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Dynamical adiabatic theory of atomic collisions: Charge exchange in collisions of He2+ with H(1s)
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Interference effects in slow He2+ + H(1s) charge-exchange collisions are analyzed within the framework of the
dynamical adiabatic theory of atomic collisions. Analytic continuation of the dynamical adiabatic scaled-energy
eigenvalues into the complex plane of internuclear separation R for the HeH2+ system is used to identify
relevant branch points responsible for both radial and rotational nonadiabatic transitions leading to the electron
capture process. The calculated electron capture probabilities are compared with the results of hyperspherical
close-coupling calculations.
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I. INTRODUCTION

The adiabatic approach to slow atomic collisions is valid
for impact energies up to the maximum of the corresponding
inelastic cross section (∼10 KeV/nucleon). This interval cov-
ers many processes occurring in the natural world, including
ionized stellar atmospheres and TOKAMAK fusion plasmas.
Alternative approaches are different versions of numerical
close-coupling calculations. However, in all versions, the
questions of where and why inelastic transitions occur have
no answer. That is why all of them belong to computational
rather than theoretical physics.

In the adiabatic approximation the total wave function is ex-
panded in terms of adiabatic eigenstates of the quasimolecule
formed during the collision. However, this approach raises a
well-known problem (for a review see [1]), related to the fact
that the molecular basis is not compatible with the physical
boundary conditions because the electrons are asymptotically
attached to moving centers. In a full quantum-mechanical
treatment, the problem can be resolved by employing the
hyperspherical adiabatic approach proposed by Macek [2]. It
has been widely used in the past, including for the He2+ + H
system [3], which we shall treat as an example in the present
work.

In semiclassical theory, where the motion of the nuclei is
treated classically, in order to ensure the Galilean invariant
theory, it is necessary to attach so-called electron translational
factors to each of the molecular adiabatic basis functions [1].
Another approach is to use the nonstationary scaling of length
[4], which has also found useful applications in the theory of
electron-atom (molecule) collisions [5] and the interaction of
atoms and molecules with radiation fields [6,7]. In this method
the colliding nuclei are at rest, but their effective charges are
time dependent, and additional dynamical interactions occur
in the electronic Hamiltonian. For the case of one electron
and two nuclei, we have studied in our recent works [8,9] the
instantaneous eigenvalues of this Hamiltonian (which will be
referred to as dynamical adiabatic eigenvalues) as functions
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of the internuclear separation R both on the real axes [8] and
in the complex R plane [9].

In the present work we show how the analytic continua-
tions of dynamical adiabatic eigenvalues and corresponding
branch points between them can be used to describe inelastic
transitions, in particular the charge-exchange process

He2+ + H(1s) → He+(n = 2) + H+. (1)

The plan of this article is as follows. In Sec. II we review the
basics of standard adiabatic and dynamical adiabatic theory
of transition in systems with slowly varying time-dependent
interactions. Specific cases of a two-state system and a three-
body problem (one electron and two nuclei) are discussed
in some detail. In Sec. III, as an example of the two-state
problem, the σ -π rotational transitions in the united-atom limit
are discussed from the standpoint of adiabatic and dynamical
adiabatic approaches. Section IV contains our main results of
the application of the dynamical adiabatic theory to description
of the process (1). The conclusions of our work are given in
Sec. V.

II. ADIABATIC AND DYNAMICAL ADIABATIC
APPROXIMATIONS

In quantum physics the adiabatic approximation was
proposed in 1928 by Born and Fock [10] for the Schrödinger
equation

i�
∂

∂t
�(r,t) = Ĥ (vt)�(r,t) (2)

while slowly varying in time Hamiltonian Ĥ (vt). They proved
that in the limit v → 0 the population of eigenstates of the in-
stantaneous Hamiltonian, Ĥ (τ̃ )ϕi(r,τ̃ ) = Ei(τ̃ )ϕi(r,τ̃ ), does
not change (τ̃ = vt); that is, the adiabatic states ϕi(r,τ̃ ) are the
correct states of zeroth order in the adiabatic approximation.
For the time-dependent Schrödinger equation (2) these states
take the form

�i(r,t) = ϕi(r,τ̃ ) exp

(
i

�

∫ t

Ei(vt ′)dt ′
)

. (3)

In 1932 Stueckelberg [11] derived the adiabatic asymptote for
the probability of an inelastic transition, employing Zwaan’s
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technique [12] (for details, see, e.g., Ref. [13], Sec. 47).
In atomic collision theory, when the motion of the nuclei
is treated classically, the electronic Hamiltonian depends on
time through the internuclear distance R(vt), where v has the
meaning of impact velocity. The adiabatic energies of the same
symmetry Ei(R) are different branches of the single analytic
function E(R) connected to each other through complex
branch points Rc. This property follows from the implicit
function theorem in complex analysis: �(E,R) = det[Ĥ (R) −
EÎ ] = 0, where Î is the identity operator. According to the
Zwaan method [12], the transition from initial ϕi(r,R) to
final ϕf (r,R) adiabatic states can be obtained by analytic
continuation of the adiabatic wave function (3) along the
contour C in the complex R plane which starts at any real
R1 where E(R1) = Ei(R1), goes around a complex branch
point Rc, and ends up back on any real R2 where E(R2) =
Ef (R2). This procedure is correct for an ordinary branch point
[�E(R) ∼ √

R − Rc] with three Stokes lines. It is the key
point of Zwaan’s method. The final result for the probability
of inelastic transition reads [11]

pif = e−2�, (4)

where

� = 1

�

∣∣∣∣Im ∫
C

E(R)
dt

dR
dR

∣∣∣∣ (5)

is the Stueckelberg parameter.
Thus, the probability of an inelastic transition is determined

by the integral from the real axis to the complex branch point
Rc. Of course, during the collision, inelastic transitions occur
at the real values of R. The physical reason for the decisive
role of the complex branch points Rc is the following. A
branch point appears in the complex R plane near a real
value of R, where one of the energy curves Ei(R) crosses
the top of the barrier in the effective electron potential. Here,
the adiabatic eigenstate ϕi(r,R) dramatically concentrates
on the top of barrier involving neighboring state ϕf (r,R)
to preserve the smooth behavior of the two-state subspace.
As a rule, such reconstruction within the two-state subspace
cannot be identified on the plot of Ei(R) for real internuclear
separations R. That is why the denotation “hidden crossing”
was introduced for this connection. Hidden crossings are
clearly manifested in the matrix element of nonadiabatic
coupling Wif (R) = 〈i|d/dR|f 〉, which has a maximum at this
point producing inelastic transitions. Thus, inelastic transitions
happen whenever caustics of electron classical trajectories
change their topology.

Now let us consider the mathematical aspects of hidden
crossings. At the point of degeneracy of two eigenvalues
Ei(Rc) = Ef (Rc) ≡ Ec, the Hamiltonian reduces not to a
diagonal form but rather to the Jordan form. In the vicinity
of Rc, perturbation theory with respect to a small value of
(R − Rc) can be used,

Ĥ (R) =
(

Ec 1
0 Ec

)
+ (R − Rc)

(
V11 V12

V21 V22

)
,

(6)
Vnm = const,

which gives the energies in the first approximation Ei,f (R) =
Ec ± √

V21(R − Rc). Thus, the square-root dependence arises

instead of the usual linear dependence of �Eif (R) on (R − Rc)
at real R; that is, Ei(R) and Ef (R) are different branches of a
single (multivalued) analytic function E(R). The same is true
for the adiabatic wave functions ϕi(r,R). But the Jordan form
has only one eigenvector, and to keep the orthonormalization
condition at branch point Rc, an adiabatic wave function must
have the singular factor

ϕi(r,R) ∼ 1
4
√

R − Rc

, (7)

leading to an indeterminacy at R = Rc, which is resolved in
a different way, so that zero is obtained for the condition
of orthogonality and unity is obtained for the normalization
condition. As a result, the matrix element of nonadiabatic
coupling Wif (R) has a pole of the first order, Wif (R) ≈
1/[4(R − Rc)], and a bell-shaped profile for real values of
R [see, for example, Fig. 3(b)].

The dynamical adiabatic approach has been formulated
for a two-state problem in Ref. [14]. In the nth order of the
dynamical approach the matrix elements of the time-dependent
Schrödinger equation for the state vector A = [A1,A2]T ,

i�v
d

dτ̃
A = ĤnA, Ĥn =

(
1
2�En Wn

W ∗
n − 1

2�En

)
, (8)

are connected to the lower order by the relations

�En =
√

�E2
n−1 + 4|Wn−1|2,

(9)

Wn = −i�v
�E2

n−1

�E2
n

d

dτ̃

( |Wn−1|
�En−1

)
and are obtained by transition to the eigenvector basis of
the lower-order Hamiltonian Ĥn−1. The first order (n = 1)
corresponds to the standard adiabatic basis, where �E1 is the
splitting of adiabatic potential energies and W1 is the matrix
element of nonadiabatic coupling. The physical reason for
such a transformation is that the higher n is, the weaker the
coupling at v → 0 is since Wn ∼ vn.

For the three-body system consisting of one electron plus
two nuclei (moving along the straight-line trajectories, R =
b + vt , with the impact parameter b and relative collision
velocity v) the dynamical adiabatic approximation has been
studied in Refs. [8,9]. After scaling the electron coordinates
with R(t), transforming to the molecular (rotating with
internuclear axis) frame, and separating the appropriate phase
factor of the wave function in order to fulfill the proper
boundary conditions, one arrives at the eigenvalue problem
(for details see Ref. [8])

H̃ (R,ω)
j (q,R,ω) = Ẽj (R,ω)
j (q,R,ω), (10)

which determines the dynamical adiabatic eigenvalues and
eigenfunctions. The effective “Hamiltonian” reads (in atomic
units)

H̃ (R,ω) = −1

2
�q − R

(
ZA

|q + αq̂1| + ZB

|q − βq̂1|
)

+ωL3 + 1

2
ω2q2, (11)

where q is scaled electronic position vector, ZA and ZB are
charges of the nuclei, α + β = 1, L3 is the component of the
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FIG. 1. (Color online) Segment of dynamical adiabatic eigenval-
ues for ω = 0.5 represented in terms of the effective united-atom
principal quantum number [Eq.(13); solid curves]. Also shown
(dashed blue curves) are the standard adiabatic eigenvalues of the
(HeH)2+ molecular ion labeled by united-atom quantum numbers.
NUA

j (R,ω) is dimensionless, and other quantities are in atomic units.

electronic angular momentum along the q̂3 axis (perpendicular
to the scattering plane), and ω = bv. The attribute dynamical”
for eigenvalues and eigenfunctions comes from the fact that,
besides the internuclear separation R, they depend on ω,
which is a parameter related to the dynamics of the nuclei. In
contrast to the adiabatic approximation (corresponding to the
two-Coulomb-center problem) the eigenvalue problem (10)
is not separable. The only symmetry which we have in this
case is the parity 
3 = ±1 with respect to the reflection
q3 → −q3. The adiabatic eigenvalues Ej (R) and dynamical
adiabatic eigenvalues Ẽj (R,ω) are related by the expression

Ej (R) = Ẽj (R,ω → 0)/R2. (12)

General properties of the dynamical adiabatic eigenvalues for
real values of R ranging from R = 0 (united-atom limit) to
R → ∞ (separated-atom limit) have been discussed in detail
in Ref. [8]. For a graphical representation of the R dependence
of the eigenvalues it is more convenient to use the “effective
united-atom principal quantum number,”

NUA
j (R,ω) = (ZA + ZB)[−2Ẽj (R,ω)/R2]−1/2. (13)

Figure 1 shows this quantity for the (HeH)2+ system for
two cases: ω = 0 (standard adiabatic curves; dashed curves
labeled by the united-atom quantum numbers) and ω = 0.5 a.u.
(dynamical adiabatic curves; solid lines labeled j = 2,3, . . . ).
One can see that at large internuclear separations the two sets
of eigenvalues merge together. Note that the adiabatic curves
exhibit a large number of exact crossings due to the high
symmetry (separability) of the two-Coulomb-center problem.
By introduction of the two last terms in Eq. (11) this symmetry
is broken, and dynamical adiabatic curves exhibit only avoided
crossings, although some of them can be very narrow. Four
states labeled j = 2–5 are of particular interest in description
of the process (1).

Analytic continuation of the dynamical eigenvalues into
the complex R plane was studied in Ref. [9]. Besides the
usual hidden crossings responsible for electronic transitions
due to the radial motion of the nuclei, a large number of
the exact crossings between states of different symmetries in
the two-Coulomb-center basis transforms into a new type of
branch points which was called L3 crossings and which was
responsible for electronic transitions caused by the rotation of
the internuclear axis. In this way, in the dynamical adiabatic
theory, these two types of nonadiabatic transitions can be
treated on equal footing. The transition probability related
to any type of branch point is again determined by Eq. (4),
but instead of adiabatic eigenvalues in Eq. (5) the dynamical
adiabatic eigenvalues appear,

� = 1

�

∣∣∣∣Im ∫
C

Ẽ(R,ω)

R2

dt

dR
dR

∣∣∣∣. (14)

In Ref. [9], the ω dependence of the positions in the complex
R plane of a number of hidden and L3 crossings in the (HeH)2+

system was analyzed. A more detailed analysis of branch
points responsible for the charge-exchange process (1) will
be presented in Sec. IV. But first, in the next section we shall
concentrate on small internuclear separations where in the
standard adiabatic approach the main transition mechanism of
interest is the rotational coupling between the 2pσ and 2pπ

adiabatic states (see Fig. 1). It is of interest to investigate
how this transition is described within the framework of
the two-state dynamical adiabatic approximations introduced
above via Eqs. (8) and (9).

III. TWO-STATE UNITED-ATOM MODEL OF 2 pσ -2 pπ

COUPLING

At small internuclear separation R the adiabatic states
become spherically symmetry. In this region transitions be-
tween 2pσ and 2pπ molecular orbitals can be described in
an adiabatic basis by the system of equations (8) with the
amatrix element of nonadiabatic coupling W1(R) = ω�/R2

and splitting between 2pσ and 2pπ adiabatic energy levels
�E1(R) = α�R2, where α = 9/20 a.u. in the case of the
(HeH)2+ system. After a scaling transformation to the dimen-
sionless variable τ = vt/b, the system of equations (8) takes
the form

i
d

dτ
gσ (τ ) = b3

sc

2
(1 + τ 2)gσ (τ ) + 1

1 + τ 2
gπ (τ ),

(15)

i
d

dτ
gπ (τ ) = 1

1 + τ 2
gσ (τ ) − b3

sc

2
(1 + τ 2)gπ (τ ),

where bsc = 3
√

α/vb is the scaled impact parameter. Thus, the
solution of the problem depends on a single dimensionless
parameter bsc. The adiabatic approximation for the system
of equations (15) was developed in Refs. [15,16]. The
specific feature of this problem is the linear dependence
�E(R) ∼ (τ − τc) in the vicinity of the complex crossing
point τc = ±i. For that reason, Zwaan’s method cannot be
applied since, instead of three Stokes lines, there are four
Stokes lines, and we lose control over the standard asymptote
(3) during its continuation around the crossing point τc.
Here, a more complicated approach, based on the comparison
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FIG. 2. (Color online) Trajectories of branch points relevant for
the 2pσ -2pπ transitions for increasing values of ω. Black squares are
for k = 0 and k = 1 branch points for the two-state model [Eq. (18)].
Red open circles are the exact calculation in the dynamical basis [9]
corresponding to the k = 0 case. All quantities are in atomic units.

equation method, should be employed. The final expression
for transition probability reads

Pad = 2e−2�ad = 2 exp
(− 4

3b3
sc

)
, (16)

where �ad = |Im ∫ τc

0 �E1(R(τ ))dτ | is the Stueckelberg
parameter for the σ -π transition and �En(R(τ )) =
b�En(R(τ ))/v� (n = 1,2,3) are the scaled energy splittings.
For the sake of definiteness, a contour C is chosen from τ = 0
to τ = τc and back. This expression differs by a factor of 2
from the general expression (4). In accordance with general
theory, adiabatic wave functions ϕσ (r,τ ) and ϕπ (r,τ ) coincide
at τ = τc (see Ref. [17], Sec. 3.2).

Some aspects of the dynamic approach to 2pσ -2pπ transi-
tions in the two-state model have been studied in Ref. [18]. In
the first-order dynamical representation (n = 2) the splitting
of dynamical energy curves, according relations (9), reads

�E2(R) = �

√
α2R4 + 4ω2

R4
. (17)

This expression has eight branch points,

Rc = 4
√

2ω/αe(2k+1)πi/8, k = 0,1,..,7. (18)

In the physical region (Re R � 0) there are four of them.
Figure 2 demonstrates trajectories of two branch points in the
first quadrant of the complex R plane. For comparison, in the
k = 0 case the results of an exact calculation of branch points
in the dynamical basis of the three-body problem [9] are also
shown. In Figs. 3(a)–3(c) the scaled dynamical energy splitting
�E2(R(τ )), the scaled matrix element of coupling w2(R(τ )) =
bW2(R(τ ))/v�, and the Stokes lines are presented for bsc =
0.7. From Fig. 3(c) it is clear that the upper branch point
τc(k = 1) has no physical meaning since it is separated from
the real axis R by the Stokes lines closest to the real-axis branch
point τc(k = 0). Thus, the probability of inelastic transitions is
determined by only the branch point k = 0. These transitions
happen twice: during the approaching (τc = −√

R2
c /b

2 − 1)

and the receding (τc = +√
R2

c /b
2 − 1) stages of collision. The

total probability taking into account the interference between
these two channels is

Pdyn = 4e−2�dyn (1 − e−2�dyn ) sin2 φdyn, (19)

where �dyn = |Im ∫ τc

0 �E2(R(τ ))dτ | is the Stueckel-
berg parameter in the dynamical basis and φdyn =
|Re

∫ τc

0 �E2(R(τ ))dτ | is the phase shift between the upper
and lower dynamical eigenenergy curves. Figure 4(a) shows
the Stueckelberg parameters, and Fig. 4(b) shows phase
shifts in the adiabatic and dynamical approaches as functions
of scaled impact parameter bsc. As one can see from this
figure, dynamical parameters approach adiabatic parameters
in the limit v → 0 (bsc → ∞). In the literature, sometimes
the phase φ′

dyn = |Re
∫ Reτc

0 �E2(R(τ ))dτ | is employed (see,
e.g., [19]). But Fig. 4(b) demonstrates that this choice is
incorrect. Just as φdyn tends in the limit v → 0 to π/4,
corresponding to adiabatic probability (16), the phase φ′

dyn
is very far from the π/4 limit. In Fig. 5 the probability of
σ -π transition as a function of the scaled impact parameter
bsc obtained in both the adiabatic (16) and the dynamic (19)
bases is compared with the numerical solution of the system
of equations (15). The adiabatic region corresponds to large
values of the scaled impact parameter. As one can see, the
dynamical approach essentially improves the agreement with
the exact calculation. In Fig. 5 the probability of the σ -π
transition including the phase shift coming from the next
order of adiabatic approximation in terms of the confluent
hypergeometric comparison equation [19]

χdyn = π

4
− 1

π
�dyn + 1

π
�dyn log

(
1

π
�dyn

)
−�

(
1 + i

π
�dyn

)
(20)

is also plotted. Here, the phase ϕdyn in Eq. (19) should be
replaced by ϕdyn + χdyn. On one hand, this correction does not
change the result in the adiabatic limit since χdyn ∼ v → 0, but
on the other hand, it essentially reduces the region of validity,
giving the artificial nonphysical structure. Thus, its inclusion is
useless in practice, and adiabatic approximation has the widest
region of validity in the leading order, as it follows from the
general theory of asymptotic expansions.

Now let us examine the next order of dynamical approach
n = 3 obtained from relations (9). Figures 3(d)–3(f) illustrate
the scaled dynamical energy splitting �E3(R(τ )), the scaled
matrix element of coupling w3(R(τ )), and the Stokes lines,
all for the case of the scaled impact parameter bsc = 0.7.
In this basis two different branch points contribute to σ -π
transitions, τc1 and τc2. The total amplitude of the transition
can be obtained from the transient matrix

Û = Û
(+)
2 Û

(+)
1 Û

(−)
1 Û

(−)
2 , (21)

where

Û
(±)
i =

( √
1 − pi

√
pie

±iφi±iπ/2

√
pie

∓iφi±iπ/2 √
1 − pi

)
(22)

is the transient matrix due to the τci branch
point, pi = exp(−2�i), �i = |Im ∫ τci

0 �E3(R(τ ))dτ |,
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FIG. 3. (a), (d) Scaled dynamical energy splittings �En(R(τ )) = b�En(R(τ ))/v�, n = 2,3. (b), (e) Scaled matrix elements of coupling
wn(R(t)) = bWn(R(τ ))/v�, n = 2,3. (c), (f) Branch points and Stokes lines. τ = vt/b is the scaled time variable, and in all cases the scaled
impact parameter bsc = 0.7. All quantities are dimensionless.

φi = |Re
∫ τci

0 �E3(R(τ ))dτ |, and Û
(+)
i and Û

(−)
i describe,

respectively, the transition during the receding and
approaching stages of collision. The topological phase
π/2 in the nondiagonal matrix elements of Ûi comes from the
singular factor in basis eigenfunction (7). The expression for
the σ -π transition probability is

P (τ1,τ2) = 4|{(1 − p1)
√

p2(1 − p2) sin φ2

+p1

√
p2(1 − p2) sin(φ2 − 2φ1)

+ (1 − 2p2)
√

p1(1 − p1) sin φ1}|2. (23)

Figure 6 shows the probabilities of the σ -π transition via
the τc1 and τc2 branch points separately and via both channels.
In the adiabatic limit bsc → ∞ the total probability approaches
the exact result but slower than in the previous dynamical basis
n = 2. At bsc < 1 a.u. transitions via the τc1 and τc2 branch
points compensate each other since the matrix element of
nonadiabatic coupling W3(R) has opposite sign in the vicinity
of Re(τc1) and Re(τc2) [see Fig. 3(e)]. From Fig. 6 it is clear
that the dynamical approach of higher order (n = 3), as well
as the phase shift from the next order of adiabatic expansion
(20), worsens the agreement with accurate numerical results,
and there is no sense in applying it in practice.

IV. CHARGE EXCHANGE IN COLLISIONS OF
He2+ WITH H(1s)

Referring to Fig. 1, the charge-exchange process (1) in the
dynamical adiabatic basis corresponds to transitions from the
initial ji = 2 state to the final jf = 3,4,5 states. The transitions
can occur during the approaching stage of the collision (when
R decreases from R = +∞ to R = b) as well as in the receding
stage (when R increases from R = b to R = +∞). Transition
probabilities are predominantly determined by the distribution
of those branch points in the complex R plane which connects
the analytic continuations of the dynamical adiabatic states
with labels j = 2–5. The positions of these branch points, for
the relevant ranges of the ω parameter, are shown in Fig. 7.
Branch points are grouped in eight series labeled as X(j1 −
j2), where X = L, P, R, Q, A, B, AB, C and j1,j2 = 2–5
indicate the labels of the dynamical adiabatic states which
are (or are supposed to be) connected by the branch points.
The series L(2 − 3), P (3 − 4), R(3 − 4), and Q(2 − 3) have
already been discussed in Ref. [9] [with somewhat different
respective notation: L3(2 − 3,4,5), L3(3 − 4), L′

3(3 − 4), and
Q1(2 − 3)]. The series A(4 − 5), B(4 − 5), AB(4 − 5), and
C(4 − 5) are presented here. Branch points belonging to the
Q(2 − 3) series correspond to the hidden-crossing type and are
all located in the relatively small domain. L(2 − 3), P (3 − 4),
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FIG. 4. (Color online) (a) Dimensionless Stueckelberg parame-
ters and (b) phases calculated in adiabatic and dynamical bases as
functions of the scaled impact parameter.

and R(3 − 4) are all L3 crossings; that is, they are related to the
rotational coupling. While the L(2 − 3) and P (3 − 4) series
originate from the united-atom degeneracies at R = 0 for ω =
0, the R(3 − 4) series originates from the exact crossing at
R = 4.507 a.u. for ω = 0 (between the 3dσ and 2pπ adiabatic

FIG. 5. (Color online) σ -π transition probabilities: Pad is calcu-
lated using the adiabatic basis as given by Eq. (16). Pdyn is calculated
using the dynamical basis according to Eq. (19). P ′

dyn is the result
obtainedby also using Eq. (19) but with additional phase χ as defined
in Eq. (20), and Pexact is the result of the numerical solution of the
coupled equations (15).

FIG. 6. Probabilities of σ -π transitions as functions of the scaled
impact parameter bsc. The probabilities for transitions via the τc1

and τc2 branch points separately are labeled P (τc1) and P (τc2). The
probability of transition via both channels simultaneously is labeled
P (τc1,τc2). Pexact is the result of the numerical solution of the coupled
equations (15)

curves, as seen in Fig. 1). As for the A(4 − 5) and C(4 − 5)
series, they also seem to tend towards the origin when ω → 0,
while the B(4 − 5) series in this limit corresponds to the exact
crossing at R = 3.616 a.u. (between the 3dσ and 2sσ adiabatic
curves, also visible in Fig. 1). The AB(4 − 5) series is formed
after A(4 − 5) and B(4 − 5) merge at the value of ω ≈ 0.7 a.u.

It is clear that taking into account all branch points and all
possible transitions is a very complicated task. Consequently,
we have made some simplifying assumptions. First of all,
from Fig. 7 it is clear that for the wide range of ω values
the imaginary parts of the branch points in the C(4 − 5)
series are very small. Therefore, we have assumed that the

FIG. 7. (Color online) Positions of branch points belonging to
series X(j1 − j2),X = L, P, R, Q, A, B, AB, C and connecting the
dynamical eigenvalues labeled with j1,j2 = 2–5 for various values
of the ω parameter. Thick cyan lines represent integration paths for
calculation of the Stueckelberg parameters for the case of v = 0.173
and ω = 0.5. All quantities are in atomic units

042701-6



DYNAMICAL ADIABATIC THEORY OF ATOMIC . . . PHYSICAL REVIEW A 92, 042701 (2015)

corresponding very narrow avoided crossings are always
passed diabatically. The same is also true for the A(4 − 5)
and B(4 − 5) series, at least for not too large values of
ω. For example, in Fig. 1 for ω = 0.5 a.u., two narrow
avoided crossings corresponding to A(4 − 5) and B(4 − 5)
branch points can clearly be seen. Treating them as exact
crossings leads then to simply redefining state j = 5 to play
the role of state j = 4 in the R interval between the diabatic
crossings. The role of the AB(4 − 5) series was neglected
on the grounds that it appears at relatively large values of
ω, corresponding to larger values of the impact parameter
where the transitions are mainly governed by the two outer
series: R(3 − 4) and Q(2 − 3). In this way we have effectively
excluded state j = 5 from consideration, and the charge-
exchange process (1) will be described by calculating the
probabilities of the ji = 2 → jf = 3 and ji = 2 → jf = 4
transitions caused by the presence of branch points in series
L(2 − 3), P (3 − 4), R(3 − 4), and Q(2 − 3).

For fixed relative collision velocity and a fixed impact
parameter, ω = vb is also fixed, and we deal with four
branch points in the first quadrant of the complex R plane
which we can label as RX, where X = L,P,R,Q indicates
the above-discussed series. In the fourth quadrant there are
the complex-conjugate branch points R∗

X which connect the
complex-conjugate dynamical adiabatic eigenvalues Ẽ∗

j (R,ω).

Through the mapping t = ±√
R2 − b2/v, for each RX we find

in the first quadrant of the complex t plane the branch point tX
and in the second quadrant the branch point −t∗X. A schematic
representation (without real scaling of distances) of the typical
distribution of branch points in the upper half of the complex
t plane is shown in Fig. 8.

The probabilities of the ji = 2 → jf = 3 and ji = 2 →
jf = 4 transitions are calculated by summing up coherently
all complex probability amplitudes containing phase integrals
of the dynamical adiabatic eigenvalues along all possible paths
C

(k)
ji ,jf

in the upper half of the complex t plane that start at
t → −∞ in the initial ji = 2 state, encircle a certain number
of branch points, and end up in either the jf = 3 or jf = 4

FIG. 8. (Color online) Schematic representation of positions of
the branch points in the upper half of the complex t plane. The
typical path C

(k)
2,3 contributing to the 2 → 3 transition is shown.

state for t → +∞ [20]:

Pji,jf
=

∣∣∣∣∣∣
Nji ,jf∑
k=1

A
(k)
ji ,jf

exp
{−iφ

(k)
ji ,jf

− in
(k)
ji ,jf

π/2
}∣∣∣∣∣∣

2

, (24)

where Nji,jf
is the total number of paths (in our case we find

N2,3 = 22 and N2,4 = 14). Phases are given by

φ
(k)
ji ,jf

= 1

�
Re

∫
C

(k)
ji ,jf

Ẽ(R,ω)

R2
dt, (25)

and n
(k)
ji ,jf

is a whole number equal to the difference of the
number of times the branch points have been encircled in the
approaching (Re t < 0) and receding (Re t > 0) parts of the
collision (each encircling contributes a “topological phase” of
∓π/2 [20]). For the particular example of a C

(k)
2,3 path shown

in Fig. 8, we find n
(k)
2,3 = 1. Amplitudes A

(k)
ji ,jf

are the products

of a certain number of terms of the form
√

pX or
√

1 − pX

(X = L, P, R, Q) which appear depending on whether along
the path a single-pass transition related to the branch point X

is either possible and occurs or possible but does not occur.
For example, for the path shown in Fig. 8 we find

A
(k)
2,3 = √

pQ

√
1 − pR

√
1 − pL

√
pP

√
1 − pP

√
pR

√
1 − pQ.

(26)

Single-pass transition probabilities pX are defined according
to Eqs. (4) and (14):

pX = e−2�X, (27)

where

�X = 1

�

∣∣∣∣Im ∫
CX

Ẽ(R,ω)

R2
dt

∣∣∣∣ (28)

and CX is a contour which encircles the branch point tX (or
−t∗X) starting and ending at the real t axis (three such vertical
contours can be seen along the path shown in Fig. 8).

For the two cases of relative collision velocities v =
0.173 a.u. and v = 0.283 a.u. considered in the present
work, the impact parameter dependencies of Stueckelberg
parameters �X and single-pass transition probabilities pX for
four series of branch points (X = P, L, R, Q) are shown in
Fig. 9. While these quantities in the cases of the L,R, and
Q series exhibit more or less expected behavior (L-branch
points are operational at small impact parameters, R-branch
points are operational at intermediate values, and Q-branch
points affect transition in the whole range), the nonmonotonic
behavior of �P and pP is rather surprising. Therefore,
we discuss below in some detail how these quantities are
calculated.

In practice, the integral in Eq. (29) is calculated for each
branch point tX(j1 − j2) as∫

CX

Ẽ(R,ω)

R2
dt =

∫ tX

RetX

Ẽj1 (R,ω) − Ẽj2 (R,ω)

R2
dt (29)

that is, as an integral along one of the four vertical straight lines
in the first quadrant of the schematic representation in Fig. 8.
In reality, these four straight lines are mapped into four curved
lines in the first quadrant of the complex R plane. For the case
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FIG. 9. (Color online) Stueckelberg parameters �X and single-pass probabilities pX as functions of impact parameter for two values of the
impact velocities. �X and pX are dimensionless, and other quantities are in atomic units.

of v = 0.173 a.u., ω = 0.5 a.u. (which implies b = 2.89 a.u.),
these curves are shown in Fig. 7 as thick cyan lines. Each of
these curves starts on the real axis at R =

√
b2 + (vRe tX)2 and

ends up at the branch point RX [a member of the X(j1 − j2)
series labeled with ω = 0.5 a.u.].

We have verified that when one starts with eigenvalues
labeled with j1 = 2 and j2 = 3 on the real axis and analytically
continues these eigenvalues along the path shown in Fig. 7 as
the solid thick line which ends up at RL, indeed, the branch-
point singularity is reached. It is of interest to note that this
is seemingly in contrast to the assignment from our previous
work [9], in which it was found that this branch point connects
the analytic continuations of eigenvalues labeled with j1 = 2
and j2 = 4. The reason for this is because in Ref. [9] the path
of analytic continuation was the vertical straight line from
R = ReRL to R = RL, shown in Fig. 7 as a thick dashed
line. Why the two assignments differ becomes clear when one
notices that the contour formed by the solid and dashed lines
which join at RL encircle the branch point RP [the member
of the P (3 − 4) series labeled with ω = 0.5 a.u.]. We have
also verified that for all other members of the L series the
assignment L(2 − 3) in the above sense is correct. Anyway,
the correct labels of states coupled by the given branch point
tX are determined along the vertical line from Re tX to tX in
only the complex t plane.

Unfortunately, similar reasons lead to the result that when
the analytic continuation is performed along the path shown
in Fig. 7 as a solid thick line which ends up at RP , this branch
point connects the eigenvalues labeled at the real R axis with

j1 = 3 and j2 = 5, which violates the assignment P (3 − 4)
of the P series. Again, this is due to the fact that, as seen
in Fig. 7, the contour formed by the solid and dashed lines
which join at RP encircles the branch point RA [the member
of the A(4 − 5) series labeled with ω = 0.5 a.u.]. The same
problem arises for all branch points of the P series with ω =
0.2–0.6 a.u. Outside this interval the assignment P (3 − 4) is
not violated. An accurate solution of this problem requires the
use of the comparison equation with two branch points passing
each other. But, to our knowledge, such a solvable equation is
not known. That is why the calculations have been completed
using values of �P shown in Fig. 9, which were calculated
using Eq. (29) with j1 = 3 and j2 = 4. As for the R(3 − 4)
and Q(2 − 3) series of branch points we have not detected any
problems of this kind.

For the case of the relative collision velocity of v = 0.173
a.u. the weighted probabilities bP2,3, bP2,4, and b(P2,3 + P2,4)
as functions of the impact parameter b have been calculated
using Eq. (24) and are shown in Fig. 10. P2,4 exhibits a
large peak at small impact parameters due to the contribution
of the L(2 − 3) series and a smaller peak at intermediate
impact parameters due to the contributions of the P (3 − 4) and
R(3 − 4) series of branch points. P2,3 contributes the overall
interference structure (Stueckelberg oscillations) mainly due to
the Q(2 − 3) series of branch points. Also shown in Fig. 10 are
the results of hyperspherical close-coupling calculations [3].
Overall agreement with our results is satisfactory, except that
we are missing the structured peak located around b ≈ 1.5 a.u.
The sources of this disagreement can be various; the possible
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FIG. 10. (Color online) Weighted electron-capture probabilities
as functions of the impact parameters at relative collision velocity v =
0.173. Dotted curve: ji = 2 → jf = 3 transitions, dash-dotted curve:
ji = 2 → jf = 4 transitions, solid curve: total electron transfer. The
short-dashed curve corresponds to the total probability of hyper-
spherical close-coupling calculations [3]. The long-dashed curve
is the result of the adiabatic approach combined with united-atom
close-coupling calculations in order to include the first peak [20,21].
All quantities are in atomic units.

one is our exclusion of the j = 5 state from the considerations.
Also shown in Fig. 10 are the results of the combination
of the standard adiabatic (hidden crossing) theory and the
united-atom close-coupling (UA-CC) calculation [20,21]. The
adiabatic approach is able to reproduce only the oscillatory
structure as it originates from the radial coupling. The first
large peak at small impact parameters originates from the
2pσ -2pπ rotational coupling close to the united-atom limit
and could be reproduced only by adding the results of the
close-coupling calculations. In addition, this method does
not take into account the rotational transitions due to exact
crossing between the 2pπ and 3dσ curves (see Fig. 1) and
therefore does not reproduce the second small peak of the
ji = 2 → jf = 4 transitions present in the results of the
dynamical adiabatic approach.

Figure 11 shows the weighted probabilities at somewhat
higher collision velocity v = 0.283 a.u. Here, the rotational
peak at small impact parameters is no longer dominant
with respect to the Stueckelberg oscillations, and rotational
peak at intermediate impact parameters is smoothed out. A
comparison with the results of hyperspherical close-coupling
calculations indicates that our method predicts a slower

FIG. 11. (Color online) Same as Fig. 10, but for the relative
collision velocity of v = 0.283.

decrease of the electron-capture probability at large impact
parameters.

V. CONCLUDING REMARKS

The application of dynamical adiabatic theory for de-
scribing electronic transitions in ion-atom collisions is more
complicated than the standard adiabatic theory. This is because
one has to deal with a series of branch points in the
complex R plane which change their positions when dynamical
parameters (such as ω = bv) are changed. On the other hand,
the great advantage of this method is that electronic transitions
caused by the relative radial and angular motion of the nuclei
can be treated on equal footing, a property which is missing in
the standard adiabatic approach. As the comparison with the
results of very elaborate calculations (such as hyperspherical
close-coupling method) shows, the precision of the method
is satisfactory. In addition, it allows for interpretation of the
results in terms of various transition mechanisms related to
particular types of branch points.
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