

fkl(rn) = 1

2
√

ωs
i r

s
i

2

Np∑
n=1

c
(l)s
in

Ēn − E

×
⎡
⎣ c

(l)s
Npn√
ωs

Np

r̄2
s dkl(r̄s) − c

(l)s
1n√
ωs

1

r̄2
s−1dkl(r̄s−1)

⎤
⎦, (C12)

where the subscript n on the left-hand side is given in terms of
the i and s appearing on the right-hand side by Eq. (B3).
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itrovski, M. Abu-samha, C. P. J. Martiny, and Lars Bo-
jer Madsen, Photoelectron angular distributions from strong-
field ionization of oriented molecules, Nat. Phys. 6, 428
(2010).

[5] I. Petersen, J. Henkel, and M. Lein, Signatures of Molecular
Orbital Structure in Lateral Electron Momentum Distributions

043402-13

http://dx.doi.org/10.1038/nature00787
http://dx.doi.org/10.1038/nature00787
http://dx.doi.org/10.1038/nature00787
http://dx.doi.org/10.1038/nature00787
http://dx.doi.org/10.1103/PhysRevLett.98.243001
http://dx.doi.org/10.1103/PhysRevLett.98.243001
http://dx.doi.org/10.1103/PhysRevLett.98.243001
http://dx.doi.org/10.1103/PhysRevLett.98.243001
http://dx.doi.org/10.1103/PhysRevLett.108.183001
http://dx.doi.org/10.1103/PhysRevLett.108.183001
http://dx.doi.org/10.1103/PhysRevLett.108.183001
http://dx.doi.org/10.1103/PhysRevLett.108.183001
http://dx.doi.org/10.1038/nphys1666
http://dx.doi.org/10.1038/nphys1666
http://dx.doi.org/10.1038/nphys1666
http://dx.doi.org/10.1038/nphys1666


MASATAKA OHMI, OLEG I. TOLSTIKHIN, AND TORU MORISHITA PHYSICAL REVIEW A 92, 043402 (2015)

from Strong-Field Ionization, Phys. Rev. Lett. 114, 103004
(2015).

[6] C. Smeenk, L. Arissian, A. Staudte, D. M. Villeneuve, and
P. B. Corkum, Momentum space tomographic imaging of
photoelectrons, J. Phys. B 42, 185402 (2009).

[7] P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte, M.
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