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Double ionization of helium by proton impact: A generalized-Sturmian approach
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We present ab initio calculations for the double ionization of helium by fast proton impact, using
the generalized-Sturmian-functions methodology and within a perturbative treatment of the projectile-target
interaction. The cross-section information is extracted from the asymptotic behavior of the numerical three-body
function that describes the emission process. Our goal is to provide benchmark first-order Born fully differential
cross sections with which one may investigate the suitability of transition matrices calculated using approximate
analytic-type solutions for the double continuum (the choice of effective charges or effective momenta to partially
account for the internal target interactions being, to some extent, arbitrary). We also provide fully differential cross
sections for the low-ejection-energy regime, which is beyond the suitable range of such perturbative methods.
We find, however, that the effective momentum approach allows one to get at least a rough characterization of
the most dominant physical process involved. We also compare our calculations with the only available relative
experimental set, showing an agreement in shape that can be well understood within the given momentum transfer
regime.
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I. INTRODUCTION

The double ionization of helium by charged-particle impact
constitutes an intricate four-body Coulomb problem, appre-
ciably more complex than in the case of impact by photons.
This is due to the, in principle, two-center interaction between
the projectile and the target. If the projectile is positively
charged, the collision can lead to the capture of one of the
target electrons and the ionization of the other one. However,
this process is several orders of magnitude less probable than
ordinary single or double ionization (DI), particularly for pro-
jectiles on the order of 1–10 MeV/amu [1]. In this contribution
we focus on proton-impact ionization of helium within the
high-incident-energy regime for which the capture process can
be disregarded. The most basic mechanisms which produce
DI, called shake-off (SO), two-step-1 (TS1) and two-step-2
(TS2) [2], were studied with approximate descriptions of both
the helium ground state and the double continuum [3,4]. The
TS1 process implies a collision between the projectile and
one of the target electrons, which subsequently impacts the
other one, and both end up being ejected to the continuum.
In the TS2 mechanism, the projectile hits the two target
electrons successively and kicks them out of their parent core.
Another mechanism, called two-step-1-elastic (TS1EL) in
Ref. [3], contemplates a further collision between the projectile
and the electron ejected via the electron-electron interaction
after the first impact. Processes TS2 and TS1EL require two
projectile-target Born interactions.

The majority of previous works, both theoretical and
experimental, discussed integrated cross sections [5–10]. To
a lesser extent, fully differential cross sections (FDCS),
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which provide the most detailed information of the double-
ionization process, have also been investigated experimentally
and theoretically [3,4,11,12]. For the case of electron impact
several FDCS measurements under different emission energies
and momentum transfer regimes have been carried out by the
Orsay and Heidelberg groups (restricted to fast projectiles; see
Refs. [13–16]); many theoretical studies have been dedicated
to interpreting these data (a nonexhaustive list of references
is given in the introduction of our most recent publica-
tions [17,18] on the topic). In comparison, much less frequent
are differential cross-section measurements for proton impact.
The one reported by Fischer et al. [11] is the only experimental
data set that provides a fully differential cross section, while
previous works [5–8] have measured total cross sections and
double-to-single ionization ratios. In Ref. [11], the authors
report that one week was required to observe 200 000 double-
ionization events, enough to produce FDCS. A set of multiply,
but not fully, differential cross-section measurements, along
with their theoretical counterparts, was published in Ref. [3]
for double ionization of helium by very fast (6 MeV) protons,
in addition to a comparison of their calculations with one of
the kinematic configurations from Ref. [11].

On the theoretical side, the collision of charged projectiles
with helium atoms constitutes a full four-body problem which
poses a formidable challenge. If the projectile is fast enough,
its interaction with the target can be considered a perturbation,
with the projectile experiencing a single deflection. While
the resulting three-body problem is still challenging enough,
there exists nowadays a variety of numerical schemes that
can solve it from first principles in a time-dependent [9,10]
or time-independent fashion [19–22]. Other approaches use
approximate analytical three-body functions, mostly based on
the 3C (also named C3 or BBK) wave function [23,24] which
is asymptotically correct when all three particles are far from
each other. Quite a number of variants of the 3C function have
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been proposed in the literature; they all aim to improve the
3C function by including extra physical information, thereby
extending its range of validity. One way to achieve this is
by introducing effective charges which, although with some
restrictions, are largely arbitrary. Effective charges allow one to
better account for intratarget interactions as well as projectile-
target ones beyond the first Born approximation (FBA). The
comparison of calculated cross sections, in particular FDCS,
with either experimental or benchmark ab initio theoretical
data then provides an instrument to point out which set is more
physically sound for given kinematical conditions. While such
approximate analytical three-body functions generally provide
only qualitative descriptions, they are often good enough to
analyze and identify the dominant collisional mechanisms.
Fully numerical approaches, in turn, provide, in principle,
exact solutions, but the interpretation of the resulting cross
sections is less straightforward. One has to infer which
mechanics come into play just by analyzing the cross sections.

For the double ionization of helium by electron impact,
thorough comparisons between theoretical and experimental
FDCS, on the one hand, and between fully numerical and
approximate analytical calculations, on the other hand, have
been presented in the literature (see, e.g., the recent studies
in Refs. [17,18] and references therein). In contrast, very little
has been done for proton impact. This paper aims to contribute
to filling that gap.

We calculate FDCS with a Sturmian approach based on
generalized Sturmian functions (GSF) [22,25]. The spectral
method has been shown to deal successfully with three-body
scattering problems, as illustrated recently through the study
of the double ionization of helium by photons [26] or by
fast electrons [17,18]. The GSF method can generate both
the target bound state and its scattering function with, in
principle, arbitrary numerical accuracy. Here, we apply it
to study the fast proton-helium double-ionization process: in
chosen kinematical conditions we provide, within the FBA,
benchmark FDCS with three goals in mind. First, we want
to compare our FDCS with those presented in the recent
theoretical investigations based on perturbative methods using
approximate analytical three-body wave functions [4,12].
Second, we wish to identify the collisional processes and
contrast them with those of the better-known electron-impact
counterpart. Third, we want to find out if a fully numerical
treatment within the FBA is able to reproduce the main features
observed in the experiments reported in [11].

López et al. [12] made a thorough investigation of fast
proton-helium FDCS under a variety of kinematical con-
ditions. They demonstrated a great degree of variation in
the calculated cross sections when using different analytical
final-state continuum functions (3C and variants including
effective charges). They also showed that the target bound-state
description affects the FDCS palpably. The same authors fur-
ther tackled the problem with an approach involving effective
momenta [4]. In this second study, the obtained cross sections
present structures that vary slowly with the ejection angles, a
trend, to some degree, analogous to that observed for electron
impact [16,18,27]. By providing FDCS with our GSF method,
we wish to evaluate the success of these perturbative schemes.

Recall that the 3C continuum function is valid when the
particles are moving away from each other quickly and/or

are far apart. There is therefore a particular niche for which
the perturbative methods are not well suited: low emission
energies. To explore this regime, we have performed GSF
calculations considering a total excess energy of 6 eV, with the
equal-energy-sharing case, (3 + 3) eV, as well as the unequal
configuration, (1.5 + 4.5) eV. The purpose here is twofold.
First, we explore these kinematical conditions with a reliable
method to establish the physical processes that come into play
when the two electrons are emitted very slowly. Second, our
benchmark results can be used to test the quality of effective
charges intended to extend the validity of the 3C function
to the low-energy domain. By no means do we intend to
disqualify the perturbative approaches. On the contrary, we
regard them as complementary to ab initio methods, each
exploring adequately different kinematical ranges.

Since there is a lot of variation, even within the first-order
Born model, from one perturbative model to the next, we are
not considering in the present work any second-order Born
interactions of the projectile with the target atom. An interested
reader can find second-order studies in Refs. [3,28,29]. For
this contribution we consider it a priority to establish first
the first-order Born ground properly. To this order, valid
for fast projectiles, the phenomenon of electronic capture
is not incorporated in the calculations, either numerical or
perturbative. Thus, only the effects of the well-known two-
step-1 and shake-off mechanisms are expected to be observed
in the calculated FDCS.

The rest of the paper is arranged as follows. In Sec. II we
begin by outlining the theoretical framework on which our
calculations are based. Section III, dedicated to the results,
is divided in three subsections. The first one is devoted to a
comparison of the GSF results with those obtained with the
effective charges and effective momenta approaches [4,12].
Section III B contains the studies performed in the low-
emission regimes (6 eV excess energy): we make a comparison
with a preexisting result [4] in equal energy sharing; we then
increase the momentum transfer to observe more prominent
nondipolar effects. In Sec. III C we contrast our numerical
calculations with the experimental data reported in [11].
Finally, a brief summary is provided in Sec. IV.

Atomic units (� = e = me = 1) are used throughout the
article, unless otherwise stated.

II. FAST PROJECTILE FORMULATION AND GSF
APPROACH

Our treatment of the four–body scattering problem is based
on a perturbative series of the projectile-target interaction, kept
up to the first order. The resulting three-body problem is then
solved with the GSF method.

Let r1 denote the position of the projectile (mass mP ), ri

(i = 2,3) denote that of the two helium electrons with respect
to its nucleus (mass mT , charge Z = 2), and rij = |ri − rj|
denote the distance between particles i and j . The full four-
body Hamiltonian reads

H = − 1

2μT P

∇2
1 − 1

2μT

∇2
2 − 1

2μT

∇2
3 + Z

r1
− 1

r12

− 1

r13
− Z

r2
− Z

r3
+ 1

r23
, (1)
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with the reduced masses defined as μT P = mP mT

mP +mT
and μT =

mT

mT +1 . Similar to Refs. [18,30], we write subsequently

H0 = hp + hHe, (2)

where

hHe =
(

− 1

2μT

∇2
2 − 1

2μT

∇2
3 − Z

r2
− Z

r3
+ 1

r23

)
(3)

is the three-body helium Hamiltonian and hp = − 1
2μT P

∇2
1 is

the free-particle kinetic term associated with the projectile.
The two Hamiltonians in (2) act separately on the subsystem
(2,3) and (1). They are coupled through the perturbation

W̄ = Z

r1
− 1

r12
− 1

r13
. (4)

The four-body Hamiltonian is then

H = H0 + W̄ , (5)

and the Schrödinger equation with outgoing-type (+) behavior
reads

[H0 + W̄ − E]�+(r1,r2,r3) = 0, (6)

where E is the total energy.
As shown in Ref. [30], the Schrödinger equation (6) can be

transformed into a system of coupled differential equations if
the solution is proposed as

�+(r1,r2,r3) =
∑

n

�(n)+(r1,r2,r3), (7)

where each order retains n interactions W̄ between the
projectile and the target. Allowing for only one interaction,
we need the zeroth- and first-order expressions, which read

[H0 − E]�(0)+(r1,r2,r3) = 0, (8a)

[H0 − E]�(1)+(r1,r2,r3) = −W̄�(0)+(r1,r2,r3). (8b)

The zeroth order corresponds to a separable solution,
eiki ·r1�i(r2,r3), where �i(r2,r3) is the two-electron helium
ground state and the fast incident projectile is described
by a plane wave of momentum ki . The first-order solution,
verifying Eq. (8b), is written as [30]

�(1)+(r1,r2,r3) = 1

(2π )3/2

∫
dkeik·r1�+

sc(k,r2,r3), (9)

where the three-body scattering (labeled sc) function �+
sc

characterizes the physics of the ejected electrons. Let Ea

denote the energy of two electrons interacting with the
nucleus in the final state and k2/2 be the energy associated
with the projectile: the total energy of the system is then
E = Ea + k2/(2μT P ). Let the projectile be scattered with
momentum kf , and define the momentum transfer vector
q = ki − kf . Inserting Eq. (9) into (8b), we obtain a driven
equation for �+

sc(q,r2,r3) [30]:

[hHe − Ea]�+
sc(q,r2,r3) = −4π

q2

1

(2π )3
(Z − eiq·r2 − eiq·r3 )

×�i(r2,r3), (10)

where we have made explicit the q dependence in the three-
body scattering wave function.

Formally, we can write the asymptotic behavior of
�+

sc(q,r2,r3) as [31]

�+
sc(q,r2,r3) −→

ρ→∞ (2πi)1/2κ
3
2 Tk̃2,k̃3

ei[κρ−λ0 ln(2κρ)−σ0]

ρ
5
2

, (11)

where ρ =
√

r2
2 + r2

3 is the hyperradius, κ = √
2Ea the hyper-

momentum, σ0 is a Coulomb phase, and λ0 is a hyperangle-
dependent asymptotic Sommerfeld parameter. The transition
matrix Tk̃2,k̃3

that is built into the scattering solution can
equivalently be defined as

Tk̃2,k̃3
= 4π

q2

1

(2π )3

× 〈
�−

k̃2,k̃3
(r2,r3)

∣∣ − Z + eiq·r2 + eiq·r3
∣∣�i(r2,r3)

〉
,

(12)

which provides the more familiar expression used in the FBA.
In our framework, the transition matrix is extracted from
�+

sc(q,r2,r3), not from Eq. (12).
For two electrons escaping with energies E2 and E3 in

the solid angles d	2 and d	3, the FDCS, within the FBA, is
defined as

d5σ

d	2d	3d	f dE2dE3
= (2π )4 kf k2k3

ki

∣∣Tk̃2,k̃3

∣∣2
, (13)

where the projectile, whose energy Ef = k2
f /(2μT P ) is deter-

mined by total-energy conservation, is scattered in the solid
angle d	f . This definition allows for a direct comparison with
experimental data. In order to compare our results with the
theoretical results presented in Ref. [4,12], on the other hand,
we shall also use the alternative, but equivalent, definition of
the cross section

dσ

dk2dk3dq⊥
= (2π )4

v2
p

∣∣Tk̃2,k̃3

∣∣2
, (14)

which is differential with respect to the ejected electrons’
momenta and the transverse momentum transfer q⊥ (the
perpendicular component of q with respect to the beam axis);
vp is the velocity of the incident projectile.

We use the GSF method to solve the driven equation for a
given q. For convenience, as explained in [17,18], the helium
ground state is also constructed within the GSF formalism.
GSF basis sets with negative energy were shown to be very
efficient in obtaining two-electron bound states [22,32,33].
In order to calculate the scattering function, we proceed as
outlined in Ref. [18]: �+

sc(q,r2,r3) is decomposed in total-
angular-momentum partial waves and subsequently expanded
in a Sturmian basis [see Eq. (19) of [18]]; this converts
Eq. (10) into a linear system [similar to Eq. (21) of [18]]
which is solved with standard methods. In all kinematical
configurations considered below, convergence with respect
to the number of partial waves has been verified. From
|�+

sc(q,r2,r3)| at large enough ρ (50 a.u. for 20 eV excess
energy and 120 a.u. for the low-energy configurations, 6 eV
excess energy) we extract |Tk̃2,k̃3

| using Eq. (11) and, finally,
the FDCS through either expression (13) or (14).
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III. RESULTS

We arrange the results in three subsections. First, we
compare our cross sections with the dynamically screened
3C (hereinafter DS3C) and effective momenta 3C (hereinafter
EM3C) results presented by López and coworkers [4,12]. The
objective is twofold: (i) to evaluate which of the two analytic
proposals is more appropriate and (ii) to provide results that
can be used for numerical reference to test further perturbative
models. We then explore the double-ionization dynamics for
slow emitted electrons for both equal and unequal energy
sharing and compare the outcome with the EM3C results. In
this energy range, perturbative approaches are not appropriate
but ours is, and we expect to explore the dominant processes
within it. In the last subsection we compare our theoretical
FDCS with available experimental data of Fischer et al. [11].

Only coplanar configurations are considered, and all angles
are defined with respect to the incident-beam direction. The
cross sections will be presented as contour plots in θ2 and θ3,
with the intensity scale indicated on the right-hand side.

A. Comparison: GSF, DS3C, and EM3C

In order to compare our results with the work of López
et al. [4,12], we consider here the double ionization of helium
by protons impinging with an energy of 700 keV. Even in
a first-order Born calculation, the use of effective charges
allowed them to distinguish between positively and negatively
charged projectiles. In our strictly FBA, no distinction can be
made about the sign of the projectile. In Ref. [12], the authors
presented, in a number of contour plots (and some selected
cuts), the FDCS defined by Eq. (14). They showed that the
results (shapes and magnitudes) are widely affected, on the
one hand, by the representation of the initial target state and,
on the other hand, by the effective charges chosen for the
postcollisional dynamics.

Concerning the helium ground state employed, the one
used in [4,12] and ours differ significantly. The authors
of [12] use two types of Bonham and Kohl bound-state
functions: a simple, two-parameter (type-7) function (called
GS1) and a more refined, modified-type-9 one, with five
parameters (called GS2). These trial functions yield bound
energies of −2.8756 and −2.9019 a.u., respectively. In our
formulation, the helium ground state is obtained with the GSF
method [32,33], with an energy of −2.9033 a.u., using 20
Sturmians per coordinate per partial wave, with individual
angular momenta up to 4. In this paper we shall compare our
cross-section results only with those of [4,12] that employ the
GS2 ground state.

Since the main purpose of this contribution is to compare the
descriptions of the continuum functions, in order to discard any
initial-state-related issue, we have also considered a helium
ground state of poorer quality, with an energy close to the
GS2 counterpart (using as few as 5 Sturmians per partial
wave per coordinate and keeping the same angular momentum
values, we achieved a ground-state energy of −2.9024 a.u.).
Both calculated FDCS presented no appreciable differences;
therefore, we may consider that any discrepancy between the
results of López et al. and ours is to be attributed essentially
to the continuum functions.

FIG. 1. Fully differential cross section for helium double ion-
ization by proton impinging at 700 keV. The two emitted electrons
each take 10 eV, and the proton transfers to the atomic system a
momentum q = 0.9 a.u., oriented at θq = 40.18◦. (top) Present GSF,
(middle) DS3C [12], and (bottom) EM3C [4].

We start with the case in which the two electrons are ejected
in the scattering plane in directions θ2 and θ3 with equal
energy: E2 = E3 = 10 eV. This corresponds to a momentum
transfer of modulus q = 0.9 a.u. oriented at θq = 40.18◦. A
comparison of results is presented by the contour plots in Fig. 1.
The structures we obtain with the GSF method (top panel)
differ substantially from the DS3C results [12] (middle panel).
The GSF results vary less rapidly with the ejection angles.
At the same time, the DS3C structures are more extended,
in the sense that there is no clear frontier between the recoil
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FIG. 2. (Color online) (a) Squared modulus of the momentum transferred to the helium nucleus K2
ion. Both electrons emerge equally sharing

the 20 eV excess energy, q = 0.9 and θq = 40.18◦ with respect to the incident direction. (b) GSF FDCS for these kinematical conditions, with
the K2

ion contours superimposed [in green (gray)].

and the binary peaks. Less profound are the differences found
between the GSF and the EM3C [4] results (bottom panel).
They both present a smoother angular dependence but differ in
key features such as the recoil-structure shape and the relative
heights of each peak.

We should add here that, in the case of electron impact,
in contrast to the 3C counterpart, ab initio calculations
such as the convergent close coupling (CCC) [27] showed
a more prominent binary peak. In the present proton case, the
comparison between our numerical results and those of the 3C
variants reveals a similar feature.

There is also a subtle difference between the GSF result
and the 3C-based cross sections. As can be observed when
visually comparing Fig. 1 (top panel) with Fig. 2, the binary
peak location in the GSF case coincides exactly with a
configuration of minimum momentum transfer to the He++

core, Kion = q − k2 − k3. The peak is slightly displaced in the
DS3C and EM3C cross sections. Moreover, the DS3C model
binary peak occurs when the electrons are emitted at exactly
right angles. In our GSF calculation the binary peak appears
for electrons emitted at mutual angles that are wider than 90◦,
a feature readily explained by the interelectronic repulsion
forcing the fragments farther apart in coplanar geometry (the

same was also observed in other fully numerical results [16,27]
for double ionization by electron impact).

As a second comparison, consider now the same projectile
energy (700 keV), the same momentum transfer (q = 0.9 a.u.),
and the same excess energy (20 eV) but unequal energy
sharing: E2 = 5 eV and E3 = 15 eV. Our GSF and the DS3C
results of [12] are compared in Fig. 3. The binary peaks
are the most dominant features present in the GSF FDCS
for the unequal-energy example [see Fig. 3(a)]. The DS3C
scheme, in turn, appears to underestimate them (relative to
the binary and back-to-back structures), as shown in Fig. 3(b).
The DS3C approach presents back-to-back emission with the
faster electron ejected in the directions parallel or antiparallel
to the momentum transfer. Both situations are depicted as
equally likely in the DS3C FDCS. This is not the case in the
GSF result: only the emission of the faster electron in the
direction opposite to the momentum transfer is important [see
Fig. 3(a)].

The first likely candidate responsible for the back-to-back
structures, particularly with the fast electron emitted parallel
to q, would be the shake-off mechanism. However, Dorn
et al. [34] ruled it out as a viable option to produce this emis-
sion. They stated that the fast electron would have to be ejected

FIG. 3. Fully differential cross section for helium double ionization by protons impinging at 700 keV and transferring to the atomic system
a momentum q = 0.9 a.u., oriented at θq = 40.18◦. The two electrons are ejected with unequal energy sharing: E2 = 5 eV, E3 = 15 eV. (a)
Present GSF and (b) DS3C [12].
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FIG. 4. (Color online) (a) Squared modulus of the momentum transferred to the nucleus K2
ion. (b) Same as Fig. 3(a), but superimposing the

contours in (a) [in green (gray)].

with a higher velocity so that the effective charge change felt
by the slow electron can be nonadiabatic. Therefore, for the
energy sharing considered in this contribution, the mechanism
can be disregarded. To explain the back-to-back peaks we are
left with more abrupt mechanisms, involving pure collisions,
and not soft relaxations to the continuum.

We now are going to briefly justify that the back-to-back
emission, in our first-order Born context, should be dominant
only when the fast electron leaves in the −q direction and
weaker when it goes along q. The occurrence is partly
explained by Fig. 4. In Fig. 4(b) we show the GSF cross
section superimposed with the contour plot of the squared
modulus of the momentum transferred to the residual core
[Fig. 4(a)]. After one of the electrons acquires the momentum
provided by the projectile, the final back-to-back configuration
requires at least one interaction with the nucleus; if that were
not the case, there would be no electron (either of them) in
the −q direction (indeed, a head-on collision of two bodies
with equal mass would imply that they simply swap their
respective momenta). The interaction with the core should
transfer some momentum to the nucleus, with a magnitude
of the order of the momentum of the electrons (i.e., on the
order of 1). However, the final configuration with the fast
electron parallel to q gives nearly no momentum transfer to
the nucleus and therefore is an unlikely process. The exactly

opposite scenario does incorporate an appreciable amount of
momentum transferred to the core, denoting further intratarget
interactions, and therefore cannot be ruled out. The above does
not agree with the CCC (theoretical) FDCS presented in the
work by Dorn et al. [34].

In contrast to the recoil and back-to-back structures, the
binary ones do not require significant participation of the
nucleus and therefore can exist in the (θ2,θ3) directions which
imply almost no momentum acquired by the parent core [see
Fig. 4(b)].

A second argument at play in the back-to-back phenomenon
in Fig. 3 comes from the analysis of the driven term in Eq. (10).
Retaining the dipolar term in the exponentials, we have

(Z − eiq·r2 − eiq·r3 ) ≈ −i(q · r2 + q · r3)

= −i
ρ

κ
q · (k̃2 + k̃3), (15)

where in the second approximation we used the position-
dependent momenta k̃j = κ

ρ
rj (j = 2,3), defined originally

in [35] and more explicitly in [31]. In our formulation, it
is the driven term that dictates how a particular geometrical
configuration is enhanced or suppressed (see [18]). We thus
plot in Figs. 5(a) and 5(b) the magnitude |q̂ · (k̃2 + k̃3)| and a
superimposition with the FDCS, respectively. This comparison
is in line with the electron-impact analysis presented by

FIG. 5. (Color online) (a) |q̂ · (k̃2 + k̃3)|. (b) Same as Fig. 3(a), but superimposing the contours in (a) [in green (gray)].
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FIG. 6. Fully differential cross section for helium double ionization by protons impinging at 700 keV and transferring to the atomic system
a momentum q = 0.9 a.u., oriented at θq = 40.18◦. The two ejected electrons both have 3 eV. (a) Present GSF and (b) EM3C [4].

Lahmam-Bennani et al. [14], who related the dips in the FDCS
considering the conditions that nullify Eq. (15).

The introduction of effective charges into the 3C function
is a means to account for the interactions between the target
components as well as the projectile with the target subsystem.
The charges affect very strongly the shapes and magnitudes
of the corresponding FDCS, as can be seen in the systematic
3C versus DS3C comparison in [12]. The dynamical screening
corrects the 3C overestimation of the back-to-back emission
but introduces rapidly varying structures that cannot be
reproduced in our ab initio calculation. Thus, we infer that the
use of such approximate analytical three-body functions leads
to results that are not without shortcomings. We should add that
there exists a large variety of effective-charge proposals, and
there is not a clear way to choose which one is the appropriate.
So it is difficult to be certain about the correctness of the
obtained results.

B. Low-ejected-energy regime

We now consider the regime of two electrons ejected at
lower energies. The application of distorted-wave methods
to this emission regime can be seen as an overreach, but
nonetheless, we will see that the EM3C approach can manage
to describe some key FDCS features. In Ref. [4] the authors
evaluated the double ionization of helium by proton (and
antiproton) impact, ejecting the electrons at slow velocities.
Their equal emission energies are 3 eV, with q = 0.9 a.u.
oriented at θq = 40.18◦ and an incident energy of 700 keV
for the protonic projectiles. Our exact treatment of the two-
electron continuum enables us to explore confidently this low-
energy situation and provides insight that is complementary to
that performed by López and coworkers using distorted-wave
methods. In Fig. 6 we compare our GSF result with the
EM3C one [4]. Both approaches indicate a recoil peak more
relevant than the binary one. This can be understood since
the electrons acquire small velocities after the collision and
they may interact one further time with the core. The classical
picture corresponds to an orbit around the nucleus before the
electron is finally released.

While the EM3C results suggest a disappearance of the
binary peak, the same is not observed in our GSF FDCS, which

presents a diminished but still present binary peak. Although
not exactly matching our ab initio results, the EM3C manages
to give a qualitative agreement that reflects the most significant
cross-section structure, namely, the recoil peak. This is a strong
hint that the effective momentum approach makes possible the
application of distorted-wave approximations within energy
ranges that would normally be regarded as inappropriate.

Still within the low-ejected-energy regime, another kine-
matical condition was considered: a momentum transfer above
unity to allow for more nondipolar effects: q = 1.25 a.u.,
oriented at θq = 61.82◦, with a projectile energy maintained
at 700 keV with an excess energy of 6 eV. Equal- and unequal-
energy-sharing conditions are studied, with both electrons
emitted with 3 eV or (1.5 + 4.5) eV. The amount of momentum
transfer to the target would indicate some expected back-to-
back emission. This is indeed confirmed by observing both
equal- and unequal-energy-sharing configurations in Fig. 7,
with the effect being more dominant in the latter.

For the equal-energy-sharing scenario [Fig. 7(a)] we have
again recoil structures which are higher than the binary ones.
In comparison to Fig. 6, the main differences that emerge are
the slightly more pronounced back-to-back emission and a
stronger binary peak.

The unequal-energy case, as in Sec. III A, shows back-to-
back emission when the fast electron goes against the direction
of the momentum transfer. The slower electron is pushed
preferentially in the q direction, with their mutual repulsion
serving as a guide. Under this particular kinematical condition,
there is a large amount of momentum transferred to the target,
yet the electrons leave with slow velocities. Therefore, the core
has to absorb a portion of that transferred momentum in most
emission geometries. Regarding the back-to-back ejection, we
observe the same result as in the previous section: it is more
likely to have the fast electron sent in the −q direction. Both
arguments apply, but in the present case the dipolar terms of the
exponential yield a near-zero value that is nearly replicated in
the FDCS; Fig. 8 shows a comparison similar to that in Fig. 5.

As can be expected, recoil and binary peaks imply ejections
at narrower mutual angles when the energy is shared evenly.
This configuration maximizes the velocity magnitude sum and
roughly implies that the electrons have less interaction time to
push each other apart.
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FIG. 7. GSF fully differential cross section for helium double ionization by protons impinging at 700 keV and transferring to the atomic
system a momentum q = 1.25 a.u., oriented at θq = 61.82◦. The excess energy Ea is 6 eV. (a) Equal energy sharing E2 = E3 = 3 eV. (b)
Unequal energy sharing, E2 = 1.5 eV, E3 = 4.5 eV.

C. Comparison with experimental data

So far, we have looked at several physical aspects, compar-
ing our GSF results with those of López and collaborators.
In this section we compare our calculations with the data
set (relative scale) measured by Fischer et al. [11]. In their
experiment, the incident proton has an energy of 6 MeV,
considerably faster than those studied in the previous sections.
Due to the low experimental counting rate, the measurements
were made with the collection of electrons with E2 = E3 <

25 eV and momentum transfers ranging in magnitude q from
1.4 to 2.0 a.u and in angle θq from 75◦ to 85◦. This range of
variation for the quantities E2,E3,q implies that the label fully
differential applies loosely for the measured cross sections.
The most critical variable is the variation of q since the FDCS
inherits an explicit factor 1/q4. Therefore, we considered an
average q value using the following expression:

〈q〉 =
[

1

qmax − qmin

∫ qmax

qmin

1

q4
dq

]−1/4

, (16)

which for qmin = 1.4 a.u. and qmax = 2.0 a.u. yields 〈q〉 =
1.656 a.u. For the direction of the momentum transfer, we took
the intermediate value θq = 80◦. The total emission energy
considered in our calculation was also chosen in the middle of
the measured range: 10 eV per electron.

The cross sections, as defined by Eq. (13), are presented in
Fig. 9. Our GSF calculation (contour plots, top panel) are com-
pared with experimental data (middle panel). To appreciate the
qualitative agreement between them, we present in the bottom
panel a superposition of both results. In the small-q regime,
the back-to-back configuration is not favored like the dipolar
behavior observed with electron-impact collisions [14]. As
the momentum transfer is increased, nondipolar terms become
relevant: indeed, we observe in the calculated FDCS an
important amount of back-to-back emission, and the binary
and recoil peaks have very different shapes. The results show
a strong, localized, binary peak; the recoil peak, in contrast,
merges with the back-to-back one, forming a wall that has a dip
in height precisely where the first-order Born symmetry axis
crosses it. Unfortunately, the experimental detector range [11]
precludes a comparison in the region where the recoil and
back-to-back wall gains height.

An aspect that emerges from Fig. 9(b) is the small number
of counts in the experiment. It does still allow for the visual-
ization of some structures, but they are less clearly delimited
than in previous electron-impact experiments from the same
group [16,34,36]. This small number of counts, sadly, does
not allow us to make a more detailed comparison. A higher
impact count could result in more reliable and descriptive
experimental cross sections, which in turn would call for a

FIG. 8. (Color online) (a) |q̂ · (k̃2 + k̃3)|. (b) Same as Fig. 7(a), but superimposing the contours in (a) [in green (gray)].

042704-8



DOUBLE IONIZATION OF HELIUM BY PROTON IMPACT: . . . PHYSICAL REVIEW A 92, 042704 (2015)

FIG. 9. Fully differential cross section for helium double ion-
ization by protons impinging at 6 MeV, with two electrons ejected
with the same energy. (top) Present GSF with momentum transfer
q = 1.65, oriented at θq = 80◦ and E2 = E3 = 10 eV. (middle)
Relative experimental data [11] with a momentum transfer in the
range q = 1.4−2.0 a.u., oriented in between θq = 75◦ and 85◦ and
E2 = E3 < 25 eV. (bottom) Superposition of the theoretical and
experimental cross sections.

more sophisticated calculation with an actual integration on
the energies and transferred momenta ranges, be it analytical
or entirely numerical. This said, we may state that there is fair
theory-experiment agreement in the cross-section shapes.

IV. SUMMARY

In the present contribution we have investigated FDCS for
the double ionization of helium by protonic impact in different

kinematical configurations. We tackled the problem within a
first Born approximation frame regarding the projectile-target
interaction and employing the generalized-Sturmian-function
method to solve in a numerically exact way the resulting three-
body continuum problem.

Our ab initio results allowed us to test the validity of
approximate analytical double-continuum wave functions with
effective charges or effective momenta. With the comparison
in the explored kinematical conditions, we can state that
(i) none of these schemes can provide an exact agreement with
our calculations and (ii) of the two, the effective momentum
approach can be deemed more physically plausible since it
yielded FDCS which vary less abruptly with the ejection
angles, similar to what was observed in our numerical results.

The EM3C approach has also been applied within a
low-emission-energy regime [4]. Being slowly ejected, the
electrons have time to interact with each other and with
the core many times, corresponding to high orders in a
multiple-scattering series [2]. These interactions are solved
to every order by our ab initio GSF methodology. Although
perturbative methods are normally considered not well suited
to describe the dynamics of slowly ejected electrons, the EM3C
model surprisingly managed to characterize the most dominant
cross-section feature, namely, the recoil peak. While it still
missed the binary and back-to-back contributions that show
up in our GSF calculation in the (3 + 3) eV regime, the study
indicates that the EM3C provided an interesting step forwards
for perturbative approaches.

The final results section was devoted to a theory-experiment
FDCS comparison. We calculated GSF cross sections, at-
tempting to replicate the relative experimental data of Fischer
et al. [11], who registered low counting rates. Globally, we
observed fair qualitative agreement, in particular with respect
to two key features: the location of the maximum corre-
sponding to the binary peak and the presence of a dip where
the recoil peak was expected. There is also an experimental
hint of a local peak in the cross section, corresponding to
our theoretical back-to-back peak, but this falls outside of
the detection angles for the cold-target recoil-ion momentum
spectroscopy apparatus [11].

New fully differential experimental data, with fast incident
protons, would be very welcome in order to validate the
benchmark cross sections presented here. Furthermore, as
was done with electron-impact ionization [13,15,16,37], the
incidence energy could be lowered to quantify the appearance
of second-order Born effects. We hope that our contribution
will help with further theoretical developments in improving
perturbation schemes.
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